Skip to main content

New detrital zircon age data reveal the location of the Rheic suture in the Mid-German Crystalline Zone (Spessart and Odenwald Crystalline Complexes)

Abstract

New detrital zircon age data of metasedimentary rocks from the Spessart and Odenwald basement (Mid-German Crystalline Zone, Variscides) revealed results, which are not compatible with current tectonic models. The previously proposed existence of a tectonic window, which includes lower plate Rhenohercynian rocks within the upper plate (Saxothuringian Zone) in the Spessart and Odenwald basement, does not agree with the results of this study. This leads to a new course of the Rheic suture and, therefore, a non-coherence of the two major fault zones in these complexes. The southern Spessart Crystalline Complex accommodates the Rheic suture, which is most likely explained by a southward displacement of a whole segment of the Mid-German Crystalline Zone. This displacement might extend over the Ruhla Crystalline Complex. A hitherto unknown age spectrum of a unit in the Böllsteiner Odenwald was found, which might indicate a sliver of unidentified material in the Variscan collision zone. An unknown magmatic age of 350 Ma is reported for igneous intrusions in the Saxothuringian Zone and can be used as an additional indicator to distinguish between Laurussia- and Gondwana-related rocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Altenberger U, Besch T, Mocek B, Zaipeng Y, Yong S (1990) Geochemie und Geodynamik des Böllsteiner Odenwaldes. Mainzer Geow Mitt 19:183–200

    Google Scholar 

  2. Altherr R, Henes-Klaiber U, Hegner E, Satir M (1999) Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int J Earth Sci 88:422–443

    Google Scholar 

  3. Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143

    Google Scholar 

  4. Bahlburg H, Vervoort JD, DuFrane SA (2010) Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany—U–Pb and Hf isotope evidence from detrital zircons. Gondwana Res 17(2010):223–235

    Google Scholar 

  5. Bederke E (1957) Alter und metamorphose des kristallinen Grundgebirges im Spessart. Abh Hess Landesamt Bodenforsch 18:7–19

    Google Scholar 

  6. Bless M, Becker RT, Higgs K, Paproth E, Streel M (1993) Eustatic cycles around the Devonian–Carboniferous boundary and the sedimentary and fossil record in Sauerland (Federal Republic of Germany). Ann Soc Géol Belg 115:689–702

    Google Scholar 

  7. Bossdorf RHH (1961) Das Kristallin von Gadernheim und Laudenau im Odenwald. Neues Jahrb Mineral Abhandl 95:370–419

    Google Scholar 

  8. Braid JA, Murphy JB, Quesada C, Mortensen J (2011) Tectonic escape of a crustal fragment during the closure of the Rheic Ocean: U–Pb detrital zircon data from the Late Palaeozoic Pulo do Lobo and South Portuguese zones, southern Iberia. J Geol Soc Lond 168(2011):383–392. https://doi.org/10.1144/0016-76492010-104

    Article  Google Scholar 

  9. Brätz H (2000) Radiometrische Altersdatierungen und geochemischen Untersuchungen von Orthogneisen, Granite und Granitporphyren aus dem Ruhlaer Kristallin, Mitteldeutsche Kristallinzone. Dissertation Dr. rer. nat. Univ. Würzburg, Germany, p 151

  10. Braitsch O (1957) Beitrag zur Kenntnis der kristallinen Gesteine des südlichen Spessarts und ihrer geologischtektonischen Geschichte. Abh Hess Landesamt Bodenforsch 18:21–72

    Google Scholar 

  11. Brinkmann R (1948) Die Mitteldeutsche Schwelle. Geol Rundsch 36:56–66

    Google Scholar 

  12. Bücking H (1892) Der nordwestliche Spessart. Abh Preuss Geol Landesanst 12:274

    Google Scholar 

  13. Chatterjee ND (1960) Geologische Untersuchungen im Kristallin des Böllsteiner Odenwaldes. Neues Jahrb Geol Paläont Abhandl 37:223–256

    Google Scholar 

  14. Cocks LRM, Fortey RA (2009) Avalonia—a long-lived terrane in the Lower Palaeozoic? Geol Soc Lond Spec Publ 325:141–154

    Google Scholar 

  15. Cocks LRM, Torsvik TH (2006) European geography in a global context from the Vendian to the end of the Palaeozoic. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, pp 83–9532

    Google Scholar 

  16. Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411

    Google Scholar 

  17. Dörr W, Floyd PA, Leveridge BE (1999) U–Pb ages and geochemistry of granite pebbles from the Devonian Menaver Conglomerate, Lizard Peninsula: provenance of Rhenohercynian flysch of SW England. Sediment Geol 124:131–147

    Google Scholar 

  18. Dörr W, Belka Z, Marheine D, Schastok J, Valverde-Vaquero P, Wiszniewska J (2002) U–Pb and Ar–Ar geochronology of anorogenic granite magmatism of the Mazury complex, NE Poland. Precambrian Res 119(2002):101–120

    Google Scholar 

  19. Dörr W, Zulauf G, Gerdes A, Kowalczyk G (2014) The peri-Gondwanan terrane accretion in Europe from Cambrian to Permian time. In: Conference abstract Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, Heft p 85

  20. Dörr W, Zulauf G, Gerdes A, Loeckle F (2017) Provenance of Upper Devonian clastic (meta)sediments of the Böllstein Odenwald (Mid-German-Crystalline-Zone, Variscides). Int J Earth Sci (Geol Rundsch). https://doi.org/10.1007/s00531-017-1473-x

    Article  Google Scholar 

  21. Dörr W, Stein E (2019) Precambrian basement in the Rheic suture zone of the Central European Variscides. Int J Earth Sci. https://doi.org/10.1007/s00531-019-01741-7

    Article  Google Scholar 

  22. Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic-Early Paleozoic volcano-sedimentary successions of the Teplá-Barrandian unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geol Sax 54:1–165

    Google Scholar 

  23. Eckelmann K, Nesbor D, Königshof P, Linnemann U, Hofmann M, Lange J-M, Sagawe A (2013) Plate interactions of Laurussia and Gondwana during the formation of Pangaea—Constraints by U–Pb LA–SF–ICP–MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Res 25:1484–1500

    Google Scholar 

  24. Eigenfeld R (1963) Assimilations- und Differentiationserscheinungen im kristallinen Grundgebirge des südlichen Odenwaldes. Jahresh Geol Landesamt Baden-Württemberg 6:137–238

    Google Scholar 

  25. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61

    Google Scholar 

  26. Franke W, Dulce JC (2016) Back to sender: tectonic accretion and recycling of Baltica-derived Devonian clastic sediments in the Rheno-Hercynian Variscides. Int J Earth Sci. https://doi.org/10.1007/s00531-016-1408-y

    Article  Google Scholar 

  27. Franke W, Cocks LRM, Torsvik TH (2017) The Paleozoic Variscan oceans revisited. Gondwana Res 48:257–284

    Google Scholar 

  28. Frei D, Gerdes A (2008) Accurate and precise in-situ zircon U–Pb age dating with high spatial resolution and high sample through put by automated LA-SF-ICP-MS. Chem Geol 261(3–4):261–270

    Google Scholar 

  29. Geisler T, Vinx R, Martin-Gombojav N, Pidgeon RT (2005) Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history. Int J Earth Sci (Geol Rundsch) 94:369–384

    Google Scholar 

  30. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Google Scholar 

  31. Hajna J, Zak J, Kachlik V, Dörr W, Gerdes A (2013) Neoproterozoic to early Cambrian Franciscan-type melanges in the Teplá-Barrandian unit, Bohemian Massif: evidence of modern-style accretionary processes along the Cadomian active margin of Gondwana? Precambrian Res 224:653–670

    Google Scholar 

  32. Hajna J, Zak J, Dörr W (2016) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex. Gondwana Res. https://doi.org/10.1016/j.gr.2016.10.004

    Article  Google Scholar 

  33. Haverkamp J (1991) Detritusanalyse unterdevonischer Sandsteine des Rheinisch-Ardennischen Schiefergebirges und ihre Bedeutung für die Rekonstruktion der sedimentliefernden Hinterländer. Thesis Techn Univ Aachen, p 156

  34. Hellmann KN, Lippolt HJ, Todt W (1982) Interpretation der Kalium–Argon–Alter eines Odenwälder Granodioritporphyritganges und seiner Nebengesteine. Aufschluss 33:155–164

    Google Scholar 

  35. Hess J, Lippolt HJ (1996) Numerische Stratigraphie permokarbonischer Vulkanite Zentraleuropas. Teil III: Odenwald. Geol Jahrb Hessen 117:69–77

    Google Scholar 

  36. Hess J, Schmidt G (1989) Zur Altersstellung der Kataklasite im Bereich der Otzberg-Zone, Odenwald. Geol Jahrb Hessen 117:69–77

    Google Scholar 

  37. Hirschmann G, Okrusch M (1988) Spessart-Kristallin und Ruhlaer Kristallin als Bestandteil der Mitteldeutschen Kristallinzone. N Jb Geol Pal Abh 177:1–39

    Google Scholar 

  38. Hirschmann G, Okrusch M (2001) Spessart und Rhön-Teil der MKZ in “Stratigraphische Kommission Deutschland, Stratigraphie von Deutschland II, Ordovizium, Kambrium, Vend, Riphäikum“, Steininger, F., ed. Courier Forsch.-Institut Senckenberg. Frankfurt 234:93–108

    Google Scholar 

  39. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Google Scholar 

  40. Kirsch H, Kober B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW Germany) evidenced by 40Ar/39Ar and single zircon 207Pb/206Pb measurements. Geol Rundsch 77:693–711

    Google Scholar 

  41. Knape H (1963a) Tektonischer Bau und Strukturgenese im nordwestlichen Vorland des Flechtinger Höhenzuges; Teil I: Stratigraphischer Überblick und Lagerungsverhältnisse. Geologie 12(5):509–536

    Google Scholar 

  42. Knape H (1963b) Tektonischer Bau und Strukturgenese im nordwestlichen Vorland des Flechtinger Höhenzuges; Teil II: Regionale Entwicklung und struktureller Bau. Geologie 12(6):637–673

    Google Scholar 

  43. Kołtonik K, Pisarzowska A, Paszkowski M, Sláma J, Becker RT, Szczerba M, Krawczynski W, Hartenfels S, Marynowski L (2018) Baltic provenance of top-Famennian siliciclastic material of the northern Rhenish Massif, Rhenohercynian zone of the Variscan orogen. Int J Earth Sci 107:2645

    Google Scholar 

  44. Kopp J, Bankwitz P (2003) Die Europäische Kristallinzone (EKZ) - eine Übersicht. Z geol Wiss, Berlin 31(3):179–196

  45. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh d Sächs Geol Landesamts 1:1–39

    Google Scholar 

  46. Kreuzer H, Harre W (1975) K/Ar-Altersbestimmungen an Hornblenden und Biotiten des kristallinen Odenwaldes. Aufschluß 27:71–77

    Google Scholar 

  47. Krohe A (1992) Structural evolution of intermediate-crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing transformation mechanisms. Tectonophysics 205:357–386

    Google Scholar 

  48. Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone—heterogenous overprint of Cadomian/Palaeozoic peri-Gondwana crust. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision, vol 423. Geological Society of America, Washington, DC, pp 153–172423

    Google Scholar 

  49. Kroner U, Romer RL (2010) The Saxo-Thuringian Zone—tip of the Armorican Spur and part of the Gondwana plate. In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 371–394

    Google Scholar 

  50. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd isotopic record. Int J Earth Sci 93:683–705

    Google Scholar 

  51. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43

    Google Scholar 

  52. Linnemann U, Herbosch A, Liégeois J-P, Pin C, Gärtner A, Hofmann M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth Sci Rev 112:126–154

    Google Scholar 

  53. Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb–Sr) und karbonischer Abkühlungsalter (K–Ar) der Muskovit-Biotit-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geol Rundsch 75(3):569–583

    Google Scholar 

  54. Lorentzen S, August C, Nystuen JP, Berndt J, Jahren J, Schovsbo NH (2018) Provenance and sedimentary processes controlling the formation of lower Cambrian quartz arenite along the southwestern margin of Baltica. Sediment Geol 375(2018):203–217

    Google Scholar 

  55. Ludwig R (2001) User’s manual for Isoplot/Ex Version 2.49. A geochronological toolkit for Microsoft Excel. Berkley Geochronology Center Special Publication 1a, Berkley

    Google Scholar 

  56. Massone HJ (1995) III.C.4 Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe, IGCP 233. Springer, Berlin, pp 132–137

    Google Scholar 

  57. Matthes S (1954) Die Paragneise im mittleren kristallinen Vor-Spessart und ihre Metamorphose. Abh Hess Landesamt Bodenforsch 8:86

    Google Scholar 

  58. Matthes S, Okrusch M (1977) The Spessart crystalline complex, north-west Bavaria: rock series, metamorphism, and position within the Central German Crystalline Rise. Coll Int Cent Natl Rech Sci (Rennes 1974) Paris 243:375–390

    Google Scholar 

  59. Murphy JB, Pisarevsky SA, Nance D, Keppie JD (2004) Neoproterozoic-Early Palaeozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Int J Earth Sci 93:659–682

    Google Scholar 

  60. Meisl S (1995) Rhenohercynian foldbelt: metamorphic units—igneous activity. In: Dallmeyer D, Franke W, Weber K (eds) Pre-Permian geology of Central and Western Europe. Springer, Berlin, pp 118–131

    Google Scholar 

  61. Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D’Lemos RS, Pisarevsky SA (2008) Neoproterozoic–early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian versus West African connections. In: Nasser E, Liégeois J-P (eds) The Boundaries of the West African Craton, vol 297. Geological Society, London, pp 345–383297

    Google Scholar 

  62. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Brendan Murphy J, Quesada C, Strachan RA, Woodcock N (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222

    Google Scholar 

  63. Nasir S, Okrusch M (1991) Metabasites from the Central Vor-Spessart, North-West Bavaria Part 1: Geochemistry. Neues Jahrb Mineral Monatsh 11(500):522

    Google Scholar 

  64. Nasir S, Okrusch M, Kreuzer H, Lenz H, Höhndorf A (1991) Geochronology of the Spessart Crystalline Complex, Mid-German crystalline rise. Mineral Petrol 44:39–55

    Google Scholar 

  65. Okrusch M (1983) The Spessart Crystalline Complex, Northwest Bavaria. Fortschr Mineral 61:135–169

    Google Scholar 

  66. Okrusch M, Müller R, Shazly S (1985) Die Amphibolite, Kalksilikatgesteine und Hornblendegneise der Alzenauer Gneisserie an Nordwest-Spessart. Geol Barvarica 87:5–37

    Google Scholar 

  67. Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundsch 86:2–20

    Google Scholar 

  68. Paproth E (1986) An introduction to a field trip to the Late Devonian outcrops in the northern Rheinisches Schiefergebirge (Federal Republic of Germany). Ann Soc Géol Belg 109:275–284

    Google Scholar 

  69. Reischmann T, Anthes G, Jaekel P, Altenberger U (2001) Age and origin of the Böllsteiner Odenwald. Mineral Petrol 72:29–44

    Google Scholar 

  70. Reitz E (1987) Palynologie in metamorphen Serien: I. Silurische Sporen aus einem granatführenden Glimmerschiefer des Vor-Spessart. N Jahrb Geol Paläont Mh 1987:699–704

    Google Scholar 

  71. Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360(1–4):281–299

    Google Scholar 

  72. Schubert W, Lippolt HJ, Schwarz W (2001) Early to Middle Carboniferous hornblende 40Ar/39Ar ages of amphibolites and gabbros from the Bergsträsser Odenwald. Mineral Petrol 72:113–132

    Google Scholar 

  73. Siebel W, Eroğlu S, Shang CK, Rohrmüller J (2012) Zircon geochronology, elemental and Sr–Nd isotope geochemistry of two Variscan granitoids from the Odenwald–Spessart crystalline complex (mid-German crystalline rise). Mineral Petrol 105:187–200. https://doi.org/10.1007/s00710-012-0200-3

    Article  Google Scholar 

  74. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Google Scholar 

  75. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19

    Google Scholar 

  76. Stein E (1996) Untersuchungen zur Genese der Flasergranitoid-Zone des zentralen Odenwaldes—Magmatische und/oder tektonische Gefüge. Z Geol Wiss 24(5/6):573–583

    Google Scholar 

  77. Stein E (2001) The geology of the Odenwald crystalline complex. Mineral Petrol 72:7–28

    Google Scholar 

  78. Sommermann AE, Meisl S, Todt W (1992) Zirkonalter von drei verschiedenen Metavulkaniten aus dem Südtaunus. Geol Jb Hessen 120:67–76

    Google Scholar 

  79. Tait JA, Bachtadse V, Franke V, Soffel HC (1997) Geodynamic evolution of the European Variscan Foldbelt: palaeomagnetic and geological constraints. Geol Rundschau 86:585–598

    Google Scholar 

  80. Tait JA, Schatz M, Bachtadse V, Soffel H (2000) Palaeomagnetism and palaeozoic palaeogeography of Gondwana and European terranes. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, pp 21–34179

    Google Scholar 

  81. Thürach H (1893) Über die Gliederung des Urgebirges im Spessart. Geognost Jh 5:160

    Google Scholar 

  82. Todt WA, Altenberger U, von Raumer JF (1995) U–Pb data on zircons for the thermal peak of metamorphism in the Variscan Odenwald, Germany. Geol Rundsch 84:466–472

    Google Scholar 

  83. Torsvik TH, Rehnström F (2003) The Tornquist Sea and Baltica–Avalonia docking. Tectonophysics 362:67–82

    Google Scholar 

  84. Torsvik TH, Cocks LRM (2013) Gondwana from top to base in space and time. Gondwana Res 24:999–1030

    Google Scholar 

  85. Torsvik TH, Cocks LRM (2017) Earth history and palaeogeography. Cambridge University Press, Cambridge

    Google Scholar 

  86. Valverde-Vaquero P, Dörr W, Belka Z, Franke W, Wiszniewska J, Schastok J (2000) U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth Planet Sci Lett 184:225–240

    Google Scholar 

  87. von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52

    Google Scholar 

  88. von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365(1–4):7–22

    Google Scholar 

  89. Weber K, Juckenack C (1990) The structure of the Spessart Mts crystalline basement and its position in the frame of the mid-european variscides. In: Franke W (ed) Mid-German crystalline rise and Rheinisches Schiefergebirge: field guide to pre-conference excursion, geology and geophysics (Göttingen–Gießen). Springer, Berlin, pp 101–114

    Google Scholar 

  90. Weber K (1995) The spessart crystalline complex. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern europe (Chapter IV: Mid-German Crystalline High), vol 04. Springer, Berlin, pp 167–173

    Google Scholar 

  91. Wiedenbeck M, All P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace elements and REE analyses. Geostand Newsl 19:1–23

    Google Scholar 

  92. Will TM (1998) Phase diagrams and their application to determine pressure–temperature paths of metamorphic rocks. N Jahrb Mineral Abh 174:103–130

    Google Scholar 

  93. Will TM, Lee S-H, Schmädicke E, Frimmel HE, Okrusch M (2015) Variscan terrane boundaries in the Odenwald-Spessart basement, Mid-German Crystalline Zone: new evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220:23–42

    Google Scholar 

  94. Will TM, Schulz B, Schmädicke E (2017) The timing of metamorphism in the Odenwald-Spessart basement, Mid-German Crystalline Zone. Int J Earth Sci 106:1631–1649

    Google Scholar 

  95. Will TM, Schmädicke E, Ling X-X, Li X-H, Li Q-L (2018) New evidence for an old idea: geochonological constraints for a paired metamorphic belt in the central European Variscides. Lithos 302:278–297

    Google Scholar 

  96. Willner AP, Massone H-J, Krohe A (1991) Tectono-thermal evolution of a part of a Variscan magmatic arc: the Odenwald in the Mid-German Crystalline Rise. Geol Rundschau 80:369–389

    Google Scholar 

  97. Winchester JA, Pharaoh TC, Verniers J (2002) Palaeozoic amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:237–277

    Google Scholar 

  98. Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Palaeozoic accretion of Gondwana derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society of London, London, pp 323–332

    Google Scholar 

  99. Zeh A, Williams IS, Brätz H, Millar IL (2003) Different age response of zircon and monazite during the tectono-metamorphic evolution of a high grade paragneiss from the Ruhla Crystalline Complex, central Germany. Contrib Mineral Petrol 145:691

    Google Scholar 

  100. Zeh A, Gerdes A (2009) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic Ocean. Gondwana Res 17:254–263

    Google Scholar 

  101. Zeh A, Will TM (2010) The Mid-German crystalline rise. In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian Active Margin. Elsevier, Amsterdam

    Google Scholar 

  102. Zelazniewicz A, Bula Z, Fanning M, Seghedi A, Zaba J (2009) More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geol Q 53(1):93–124

    Google Scholar 

  103. Zulauf G, Dörr W, Fisher-Spurlock SC, Gerdes A, Chatzaras V, Xypolias P (2014) Closure of the paleotethys in the external hellenides: constraints from U–Pb ages of magmatic and detrital zircons (Crete). Gondwana Res. https://doi.org/10.1016/j.gr.2014.06.011

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Wolfgang Dörr, Linda Marko, Wolfgang Schiller, Hannah Malten, the whole FIERCE team (Goethe Universität Frankfurt a.M.), and Eckardt Stein (Technische Universität Darmstadt) for their help and fruitful discussions. FIERCE is financially supported by the Wilhelm and Else Heraeus Foundation and by the Deutsche Forschungsgemeinschaft (DFG, INST 161/921-1 FUGG and INST 161/923-1 FUGG), which is gratefully acknowledged. This is FIERCE contribution No. 9.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Kirchner.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirchner, F., Albert, R. New detrital zircon age data reveal the location of the Rheic suture in the Mid-German Crystalline Zone (Spessart and Odenwald Crystalline Complexes). Int J Earth Sci (Geol Rundsch) 109, 2287–2305 (2020). https://doi.org/10.1007/s00531-020-01899-5

Download citation

Keywords

  • U–Pb ages
  • Detrital zircon
  • Spessart Mts.
  • Böllsteiner Odenwald
  • Mid-German Crystalline Zone
  • Variscides
  • Age spectra