Skip to main content
Log in

The Grès Singuliers of the Mont Blanc region (France and Switzerland): stratigraphic response to rifting and crustal necking in the Alpine Tethys

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Grès Singuliers unit represents an anomalous occurrence of a siliciclastic-dominated sedimentary system typifying a restricted geographic area around the Mont Blanc massif. Deposited during Early Jurassic rifting, this unit was influenced by the tectonic processes responsible for its development. This contribution integrates and reconciles sedimentological, stratigraphic and tectonic data and discusses the tectono-sedimentary evolution of the Mont Blanc basement and its autochthonous sedimentary cover. Based on depositional facies, a petrographic and detrital zircon provenance analysis, we propose that the Grès Singuliers unit is mainly derived from erosion of the local basement and pre-rift sedimentary cover. Furthermore, recognition of Jurassic cataclasites and black gouges capping the Mont Blanc basement confirms the hypothesis that the Mont Blanc domain formed an extensional core complex. The source to sink relationship between the Mont Blanc detachment system and the Grès Singuliers unit, as well as timing and location within the Alpine rift system, allows us to interpret this unit as the syn-tectonic sedimentary response to crustal necking, responsible for the onset of localized severe crustal/lithospheric thinning in the European margin of the Alpine Tethys rift system. The main result of this study was to show that the exhumation and uplift of basement during crustal/lithospheric necking produced a new source area for clastic sedimentary systems. Therefore, the local occurrence of a siliciclastic unit similar to the Grès Singuliers along passive margins may be symptomatic of necking zones in other rift systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Copyright Commonwealth of Australia (Geoscience Australia)

Similar content being viewed by others

References

  • Amberger GF (1959) L'autochtone de la partie Nord-Quest du massif des Aiguilles Rouges: Haute-Savoie et Valais (PhD, Doctoral dissertation), Université de Genève

  • Antoine P, Barbier R, Debelmas J, Fudral S (1972) Précisions chronologiques et paléogéographiques sur les breches du Massif du Grand-Fond (zone des Breches de Tarentaise, Savoie). Géol Alp 48:49–59

    Google Scholar 

  • Antoine P, Pairis J, Pairis B (1975) Quelques observations nouvelles sur la structure de la couverture sedimentaire interne du massif du Mont-Blanc, entre le col Ferret (frontiere italo-suisse) et la Tete des Fours (Savoie, France). Géol Alp 51:5–23

    Google Scholar 

  • Avanzini M, Cavin L (2009) A new Isochirotherium trackway from the Triassic of Vieux Emosson SW Switzerland: stratigraphic implications. Swiss J Geosci 102:353–361

    Google Scholar 

  • Aviolat P (1991) Géologie de la couverture sédimentaire du Mont-balnc interne et des Unités Helvetiques dans le val Ferret Italien. Master Thesis, Université de Lausanne

  • Axen GJ, Karner GD, Taylor B, Driscoll NW, Kohlstedt DL, Morris JD, Silver EA (2004) Mechanics of low-angle normal faults. Rheology and deformation of the lithosphere at continental margins. Theoretical and Experimental Earth Science Series, Margins, pp 46–91

  • Badoux H (1963) Les unités ultrahelvétiques de la Zone des Cols. Eciogae Geol Helv 56:1–13

    Google Scholar 

  • Ball P, Eagles G, Ebinger C, McClay K, Totterdell J (2013) The spatial and temporal evolution of strain during the separation of Australia and Antarctica. Geochem Geophys Geosyst 14:2771–2799

    Google Scholar 

  • Barfety J-C (1985) Le Jurassique dauphinois entre la Durance et le Rhône, étude stratigraphique et géodynamique, évolution d'une portion de la marge nord téthysienne (Alpes occidentales françaises). Doctoral PhD. Université de Grenoble

  • Barfety J, Mouterde R (1980) Évolution des faciès du Jurassique dans la zone dauphinoise du Mont-Blanc au Pelvoux (Alpes occidentales). Bull Soc Géol Fr Sér 7:557–565

    Google Scholar 

  • Baumgartner PO (2013) Mesozoic radiolarites–accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology 60:292–318

    Google Scholar 

  • Beltrando M, Frasca G, Compagnoni R, Vitale-Brovarone A (2012) The Valaisan controversy revisited: multi-stage folding of a mesozoic hyper-extended margin in the Petit St. Bernard pass area (Western Alps). Tectonophysics 579:17–36. https://doi.org/10.1016/j.tecto.2012.02.010

    Article  Google Scholar 

  • Beltrando M, Manatschal G, Mohn G, Dal Piaz GV, Brovarone AV, Masini E (2014) Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: the Alpine case study. Earth Sci Rev 131:88–115. https://doi.org/10.1016/j.earscirev.2014.01.001

    Article  Google Scholar 

  • Beltrando M, Stockli DF, Decarlis A, Manatschal G (2015) A crustal-scale view at rift localization along the fossil Adriatic margin of the Alpine Tethys preserved in NW Italy. Tectonics 34:1927–1951. https://doi.org/10.1002/2015TC003973

    Article  Google Scholar 

  • Berra F, Galli MT, Reghellin F, Torricelli S, Fantoni R (2009) Stratigraphic evolution of the Triassic–Jurassic succession in the Western Southern Alps (Italy): the record of the two-stage rifting on the distal passive margin of Adria. Basin Res 21:335–353. https://doi.org/10.1111/j.1365-2117.2008.00384.x

    Article  Google Scholar 

  • Bill M, O'Dogherty L, Guex J, Baumgartner PO, Masson H (2001) Radiolarite ages in Alpine-Mediterranean ophiolites: constraints on the oceanic spreading and the Tethys-Atlantic connection. GSA Bull 113:129–143. https://doi.org/10.1130/0016-7606(2001)113<0129:RAIAMO>2.0.CO;2

    Article  Google Scholar 

  • Brun J-P, Sokoutis D, Tirel C, Gueydan F, Van den Driessche J, Beslier M-O (2018) Crustal versus mantle core complexes. Tectonophysics 746:22–45

    Google Scholar 

  • Buck WR (1988) Flexural rotation of normal faults. Tectonics 7:959–973

    Google Scholar 

  • Burkhard M (1988) L'Helvétique de la bordure occidentale du massif de l'Aar (évolution tectonique et métamorphique). Eclogae Geol Helv 81:63–114

    Google Scholar 

  • Bussy F, Von Raumer J (1993) U-Pb dating of Palaeozoic events in the Mont-Blanc crystalline massif Western Alps. Terra Nova 5:382–383

    Google Scholar 

  • Bussy F, Hernandez J, Von Raumer J (2000) Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, Western Alps). Earth Environ Sci Trans R Soc Edinb 91:221–233

    Google Scholar 

  • Bussy F, Péronnet V, Ulianov A, Epard J, Von Raumer J (2011) Ordovician magmatism in the external French Alps: witness of a peri-Gondwanan active continental margin. Ordovician World Madr Inst Geol Min Esp Cuad Mus Geomin 14:75–82

    Google Scholar 

  • Capuzzo N, Bussy F (2000) High-precision dating and origin of synsedimentary volcanism in the Late Carboniferous Salvan-Dorénaz basin (Aiguilles-Rouges Massif, Western Alps). Schweiz Mineral Petrogr Mitt 80:147–167

    Google Scholar 

  • Capuzzo N, Wetzel A (2004) Facies and basin architecture of the Late Carboniferous Salvan-Dorénaz continental basin (Western Alps, Switzerland/France). Sedimentology 51:675–697

    Google Scholar 

  • Cardello GL, Di Vincenzo G, Giorgetti G, Zwingmann H, Mancktelow N (2019) Initiation and development of the Pennine Basal Thrust (Swiss Alps): a structural and geochronological study of an exhumed megathrust. J Struct Geol 126:338–356

    Google Scholar 

  • Carr ID, Gawthorpe RL, Jackson CA, Sharp IR, Sadek A (2003) Sedimentology and sequence stratigraphy of early syn-rift tidal sediments: the Nukhul Formation Suez Rift, Egypt. J Sediment Res 73:407–420

    Google Scholar 

  • Chenin P, Manatschal G, Decarlis A, Schmalholz SM, Duretz T, Beltrando M (2019) Emersion of distal domains in advanced stages of continental rifting explained by asynchronous crust and mantle necking. Geochem Geophys Geosyst 20:3821–3840

    Google Scholar 

  • Chester F, Logan JM (1986) Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure Appl Geophys 124:79–106

    Google Scholar 

  • Chevalier F (2002) Vitesse et cyclicité de fonctionnement des failles normales de rift: implication sur le remplissage stratigraphique des bassins et sur les modalités d'extension d'une marge passive fossile: aplication au demi-graben liasique de Bourg-d'Oisans (Alpes occidentales, France). Ph.D., Université de Bourgogne

  • Chevalier F, Guiraud M, Garcia JP, Dommergues JL, Quesne D, Allemand P, Dumont T (2003) Calculating the long-term displacement rates of a normal fault from the high-resolution stratigraphic record (early Tethyan rifting, French Alps). Terra Nova 15:410–416. https://doi.org/10.1046/j.1365-3121.2003.00508.x

    Article  Google Scholar 

  • Clerc C, Lagabrielle Y, Labaume P, Ringenbach J-C, Vauchez A, Nalpas T, Bousquet R, Ballard J-F, Lahfid A, Fourcade S (2016) Basement-cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics 686:82–97

    Google Scholar 

  • Crespo-Blanc A, Masson H, Sharp Z, Cosca M, Hunziker J (1995) A stable and 40Ar/39Ar isotope study of a major thrust in the Helvetic nappes (Swiss Alps): evidence for fluid flow and constraints on nappe kinematics. Geol Soc Am Bull 107:1129–1144

    Google Scholar 

  • Daczko N, Caffi P, Halpin JA, Mann P (2009) Exhumation of the Dayman dome metamorphic core complex, eastern Papua New Guinea. J Metamorph Geol 27:405–422

    Google Scholar 

  • De Saussure H-B (1779) Voyages dans les Alpes. Samuel Fauche, Neuchâtel

    Google Scholar 

  • Debelmas J, Lemoine M (1970) The western Alps: palaeogeography and structure. Earth Sci Rev 6:221–256

    Google Scholar 

  • Decarlis A, Beltrando M, Manatschal G, Ferrando S, Carosi R (2017) Architecture of the distal Piedmont-Ligurian rifted margin in NW Italy: hints for a flip of the rift system polarity. Tectonics 36:2388–2406. https://doi.org/10.1002/2017TC004561

    Article  Google Scholar 

  • Desmurs L, Manatschal G, Bernoulli D (2001) The Steinmann Trinity revisited: mantle exhumation and magmatism along an ocean-continent transition: the Platta nappe, eastern Switzerland. Geol Soc Lond Spec Publ 187:235–266. https://doi.org/10.1144/GSL.SP.2001.187.01.12

    Article  Google Scholar 

  • Duparc L, Pearce F (1989) Sur le Poudingue de l'Amône dans le Val Ferret suisse. Comptes Rendus l'Académie Sci 126:1–3

    Google Scholar 

  • Duparc L, Mrazec L, Pearce M-F (1901) Carte géologique du massif du Mont-Blanc. Globe Rev Genev Géogr 40:163–167

    Google Scholar 

  • Egli D, Mancktelow N (2013) The structural history of the Mont Blanc massif with regard to models for its recent exhumation. Swiss J Geosci 106:469–489

    Google Scholar 

  • Eltchaninoff C, Triboulet S (1980) Étude Géologique entre Belledonne et Mont Blanc. Livre synthétique Travaux du Département de Géotectonique de l’Université Pierre et Marie Curie, Paris, pp 1–54

  • Eltchaninoff-Lancelot C, Triboulet S, Doudoux B, Fudral S, Rampnoux J-P, Tardy M (1982) Stratigraphie et tectonique des unites delphino-helvetiques comprises entre Mont-Blanc et Belledonne (Savoie-Alpes occidentales); Implications regionales. Bull Soc Géol Fr 7:817–830

    Google Scholar 

  • Elter G, Elter P (1965) Carta geologica della regione del Piccolo San Bernardo (versante italiano). Note illustrative. Mem. Ist. Geol. Min. Univ. Padova 25, 53p

  • Epard JL (1986) Le contact entre le socle du Mont-Blanc et la zone de Chamonix: im- plications tectoniques. Bulletin de la Société Vaudoise des Sciences Naturelles 78, Lausanne 225–245

  • Epard J-L (1989) Stratigraphie du Trias et du Lias dauphinois entre Belledone, Aiguilles-Rouges et Mont-Blanc. Bull Soc Vaud Sci Nat. https://doi.org/10.5169/seals-279237

    Article  Google Scholar 

  • Epard J-L (1990) La nappe de Morcles au sud-ouest du Mont-Blanc, vol 8. Mémoires de Géologie, Lausanne, 165p

    Google Scholar 

  • Epin M-E, Manatschal G (2018) Three-dimensional architecture, structural evolution and role of inheritance controlling detachment faulting at a hyperextended distal margin: the example of the Err detachment system (SE Switzerland). Tectonics. https://doi.org/10.1029/2018TC005125

    Article  Google Scholar 

  • Escher A, Masson H, Steck A (1993) Nappe geometry in the western Swiss Alps. J Struct Geol 15:501–509

    Google Scholar 

  • Escher A, Hunziker J, Marthaler M, Masson H, Sartori M, Steck A (1997) Geological framework and structural evolution of the Western Swiss-Italian Alps. Deep Struct Swiss Alps Results Natl Res Program 20(NRP20):205–222

    Google Scholar 

  • Fantasia A, Föllmi KB, Adatte T, Spangenberg JE, Montero-Serrano J-C (2018) The early Toarcian oceanic anoxic event: paleoenvironmental and paleoclimatic change across the Alpine Tethys (Switzerland). Glob Planet Chang 162:53–68

    Google Scholar 

  • Favre A (1867) Recherches géologiques dans les parties de la Savoie, du Piémont et de la Suisse voisines du Mont-Blanc: 3 (vol. 3). Masson, Paris

  • Finger F, Steyrer H (1990) I-type granitoids as indicators of a late Paleozoic convergent ocean-continent margin along the southern flank of the central European Variscan orogen. Geology 18:1207–1210

    Google Scholar 

  • Froitzheim N, Eberli GP (1990) Extensional detachment faulting in the evolution of a Tethys passive continental margin Eastern Alps, Switzerland. Geol Soc Am Bull 102:1297–1308

    Google Scholar 

  • Froitzheim N, Rubatto D (1998) Continental breakup by detachment faulting: field evidence and geochronological constraints (Tasna nappe, Switzerland). Terra Nova 10:171–176

    Google Scholar 

  • Fudral S (1973) Contribution à l'étude de l'unité de Moutiers (zone des brêches de Tarentaise) entre le vallon du torrent du Cormet d'Arêches et le hameau des Chapieux (Savoie)-Alpes françaises. Ph.D., Université Scientifique et Médicale de Grenoble

  • Funk H, Oberhänsli R, Pfiffner A, Schmid S, Wildi W (1987) The evolution of the northern margin of the Tethys in eastern Switzerland. Episodes 10:102–106

    Google Scholar 

  • Galloway W (2002) Paleogeographic setting and depositional architecture of a sand-dominated shelf depositional system, Miocene Utsira Formation, North Sea Basin. J Sediment Res 72:476–490

    Google Scholar 

  • Grasmück K (1961) Die helvetischen Sedi- mente am Nordostrand des Mont-Blancs Massivs (zwischen Sembrancher und dem Col Ferret). Eclogae Geol Helv 54/2:351–450

    Google Scholar 

  • Grosjean DB, Meisser N, May-Leresche S, Ulianov A, Vonlanthen P (2018) The Morcles microgranite (Aiguilles Rouges, Swiss Alps): geochronological and geochemical evidences for a common origin with the Vallorcine intrusion. Swiss J Geosci 111:35–49

    Google Scholar 

  • Guermani A, Pennacchioni G (1998) Brittle precursors of plastic deformation in a granite: an example from the Mont Blanc massif (Helvetic, western Alps). J Struct Geol 20:135–148

    Google Scholar 

  • Hart NR, Stockli DF, Hayman NW (2016) Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U-Pb geochronology, Mauléon Basin, western Pyrenees. Geosphere 12:1166–1186

    Google Scholar 

  • Hubbard RJ (1988) Age and significance of sequence boundaries on Jurassic and Early Cretaceous rifted continental margins. AAPG Bull 72:49–72

    Google Scholar 

  • Incerpi N, Martire L, Manatschal G, Bernasconi SM (2017) Evidence of hydrothermal fluid flow in a hyperextended rifted margin: the case study of the Err nappe (SE Switzerland). Swiss J Geosci. https://doi.org/10.1007/s00015-016-0235-2

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Google Scholar 

  • Jeanbourquin P, Goy-Eggenberger D (1991) Mélanges suprahelvétiques: sédimentation et tectonique au front de la nappe de Morcles (Vaud, Suisse). Géol Alp 67:43–62

    Google Scholar 

  • Jolly RJ, Lonergan L (2002) Mechanisms and controls on the formation of sand intrusions. J Geol Soc 159:605–617

    Google Scholar 

  • Kreisa R, Moila R (1986) Sigmoidal tidal bundles and other tide-generated sedimentary structures of the Curtis Formation, Utah. Geol Soc Am Bull 97:381–387

    Google Scholar 

  • Labaume P (1987) Syn-diagenetic deformation of a turbiditic succession related to submarine gravity nappe emplacement, Autapie Nappe, French Alps. Geol Soc Lond Spec Publ 29:147–163

    Google Scholar 

  • Lagabrielle Y, Clerc C, Vauchez A, Lahfid A, Labaume P, Azambre B, Fourcade S, Dautria J-M (2016) Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). Comptes Rendus Geosci 348:290–300

    Google Scholar 

  • Landry P (1976) Contribution à l'étude géologique de la région de Roselend (Savoie). Doctoral PhD. Université de Grenoble

  • Landry P (1978) Données nouvelles sur la couverture sédimentaire des mas-sifs cristallins externes au Sud du Mont-Blanc. Géol Alp 54:83–110

    Google Scholar 

  • Leloup P-H, Arnaud N, Sobel ER, Lacassin R (2005) Alpine thermal and structural evolution of the highest external crystalline massif: the Mont Blanc. Tectonics. https://doi.org/10.1029/2004tc001676

    Article  Google Scholar 

  • Lemoine M, Trümpy R (1987) Pre-oceanic rifting in the Alps. Tectonophysics 133:305–320

    Google Scholar 

  • Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Dumont T, Gidon M, Bourbon M, de Graciansky P-C, Rudkiewicz J-L, Megard-Galli J (1986) The continental margin of the Mesozoic Tethys in the Western Alps. Mar Pet Geol 3:179–199

    Google Scholar 

  • Lewis DS (2014) New insights into late synrift subsidence from detailed well ties and seismic mapping, Campos Basin, Brazil. In Sedimentary basins: origin, depositional histories and petroleum systems. SEPM Society for Sedimentary Geology, Houston, pp 98–115

  • Li X-H, Faure M, Lin W, Manatschal G (2013) New isotopic constraints on age and magma genesis of an embryonic oceanic crust: the Chenaillet Ophiolite in the Western Alps. Lithos 160:283–291

    Google Scholar 

  • Liati A, Froitzheim N, Fanning CM (2005) Jurassic ophiolites within the Valais domain of the Western and Central Alps: geochronological evidence for re-rifting of oceanic crust. Contrib Miner Petrol 149:446–461

    Google Scholar 

  • Lister GS, Davis GA (1989) The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA. J Struct Geol 11:65–94. https://doi.org/10.1016/0191-8141(89)90036-9

    Article  Google Scholar 

  • Lister G, Etheridge M, Symonds P (1986) Detachment faulting and the evolution of passive continental margins. Geology 14:246–250

    Google Scholar 

  • Lister G, Etheridge M, Symonds P (1991) Detachment models for the formation of passive continental margins. Tectonics 10:1038–1064

    Google Scholar 

  • Little TA, Baldwin SL, Fitzgerald PG, Monteleone B (2007) Continental rifting and metamorphic core complex formation ahead of the Woodlark spreading ridge, D'Entrecasteaux Islands, Papua New Guinea. Tectonics 26(1):TC1002. https://doi.org/10.1029/2005TC001911

    Article  Google Scholar 

  • Little TA, Webber SM, Mizera M, Boulton C, Oesterle J, Ellis S, Boles A, van der Pluijm B, Norton K, Seward D, Biemiller J, Wallace L (2019) Evolution of a rapidly slipping, active low-angle normal fault, Suckling-Dayman metamorphic core complex, SE Papua New Guinea. GSA Bulletin 131(7–8):1333–1363

    Google Scholar 

  • Longhitano SG (2013) A facies‐based depositional model for ancient and modern, tectonically–confined tidal straits Terra Nova 25:446–452

    Google Scholar 

  • Longhitano SG, Steel RJ (2017) Deflection of the progradational axis and asymmetry in tidal seaway and strait deltas: insights from two outcrop case studies. Geol Soc Lond Spec Publ 444:141–172

    Google Scholar 

  • Longhitano SG, Mellere D, Steel RJ, Ainsworth RB (2012) Tidal depositional systems in the rock record: a review and new insights. Sediment Geol 279:2–22

    Google Scholar 

  • Loprieno A (2001) A combined structural and sedimentological approach to decipher the evolution of the Valais domain in Savoy Western Alps. Ph.D. Thesis, Universität Basel, Basel

  • Loreau J, Gely J, Rampneaux J (1995) Cycles stratigraphiques dans les séries alpines du Lias et de l’Aalénien de part et d’autre du Front pennique (Savoie, France): controle tectonique et rapport avec l’eustatisme. Eclogae Geol Helv 88:529–551

    Google Scholar 

  • Loup BFR (1991) Evolution de la partie septentrionale du domaine helvétique en Suisse occidentale au Trias et au Lias: contrôle par subsidence thermique et variations du niveau marin. Ph.D., University of Geneva

  • Mamin M (1992) Géologie du Haut val Ferret Itlaien. Master Thesis, Université de Lausanne

  • Manatschal G (1999) Fluid-and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland). J Struct Geol 21:777–793

    Google Scholar 

  • Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473:4–19

    Google Scholar 

  • Manatschal G, Marquer D, Früh-Green GL (2000) Channelized fluid flow and mass transfer along a rift-related detachment fault (Eastern Alps, southeast Switzerland). Geol Soc Am Bull 112:21–33

    Google Scholar 

  • Manatschal G, Engström A, Desmurs L, Schaltegger U, Cosca M, Müntener O, Bernoulli D (2006) What is the tectono-metamorphic evolution of continental break-up: the example of the Tasna Ocean-Continent Transition. J Struct Geol 28:1849–1869. https://doi.org/10.1016/j.jsg.2006.07.014

    Article  Google Scholar 

  • Marshall D, Kirschner D, Bussy F (1997) A Variscan pressure-temperature-time path for the NE Mont Blanc massif. Contrib Mineral Petrol 126:416–428

    Google Scholar 

  • Masini E, Manatschal G, Mohn G, Unternehr P (2012) Anatomy and tectono-sedimentary evolution of a rift-related detachment system: the example of the Err detachment (central Alps, SE Switzerland). Geol Soc Am Bull 124:1535–1551. https://doi.org/10.1130/B30557.1

    Article  Google Scholar 

  • Masini E, Manatschal G, Mohn G (2013) The Alpine Tethys rifted margins: reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins. Sedimentology 60:174–196. https://doi.org/10.1111/sed.12017

    Article  Google Scholar 

  • Masson H, Herb R, Steck A (1980) Helvetic Alps of Western Switzerland. Geology of Switzerland Wepf and Company, Basel

    Google Scholar 

  • McMahon S, van Smeerdijk HA, McIlroy D (2017) The origin and occurrence of subaqueous sedimentary cracks. Geol Soc Lond Spec Publ 448:285–309

    Google Scholar 

  • Meyer S (2002) Etude géologique de la couverture mésozoïque para-autochtone du Mont-Blanc et des unités helvétiques au sud-ouest du Montt-Blanc. Master, Université de Lausanne

  • Mohn G, Manatschal G, Masini E, Müntener O (2011) Rift-related inheritance in orogens: a case study from the Austroalpine nappes in Central Alps (SE-Switzerland and N-Italy). Int J Earth Sci 100:937–961. https://doi.org/10.1007/s00531-010-0630-2

    Article  Google Scholar 

  • Mohn G, Manatschal G, Beltrando M, Masini E, Kusznir N (2012) Necking of continental crust in magma-poor rifted margins: evidence from the fossil Alpine Tethys margins. Tectonics 31:TC1012

    Google Scholar 

  • Mohn G, Manatschal G, Beltrando M, Haupert I (2014) The role of rift-inherited hyper-extension in Alpine-type orogens. Terra Nova 26:347–353. https://doi.org/10.1111/ter.12104

    Article  Google Scholar 

  • Mohn G, Karner GD, Manatschal G, Johnson CA (2015) Structural and stratigraphic evolution of the Iberia-Newfoundland hyper-extended rifted margin: a quantitative modelling approach. Geol Soc Lond Spec Publ 413:53–89. https://doi.org/10.1144/SP413.9

    Article  Google Scholar 

  • Olariu C, Steel RJ, Dalrymple RW, Gingras MK (2012) Tidal dunes versus tidal bars: the sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sediment Geol 279:134–155

    Google Scholar 

  • Osmundsen PT, Ebbing J (2008) Styles of extension offshore mid-Norway and implications for mechanisms of crustal thinning at passive margins. Tectonics 27:TC6016. https://doi.org/10.1029/2007TC002242

    Article  Google Scholar 

  • Osmundsen P, Péron-Pinvidic G (2018) Crustal-scale fault interaction at rifted margins and the formation of domain-bounding breakaway complexes: insights from offshore Norway. Tectonics 37:935–964

    Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518

    Google Scholar 

  • Peron-Pinvidic G, Naliboff J (2020) The exhumation detachment factory. Geology 48(6):635–639

    Google Scholar 

  • Peron-Pinvidic G, Manatschal G, Osmundsen PT (2013) Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar Pet Geol 43:21–47

    Google Scholar 

  • Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand Geoanal Res 36:247–270

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (2012) Sand and sandstone. Springer Science & Business Media, New-York

  • Pfiffner O-A (1993) The structure of the helvetic nappes and its relation to the mechanical stratigraphy. J Struct Geol 15:511–511

    Google Scholar 

  • Pfiffner OA (2011) Explanatory notes of the structural Map of the Helvetic Zone of the Swiss Alps, including Vorarlberg (Austria) and Haute Savoie (France), 1:100000. Geological Special Map 128. Swisstopo, Wabern

  • Pfiffner O-A, Burkhard M, Hänni R, Kammer A, Kligfield R, Mancktelow N, Menkveld J, Ramsay J, Schmid S, Zurbriggen R (2010) Structural map of the Helvetic zone of the Swiss Alps, including Vorarlberg (Austria) and Haute Savoie (France). Swiss Geological Survey, Swisstopo, Wabern

  • Pik R, Bellahsen N, Leroy S, Denèle Y, Razin P, Ahmed A, Khanbari K (2013) Structural control of basement denudation during rifting revealed by low-temperature (U–Th–Sm)/He thermochronology of the Socotra Island basement—Southern Gulf of Aden margin. Tectonophysics 607:17–31

    Google Scholar 

  • Platt JP, Behr WM, Cooper FJ (2015) Metamorphic core complexes: windows into the mechanics and rheology of the crust. J Geol Soc 172:9–27

    Google Scholar 

  • Principi G, Bortolotti V, Chiari M, Cortesogno L, Gaggero L, Marcucci M, Saccani E, Treves B (2004) The pre-orogenic volcano-sedimentary covers of the Western Tethys oceanic basin: a review. Ofioliti 29:177–211

    Google Scholar 

  • Reynaud JY, Dalrymple RW (2012) Shallow-marine tidal deposits. In: Principles of tidal sedimentology. Springer, Dordrecht, pp 335–369

  • Ribes C, Ghienne J-F, Manatschal G, Decarlis A, Karner GD, Figueredo PH, Johnson CA (2019a) Long-lived mega fault-scarps and related breccias at distal rifted margins: insights from continental rifted margin and fossil analogues. J Geol Soc. https://doi.org/10.1144/jgs2018.181

    Article  Google Scholar 

  • Ribes C, Manatschal G, Ghienne J-F, Karner GD, Johnson CA, Figueredo PH, Incerpi N, Epin M-E (2019b) The syn-rift stratigraphic record across a fossil hyper-extended rifted margin: the example of the northwestern Adriatic margin exposed in the Central Alps. Int J Earth Sci. https://doi.org/10.1007/s00531-019-01750-6

    Article  Google Scholar 

  • Ribes C, Petri B, Ghienne J-F, Manatschal G, Galster F, Karner GD, Figueredo PH, Johnson CA, Karpoff A-M (2019c) Tectono-sedimentary evolution of a fossil ocean-continent transition: Tasna nappe, central Alps (SE Switzerland). Geol Soc Am Bull. https://doi.org/10.1130/B35310.1

    Article  Google Scholar 

  • Ritter E (1897) La bordure sud-ouest du Mont-Blanc: les plis couchés du Mont-Joly et de ses attaches. Bull Serv Carte Géol Fr 9:1–232

    Google Scholar 

  • Schmid S, Kissling E (2000) The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 19:62–85

    Google Scholar 

  • Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117. https://doi.org/10.1007/s00015-004-1113-x

    Article  Google Scholar 

  • Schmid SM, Kissling E, Diehl T, van Hinsbergen DJ, Molli G (2017) Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps-Apennines orogenic system. Swiss J Geosci 110:581–612

    Google Scholar 

  • Scholz CH (1987) Wear and gouge formation in brittle faulting. Geology 15:493–495

    Google Scholar 

  • Sharp IR, Gawthorpe RL, Underhill JR, Gupta S (2000) Fault-propagation folding in extensional settings: examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Geol Soc Am Bull 112:1877–1899

    Google Scholar 

  • Spencer JE (1984) Role of tectonic denudation in warping and uplift of low-angle normal faults. Geology 12:95–98

    Google Scholar 

  • Stampfli G, Borel GD, Marchant R, Mosar J (2002) Western Alps geological constraints on western Tethyan reconstructions. J Virtual Explor 8:77

    Google Scholar 

  • Steck A, Epard J-L, Escher A, Marchant R, Masson H, Spring L (1989) Coupe tectonique horizontale des Alpes centrales. Mémoires de Géologie (Lausanne). 5, 8

  • Steck A, Bigioggero B, Dal Piaz GV, Escher A, Martinotti G, Masson H (1999) Carte tectonique des Alpes de Suisse occidentale et des regions avoisinantes 1: 100.000. Carte géologique spéciale No. 123. Lan- deshydrologie und -geologie, Bern, 4 feuilles

  • Steck A, Epard J, Escher A, Gouffon Y, Masson H (2001) Notice explicative pour la carte tectonique des Alpes de Suisse occidentale. Swisstopo, Wabern

  • Stockmal GS, Beaumont C (1987) Geodynamic models of convergent margin tectonics: the southern Canadian Cordillera and the Swiss Alps. In: Beaumont C, Tankard AJ (eds) Sedimentary basins and basin-forming mechanisms. Canadian Society of Petroleum Geologists, Memoir 12, pp 393–411

  • Sutra E, Manatschal G (2012) How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology 40:139–142. https://doi.org/10.1130/G32786.1

    Article  Google Scholar 

  • Symonds PA, Parums R, Hill G, Hirst B, Bernardel G, Stagg H (2001) The outer limits of Australia's resource jurisdiction off eastern Australia. Eastern Australian Basins Symposium 2001, Melbourne

    Google Scholar 

  • Talbot CJ, Ghebreab W (1997) Red Sea detachment and basement core complexes in Eritrea. Geology 25:655–658

    Google Scholar 

  • Talling PJ, Masson DG, Sumner EJ, Malgesini G (2012) Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology 59:1937–2003

    Google Scholar 

  • Tanner P (1998) Interstratal dewatering origin for polygonal patterns of sand-filled cracks: a case study from late Proterozoic metasediments of Islay, Scotland. Sedimentology 45:71–89

    Google Scholar 

  • Thouvenot F, Senechal G, Truffert C, Guellec S (1996) Comparison between two techniques of line-drawing migration (ray tracing and common tangent method). Mémoires Societé Géologique Francaise 170:53–59

    Google Scholar 

  • Totterdell J, Blevin J, Struckmeyer H, Bradshaw B, Colwell J, Kennard J (2000) A new sequence framework for the great Australian bight: starting with a clean slate. APPEA J 40:95–118

    Google Scholar 

  • Triboulet S (1980) Etude geologique entre Belledonne et Mont Blanc: la terminaison septentrionale du massif de Belledonne et les terrains de son enveloppe-Alpes françaises. Ph.D., Université Pierre et Marie Curie de Paris

  • Trümpy R (1951) Sur les racines helvétiques et les «schistes lustrés» entre le Rhône et la vallée de Bagnes (région de la PierreAvoi). Eclogae Geologicae Helvetiae 42:338–347

    Google Scholar 

  • Trümpy R (1954) La zone de Sion-Courmayeur dans le haut Val Ferret valaisan. Eclogae Geol Helv 47:315–359

    Google Scholar 

  • Trumpy R (1963) Sur les racines des nappes helvetiques. Livre a Ia Memoire du Professeur Paul Fallot. Soc Geol Fr 2:419–429

    Google Scholar 

  • Trümpy R (1971) Sur le Jurassique de la zone Helvétique en Suisse. Annales of the Geological Institute of Hungary 54(2):370–382

    Google Scholar 

  • Trümpy R (1980) Geology of Switzerland: a guide-book Schweiz-erische Geologische Kommission. Wepf & Co. Publishers, Basel

    Google Scholar 

  • Tugend J, Manatschal G, Kusznir N, Masini E (2015) Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geol Soc Lond Spec Publ 413:171–203

    Google Scholar 

  • Unternehr P, Peron-Pinvidic G, Manatschal G, Sutra E (2010) Hyper-extended crust in the South Atlantic: in search of a model. Pet Geosci 16:207–215. https://doi.org/10.1144/1354-079309-904

    Article  Google Scholar 

  • Veevers J (2012) Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland. Earth Sci Rev 111:249–318

    Google Scholar 

  • von Raumer J, Bussy F (2004) Mont Blanc and Aiguilles Rouges; geology of their polymetamorphic basement (External massifs, Western Alps, France Switzerland). Mémoires de Géologie (Lausanne) 42:1–203

    Google Scholar 

  • von Raumer JF, Ménot RP, Abrecht J, Biino G (1993) The Pre-Alpine evolution of the External massifs. In: Von Raumer JF, Neubauer F (eds) Pre-mesozoic geology in the Alps. Springer, Berlin, Heidelberg, pp 251–254

    Google Scholar 

  • Von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic Alpine basements—their place in the European Paleozoic framework. Bulletin 125:89–108

    Google Scholar 

  • Webber S (2017) Using structural geology and cosmogenic nuclide dating to infer the slip rate and frictional strength of the active Mai’iu low-angle normal fault, Eastern Papua New Guinea. Master Thesis, Victoria University of Wellington

  • Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125. https://doi.org/10.1139/e85-009

    Article  Google Scholar 

  • Wernicke B, Axen GJ (1988) On the role of isostasy in the evolution of normal fault systems. Geology 16:848–851

    Google Scholar 

  • Whitney DL, Teyssier C, Rey P, Buck WR (2013) Continental and oceanic core complexes. Bulletin 125:273–298

    Google Scholar 

  • Wibberley C (1999) Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones? J Struct Geol 21:1219–1227

    Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli F, Av Q, Roddick J, Spiegel W (1995) Three natural zircon standards for U-Th-Pb Lu-Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Google Scholar 

  • Wildi W, Funk H, Loup BFR, Amato E, Huggenberger P (1989) Mesozoic subsidence history of the European marginal shelves of the alpine Tethys (Helvetic realm, Swiss Plateau and Jura). Eclogae Geol Helv 82:817–840

    Google Scholar 

  • Wizevich MC, Ahern J, Meyer CA (2019) The Triassic of southwestern Switzerland—marine or non-marine, that is the question! Palaeogeogr Palaeoclimatol Palaeoecol 514:577–592

    Google Scholar 

Download references

Acknowledgements

This research was supported by ExxonMobil as part of the CEIBA (Centre of Excellence in Basin Analysis) project. Patricio H. Figueredo and Christopher A. Johnson from ExxonMobil are thanked for valuable discussions on several aspects of this article. We thank H. Masson and J. L. Epard for their enthusiasm to share knowledge about the Mont Blanc region. CR thanks S. Triboulet for her wonderful thesis notebooks. J. Tugend, G. Mohn and E. Masini are warmly thanked for fruitful discussions. The seismic section from line GA199-09 has been provided by Geoscience Australia after personal request and is published with the permission of Geoscience Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Ribes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribes, C., Ghienne, JF., Manatschal, G. et al. The Grès Singuliers of the Mont Blanc region (France and Switzerland): stratigraphic response to rifting and crustal necking in the Alpine Tethys. Int J Earth Sci (Geol Rundsch) 109, 2325–2352 (2020). https://doi.org/10.1007/s00531-020-01902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01902-z

Keywords

Navigation