Skip to main content

Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France)

Abstract

The Maures–Tanneron Massif and the Corsica–Sardinia Block are two segments of the southern European Variscan belt that separated during the Late Oligocene–Miocene due to the opening of the Western Mediterranean basin. Correlation between the two regions, based mainly on petrologic similarities, is still debated. However, there are no detailed structural and petrochronological constraints on their potential relationships. In northern Sardinia there is well-documented evidence for a dextral transpressive shear zone that initiated after the first stage of frontal collision. In the Maures–Tanneron Massif, despite recognition of an important episode of transpressive deformation, it is still unclear which structures were active during this tectonic regime. We investigate in detail the kinematic of flow, finite strain and the timing of the deformation of the Cavalaire “Fault” (CF), a major ductile shear zone in the Maures–Tanneron Massif. In contrast to previous models, we argue that the CF is a transpressive shear zone characterized by a prevalent component of pure shear, while in-situ monazite geochronology reveals that the CF is initiated at ~ 323 Ma. The new data presented here, based on a multidisciplinary approach document, for the first time, the vorticity of the flow, finite strain and timing of this sector of the East Variscan Shear Zone, a regional-scale shear zone that characterized the Southern European Variscan belt during the late Carboniferous.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

modified from Matte 2001) showing present-day relations between Corsica–Sardinia Block, Maures–Tanneron Massif and Alpine External Crystalline Massifs; b Sketch of the possible late Carboniferous relationship between Corsica–Sardinia Block, Maures–Tanneron Massif and Argentera Massif (modified after Gerbault et al. (2018); timing of transpression is from Simonetti et al. (2018) for the FMSZ; this work for the CF; Di Vincenzo et al. (2004) and Carosi et al. (2012) for the PAL and Giacomini et al. (2008) for the PVSZ; rotation of the Argentera Massif is from Collombet et al. (2002))

References

  1. Advokaat EL, van Hinsbergen DJJ, Maffione M, Langereis CG, Vissers RLM, Cherchi A, Schroeder R, Madani H, Columbus S (2014) Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth Planet Sci Lett 401:183–195

    Google Scholar 

  2. Aleinikoff JN, Schenck WS, Plank MO, Srogi L, Fanning CM, Kamo SL, Bosbyshell H (2006) Deciphering igneous and metamorphic evens in high-grade rocks of the Wilmington Complex, Delaware: morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol Soc Am Bull 118:39–64

    Google Scholar 

  3. Amelin Y, Zaitsev AN (2002) Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations. Geochim Cosmochim Acta 66:2399–2419

    Google Scholar 

  4. Arthaud F, Matte P (1977) Détermination de la position initiale de la Corse et de la Sardaigne à la fin de l’orogenesè hercynienne grace aux marqueurs géologiques antémésozoiques. B Soc Geol Fr 19:833–840

    Google Scholar 

  5. Ballèvre M, Manzotti P, Dal Piaz GV (2018) Pre-Alpine (Variscan) inheritance: a key for the location of the future Valaisan Basin (Western Alps).: pre-Alpine (Variscan) inheritance: a key for the location of the future Valaisan Basin (Western Alps). Tectonics 37:786–817

    Google Scholar 

  6. Bard JP, Caruba C (1981) Les séries leptyno-amphiboliques à éclogites relictuelles et serpentinites des Maures, marqueurs d’une paléosuture varisque affectant une croûte amincie? C R Acad Sci Paris, série II 292:611–614

    Google Scholar 

  7. Bellot JP, Bronner G (2000) La tectonique tangentielle à vergence SE du massif des Maures, témoin de chevauchements syn-exhumation? CR Acad Sci Paris, série II 331(10):659–665

    Google Scholar 

  8. Bellot JP, Bronner G, Marchand J, Laverne C, Triboulet C (2002) Chevauchement et détachement dans les Maures occidentales (Var, France). Géologie de la France 1:21–37

    Google Scholar 

  9. Bellot JP (2005) The Palaeozoic evolution of the Maures massif (France) and its potential correlation with other areas of the Variscan Belt: a review. In: Carosi R, Dias R, Iacopini D, Rosenbaum G. (eds) The southern Variscan belt. Journal of the Virtual Explorer, Electronic Edition, ISSN, 19, 1441–8142

  10. Braden Z, Godin L, Cottle JM (2017) Segmentation and rejuvenation of the Greater Himalayan sequence in western Nepal revealed by in situ U-Th/Pb monazite petrochronology. Lithos 285:751–765

    Google Scholar 

  11. Briand B, Bouchardon JL, Capiez P, Piboule M (2002) Felsic (A-Type)-basic (Plume-Induced) Early Palaeozoic bimodal magmatism in the Maures massif (southeastern France). Geol Mag 139:291–311

    Google Scholar 

  12. Buick IS, Hermann J, Williams IS, Gibson RL, Rubatto D (2006) A SHRIMP U-Pb and LA-ICP-MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos 88:150–172

    Google Scholar 

  13. Burg JP, Matte P (1978) A cross-section through the French Massif Central and the scope of its Variscan geodynamic evolution. Z Dtsch Geol Ges 109:429–460

    Google Scholar 

  14. Buscail F (2000) Contribution a la compréhension du problème géologique et géodynamique du massif des Maures: le métamorphisme régional modélisé dans le système KFMASH: analyse paragénétique, chémiographie, thermobarométrie, géochronologie Ar/Ar. Unpublished thesis, Université de Montpellier II, France

  15. Cappelli B, Carmignani L, Castorina F, Di Pisa A, Oggiano G, Petrini R (1992) A Variscan suture zone in Sardinia: geological and geochemical evidence. Geodin Acta 5:101–108

    Google Scholar 

  16. Carmignani L, Barca S, Cappelli B, Di Pisa A, Gattiglio M, Oggiano G, Pertusati PC (1992) A tentative geodynamic model for the Hercynian basement of Sardinia. In: Carmignai L, Sassi FP (eds) Contributions to the Geology of Italy with special regard to the Palaeozoic basements. IGCP Project 276, Newsletter 5. Siena, pp 61–83

  17. Carmignani L, Carosi R, Di Pisa A, Gattiglio M, Musumeci G, Oggiano G, Pertusati PC (1994) The Hercynian chain in Sardinia (Italy). Geodin Acta 7:31–47

    Google Scholar 

  18. Carosi R, Oggiano G (2002) Transpressional deformation in northwestern Sardinia (Italy): insights on the tectonic evolution of the Variscan Belt. C R Geosciences 334(4):287–294

    Google Scholar 

  19. Carosi R, Palmeri R (2002) Orogen-parallel tectonics transport in the Variscan belt of northeastern Sadinia (Italy): implications for the exhumation of medium-pressure metamorphic rocks. Geol Mag 139:497–511

    Google Scholar 

  20. Carosi R, Montomoli C, Tiepolo M, Frassi C (2012) Geochronological constraints on post-collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 24:42–51

    Google Scholar 

  21. Carosi R, D’addario E, Mammoliti E, Montomoli C, Simonetti M (2016) Geology of the northwestern portion of the Ferriere-Mollieres Shear Zone, Argentera Massif, Italy. J Maps 12:466–475

    Google Scholar 

  22. Casini L, Cuccuru S, Puccini A, Oggiano G, Rossi P (2015) Evolution of the Corsica–Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysics 646:65–78

    Google Scholar 

  23. Chabrier G, Mascle G (1975) Comparaison des évolutions géologiques de la Provence et de la Sardaigne. Revue de Géographie Pgysique ete de Géologie Dynamique 2(XVII):121–136

    Google Scholar 

  24. Collombet M, Thomas JC, Chauvin A, Tricart P, Bouillin JP, Gratier JP (2002) Counterclockwise rotation of the western Alps since the Oligocene: new insights from paleomagnetic data. Tectonics 21(4):1032. https://doi.org/10.1029/2001TC901016

    Article  Google Scholar 

  25. Compagnoni R, Ferrando S, Lombardo B, Radulesco N, Rubatto D (2010) Paleo-European crust of the Italian western Alps: geological history of the Argentera Massif and comparison with Mont Blanc-Aiguilles Rouges and Maures–Tanneron Massifs. J Virtual Explorer 36:4. https://doi.org/10.3809/jvirtex.2010.00228

  26. Corsini M, Rolland Y (2009) Late evolution of the southern European Variscan belt: exhumation of the lower crust in a context of oblique convergence. C R Geosci 341:214–223

    Google Scholar 

  27. Crevola G, Pupin JP (1994) Crystalline provence: structure and Variscan evolution. In: Keppie JD (ed) Pre-Mesozoic geology in France and related areas. Springer Verlag, Berlin Heidelberg, pp 426–441

    Google Scholar 

  28. Cruciani G, Montomoli C, Carosi R, Franceschelli M, Puxeddu M (2015) Continental collision from two perspectives: a review of Variscan metamorphism and deformation in northern Sardinia. Periodico di Mineralogia 84(3b):657–699. https://doi.org/10.2451/2015PM0455

    Article  Google Scholar 

  29. D’Addario E (2015) Cartografia geologica, analisi strutturale e vorticità cinematica di una zona di taglio regionale: la “Ferriere-Mollères Shear Zone” tra i valloni Forneris e di Pontebernardo (Massiccio dell’Argentera, Alpi Occidentali). Unpublished Thesis, Università degli Studi di Pisa (Italy), pp 203

  30. Dias R, Ribeiro A (1995) The Ibero-Armorican arc. A collision effect against an irregular continent? Tectonophysics 246:113–128

    Google Scholar 

  31. Dias R, Ribeiro A, Romão J, Coke C, Moreira N (2016) A review of the arcuate structures in the Iberian Variscides; constraints and genetic models. Tectonophysics 681:170–194

    Google Scholar 

  32. Dilek Y, Furnes H (2019) Tethyan ophiolites and Tethyan seaways. J Geol Soc Lond 176:899–912

    Google Scholar 

  33. Di Vincenzo G, Carosi R, Palmeri R (2004) The Relationship between Tectono-metamorphic Evolution and Argon Isotope Records in White Mica: Constraints fromin situ 40Ar-39Ar Laser Analysis of the Variscan Basement of Sardinia. J Petrol 45:1013–1043. https://doi.org/10.1093/petrology/egh002

    Article  Google Scholar 

  34. Duchesne JC, Liégeois JP, Bolle O, Vander Auwera J, Bruguier O, Matukov DI, Sergeev SA (2013) The fast evolution of a crustal hot zone at the end of a transpressional regime: The Saint-Tropez peninsula granites and related dykes (Maures Massif, SE France). Lithos 162–163:195–220. https://doi.org/10.1016/j.lithos.2012.12.019

    Article  Google Scholar 

  35. Edel JB (2000) Hypothesis for the Late Variscan clockwise rotation of the Maures–Estérel–Corsica–Sardinia block. New paleomagnetic data from the Plan-de-la-Tour basin (Maures, Provence) and review of the previous data. Géologie de la Fr 1:3–19

    Google Scholar 

  36. Edel JB, Casini L, Oggiano G, Rossi P, Schulmann K (2014) Early Permian 90° clockwise rotation of the Maures–Estérel–orsica–Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic 60° clockwise rotation. Geol Soc Lond Spec Publ 405:1–29

    Google Scholar 

  37. Edel JB, Schulmann K, Lexa O, Lardeaux JM (2018) Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Sci Rev 177:589–612

    Google Scholar 

  38. Elter FM, Pandeli E (2005) Structural-Metamorphic correlations between three Variscan segments in Southern Europe: Maures Massif (France), Corsica (France)–Sardinia (Italy), and Northern Appennines (Italy). J Virtual Explor, Electronic Edition, ISSN 162–163:1441–8142

    Google Scholar 

  39. Elter FM, Corsi B, Cricca P, Muzio G (2004) The southwestern Alpine foreland: correlation between two sectors of the Variscan chain belonging to "stable Europe": Sardinia-Corsica and the Maures massif (south-eastern France). Geodin Acta 17:31–40

    Google Scholar 

  40. Engi M, Lanari P, Kohn M J (2017) Significant ages—an introduction to petrochronology: methods and applications. In: Engi M, Lanari P, Kohn MJ (eds) Petrocronology: methods and applications. Reviews in Mineralogy and Geochemistry. doi: 10.1515/9783110561890-002

  41. Fernández-Lozano J, Pastor-Galán D, Gutiérrez-Alonso G, Franco P (2016) New kinematic constraints on the Cantabrian orocline: a paleomagnetic study from the Peñalba and Truchas synclines, NW Spain. Tectonophysics 681:195–208

    Google Scholar 

  42. Flinn D (1962) On folding during three-dimensional progressive deformation. QJ Geol Soc Lond 118:385–433

    Google Scholar 

  43. Fossen H (2016) Structural geology. Cambridge University Press, Cambridge, p 524

    Google Scholar 

  44. Fossen H, Cavalcante GCG (2017) Shear zones—a review. Earth Sci Rev 171:434–455

    Google Scholar 

  45. Fossen H, Tikoff B (1993) The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics. J Struct Geol 15:413–422

    Google Scholar 

  46. Fossen H, Tikoff B (1998) Extended models of transpression and transtension, and application to tectonic settings. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics. Geol Soc Lond Spec Publ, 135, pp 15–33

  47. Fossen H, Tikoff B, Teyssier C (1994) Strain modelling of transpressional and transtensional deformation. Norsk Geol Tidsskr 74:134–145

    Google Scholar 

  48. Foster G, Gibson HD, Parrish R, Horstwood M, Fraser J, Tindle A (2002) Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem Geol 191:183–207

    Google Scholar 

  49. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec 230:67–90

    Google Scholar 

  50. Franke W, Cocks LRM, Torsvik TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Res 48:257–284. https://doi.org/10.1016/j.gr.2017.03.005

    Article  Google Scholar 

  51. Frassi C, Carosi R, Montomoli C, Law RD (2009) Kinematics and vorticity of flow associated with post-collisional oblique transpression in the Variscan Inner Zone of northern Sardinia (Italy). J Struct Geol 31:1458–1471

    Google Scholar 

  52. Fry N (1979) Random point distribution and strain measurement in rocks. Tectonophysics 60:89–105

    Google Scholar 

  53. Gerbault M, Schneider J, Corsini M, Reverso-Peila A (2018) Crustal exhumation during ongoing compression in the Variscan Maures–Tanneron Massif, France—Geological and thermo-mechanical aspects. Tectonophysics 746:439–458. https://doi.org/10.1016/j.tecto.2016.12.019

    Article  Google Scholar 

  54. Genier F, Epard JL (2007) The Fry method applied to an augen orthogneiss: problemsand results. J Struct Geol 29:209–224

    Google Scholar 

  55. Giacomini F, Dallai L, Carminati E, Tiepolo M, Ghezzo C (2008) Exhumation of a Variscan orogenic complex: insights into the composite granulitic–amphibolitic metamorphic basement of south-east Corsica (France). J Metamorph Geol 26:403–436

    Google Scholar 

  56. Gillam BG, Little TA, Smith E, Toy VG (2013) Extensional shear band development on the outer margin of the Alpine mylonite zone, Tatare Stream, Southern Alps, New Zealand. J Struct Geol 54:1–20

    Google Scholar 

  57. Guillot S, Ménot RP (2009) Paleozoic evolution of the Extern Crystalline Massifs of the Western Alps. C R Geosci 341:253–265

    Google Scholar 

  58. Guerrera F, Martín-Martín M, Tramontana M (2019) Evolutionary geological models of the central-western peri-Mediterranean chains: a review. Int Geol Rev 1–22. https://doi.org/10.1080/00206814.2019.1706056

  59. Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852

    Google Scholar 

  60. Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM (2003) Common-Pb corrected in-situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. J Anal At Spectrom 18(8):837–846. https://doi.org/10.1039/b304365g

    Article  Google Scholar 

  61. Iaccarino S, Montomoli C, Carosi R, Montemagni C, Massonne HJ, Langone A, Jain AK, Visonà D (2017) Pressure–temperature–deformation–time constraints on the South Tibetan detachment system in the Garhwal Himalaya (NW India). Tectonics 36:2281–2304

    Google Scholar 

  62. Iacopini D, Carosi R, Montomoli C, Passchier CW (2008) Strain analysis and vorticity of flow in the Northern Sardinian Variscan Belt: recognition of a partitioned oblique deformation event. Tectonophysics 221:345–359

    Google Scholar 

  63. Iacopini D, Frassi C, Carosi R, Montomoli C (2011) Biases in the three-dimensional vorticity analysis using porphyroclast system: limits and application to natural examples. Geol Soc Lond Spec Publ 360:301–318

    Google Scholar 

  64. Ildefonse B, Launeau P, Bouchez JL, Fernandez A (1992) Effect of mechanical interactions on the development of shape preferred orientations: a twodimensional experimental approach. J Struct Geol 14:73–83

    Google Scholar 

  65. Innocent C, Michard A, Guerrot C, Hamelin B (2003) U-Pb zircon age of 548 Ma for the leptynites (high-grade felsic rocks) of the central part of the Maures Massif. Geodynamic significance of the so-called leptyno-amphibolitic complexes of the Variscan belt of western Europe. Bull Soc Geol Fr 174:585–594

    Google Scholar 

  66. Jaffey AH, Flynn KF, Glendenin LE, Bentley CR, Essling AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906. https://doi.org/10.1103/PhysRevC.4.1889

    Article  Google Scholar 

  67. Jeffery G (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A122:161–179

    Google Scholar 

  68. Kirscher U, Aubele K, Muttoni G, Ronchi A, Bachtadse V (2011) Paleomagnetism of Jurassic carbonate rocks from Sardinia: no indication of post-Jurassic internal block rotations. J Geophys Res 116:B12107

    Google Scholar 

  69. Kylander-Clark A, Hacker B, Cottle JM (2013) Laser ablation split-stream ICP petrochronology. Chem Geol 345:99–112. https://doi.org/10.1016/j.chemgeo.2013.02.019

    Article  Google Scholar 

  70. Kurz GA, Northrup CJ (2008) Structural analysis of mylonitic fault rocks in the Cougar Creek Complex, Oregone Idaho using the porphyroclast hyperbolic distribution method, and potential use of SC0-type extensional shear bands as quantitative vorticity indicators. J Struct Geol 30:1005–1012

    Google Scholar 

  71. Law RD (2010) Moine Thrust zone mylonites at the Stack of Glencoul: II—results of vorticity analyses and their tectonic significance. Geol Soc Lond Spec Publ 335:579–602. https://doi.org/10.1144/SP335.24

    Article  Google Scholar 

  72. Law RD (2014) Deformation thermometry based on quartz c-axis fabrics and recrystallization regimes: a review. J Struct Geol 33:129–161. https://doi.org/10.1016/j.jsg.2014.05.023

    Article  Google Scholar 

  73. Law RD, Searle MP, Simpson RL (2004) Strain, deformation temperatures and vorticity of flow at the top of the greater Himalayan Slab, Everest Massif, Tibet. J Geol Soc Lond 161:305–320

    Google Scholar 

  74. Ludwig KR (2003) ISOPLOT 3.00: a geochronological toolkit for micrososft excel. Berkley Geocronology center, Berkely

    Google Scholar 

  75. Mammoliti E (2015) La “Ferriere–Mollières Shear Zone” (Massiccio dell’Argentera, Alpi Occidentali): rilevamento, analisi strutturale e cinematica del flusso nella zona di Ferriere (Argentera, CN). Unpublished Thesis, Università degli Studi di Pisa (Italy), pp 217

  76. Matte P (1986) La Chaîne varisque parmi les chaînes paléozoïques péri-atlantiques, modèle d’évolution et position des grands blocs continentaux au PermoCarbonifère. Bull Soc Geol Fr 8:4–24

    Google Scholar 

  77. Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:117–121

    Google Scholar 

  78. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  79. McKinney ST, Cottle JM, Lederer GW (2015) Evaluating rare earth element (REE) mineralization mechanisms in Proterozoic gneiss, Music Valley, California. Geol Soc Am Bull 127:1135–1152

    Google Scholar 

  80. Montomoli C, Iaccarino S, Carosi R, Langone A, Visonà D (2013) Tectonometamorphic discontinuities within the Greater Himalayan Sequence in western Nepal (central Himalaya): insights on the nexhumation of crystalline rocks. Tectonophysics 608:1349–1370

    Google Scholar 

  81. Montomoli C, Iaccarino S, Simonetti M, Lezzerini M, Carosi R (2018) Structural setting, kinematics and metamorphism in a km-scale shear zone in the Inner Nappes of Sardinia (Italy). Ital J Geosci 137:294–310

    Google Scholar 

  82. Moussavou M (1998) Contribution à l’histoire thermo-tectonique varisque du massif des Maures par la typologie du zircon et la géochronologie U/Pb sur minéraux accessoires. PhD Thesis, University of Montpellier 2, France, pp 187

  83. Morillon AC, Féraud G, Sosson M, Ruffet G, Crevola G, Lerouge G (2000) Diachronous cooling on both side of a major strike-slip fault in the Variscan Maures massif (SE France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321:103–126

    Google Scholar 

  84. Mulchrone K (2007a) An analytical solution in 2D for the motion of rigid elliptical particles with a slipping interface under a general deformation. J Struct Geol 29:950–960

    Google Scholar 

  85. Mulchrone K (2007b) Shape fabrics in populations of rigid object in 2D: estimating finite strain and vorticity. J Struct Geol 29:1558–1570

    Google Scholar 

  86. Oliot E, Melleton J, Schneider J, Corsini M, Gardien V, Rolland Y (2015) Variscan crustal thickening in the Maures–Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bull Soc Geol Fr 186:145–169

    Google Scholar 

  87. Oncken O, von Winterfeld C, Dittmar U (1999) Accretion of a rifted passive margin: the Late Paleozoic Renohercynian fold and thrust belt (Middle European Variscides). Tectonics 18:75–91

    Google Scholar 

  88. Padovano M, Elter FM, Pandeli E, Franceschelli M (2011) The East Varisican Shear Zone: new insights into its role in the Late Carboniferous collision in southern Europe. Int Geol Rev 54:957–970

    Google Scholar 

  89. Padovano P, Dörr W, Elter FM, Gerdes A (2014) The East Variscan Shear Zone: geochronological constraints from the Capo Ferro area (NE Sardinia, Italy). Lithos 196–197:27–41

    Google Scholar 

  90. Passchier CW (1987) Stable position of rigid objects in non-coaxial flow: a study in vorticity analysis. J Struct Geol 9:679–690

    Google Scholar 

  91. Passchier CW, Trouw RAJ (2005) Microtectonics. Springer-Verlag, Berlin Heidelberg, p 101

    Google Scholar 

  92. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11(3):36. https://doi.org/10.1029/2009GC002618

    Article  Google Scholar 

  93. Piazolo S, Passchier CW (2002) Control on lineation development in low to medium grade shear zones: a study from the Cap de Creus penisula, NE Spain. J Struct Geol 24:25–44

    Google Scholar 

  94. Platt PP, Vissers RLM (1980) Extensional structures in anisotropic rocks. J Struct Geol 2:397–410

    Google Scholar 

  95. Pyle JM, Spear FS (1999) Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Mat Res 1:1–49

    Google Scholar 

  96. Pyle JM, Spear FS, Rudnick R, Mcdonough WF (2001) Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. J Petrol 42:2083–2107

    Google Scholar 

  97. Ricci CA, Sabatini G (1978) Petrogenetic affinity and geodynamic significance of metabasic rocks from Sardinia, Corsica and Provence. Neues Jb Miner Mona 1:23–38

    Google Scholar 

  98. Rolland Y, Corsini M, Demoux A (2009) Metamorphic and structural evolution of the Maures–Tanneron massif (SE Variscan chain): evidence of doming along the transpressional margin. B Soc Geol Fr, special paper 180:217–230

    Google Scholar 

  99. Rollet N, Déverchère J, Beslier MO, Guennoc P, Réhault JP, Sosson M, Truffert C (2002) Back arc extension, tectonic inheritance, and volcanism in the Ligurian sea, western Mediterranean. Tectonics 21(3):6-1-23

    Google Scholar 

  100. Rosenbaum G, Lister GS, Duboz C (2002) Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. In: Rosenbaum G, Lister GS (eds) Reconstruction of the Alpine-Himalayan Orogen. Journal of the Virtual Explorer, 8, 107–126

  101. Rossi P, Durand-Delga M, Cocherie A (1993) Caractère volcanoplutonique du magmatisme calcoalcalin composite d’âgen Stéphanien supérieur Permien inférieur en Corse. C R Acad Sci, Paris Ser II 316:1779–1788

    Google Scholar 

  102. Rossi P, Oggiano G, Cocherie A (2009) A restored section of the "southern Variscan realm" across the Corsica–Sardinia microcontinent. C R Geosci 341(2–3):224–238

    Google Scholar 

  103. Rubatto D, Hermann J, Buick IS (2006) Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, central Australia). J Petrol 47:1973–1996

    Google Scholar 

  104. Rubatto D, Chakraborty S, Dasgupta S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib Mineral Petr 165(2):349–372

    Google Scholar 

  105. Sanderson D, Marchini RD (1984) Transpression. J Struct Geol 6:449–458

    Google Scholar 

  106. Schneider J, Corsini M, Peila A, Lardeaux J (2014) Thermal and mechanical evolution of an orogenic wedge during Variscan collision: an example in the Maures–Tanneron Massif (SE France). J Geol Soc Lond 405:30–37

    Google Scholar 

  107. Scotese CR, McKerrow WS (1990) Revised World maps and introduction. Geol Soc Lond Mem 12:1–21. https://doi.org/10.1144/GSL.MEM.1990.012.01.01

    Article  Google Scholar 

  108. Simonetti M (2015) La ‘Ferriere - Mollieres Shear Zone’ (Massiccio dell’ Argentera, Alpi Occidentali): rilevamento geologico, analisi strutturale e cinematica del flusso nella zona del Vallone di Pontebernardo (Pietraporzio, CN). Unpublished Thesis, Università degli Studi di Torino (Italy), pp 182

  109. Simonetti M, Carosi R, Montomoli C (2017) Variscan shear deformation in the Argentera Massif: a field guide to the excursion in the Pontebernardo Valley (CN, Italy). Atti Soc Tosc Sci Nat, Me Serie A 124:151–169. https://doi.org/10.2424/astsn.m.2017.25

    Article  Google Scholar 

  110. Simonetti M, Carosi R, Montomoli C, Langone A, D’Addario E, Mammoliti E (2018) kinematic and geochronological constraints on shear deformation in the Ferriere–Mollières shear zone (Argentera–Mercantour Massif, Western Alps): implications for the evolution of the Southern European Variscan Belt. Int J Earth Sci 107(6):2163–2189. https://doi.org/10.1007/s00531-018-1593-y

    Article  Google Scholar 

  111. Simonetti M, Carosi R, Montomoli C, Cottle JM, Law RD (2020) Transpressive deformation in the Southern European Variscan Belt: new insights from the Aiguilles Rouges Massif (Western Alps). Tectonics 39:e2020TC006153. https://doi.org/10.1029/2020TC006153

    Article  Google Scholar 

  112. Simpson C, De Paor DG (1993) Strain and kinematic analysis in general shear zones. J Struct Geol 15:1–20

    Google Scholar 

  113. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci 196:17–33

    Google Scholar 

  114. Stampfli GM, von Raumer LF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. Geol Soc Am 364:263–280

    Google Scholar 

  115. Stipp M, Stünitz H, Heilbron M, Schmid DW (2002) The eastern Tonale fault zone: a natural laboratory for crystal plastic deformation of quartz over a temperature range from 250° to 700°. J Struct Geol 24:1861–1884

    Google Scholar 

  116. Tollmann A (1982) Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotektonische Forschungen 64:1–91

  117. Tikoff B, Fossen H (1995) The limitation of three-dimensional kinematic vorticity analysis. J Struct Geol 17:1771–1784

    Google Scholar 

  118. Thompson AB, Schulmann K, Jezek J (1997) Thermal evolution and exhumation in obliquely convergent (transpressive) orogens. Tectonophysics 280:171–184

    Google Scholar 

  119. Turco E, Macchiavelli C, Mazzoli S, Schettino A, Pierantoni PP (2012) Kinematic evolution of Alpine Corsica in the framework of Mediterranean mountain belts. Tectonophysics 579:193–206

    Google Scholar 

  120. van Hinsbergen DJJ, Torsvik TH, Schmid SM, Maţenco LC, Maffione M, Vissers RLM, Gürer D, Spakman W (2020) Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res 81:79–229. https://doi.org/10.1016/j.gr.2019.07.009

  121. Vauchez A, Bufalo M (1985) La limite Maures occidentales–Maures orientales (Var, France) un décrochement ductile senestre majeur entre deux provinces structurales contrastées. C R Acad Sci Paris, Série II 301(14):1059–1062

    Google Scholar 

  122. Vauchez A, Bufalo M (1988) Charriage crustal, anatexie et décrochements ductiles dans les Maures orientales (Var, France) au cours de l’orogenèse varisque. Geol Runds 77(1):45–62

    Google Scholar 

  123. Vollmer FW (2015) EllipseFit 3.2 https://www.frederickvollmer.com/ellipsefit/. Accessed 15 Jan 2020

  124. von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic Alpine basements—their place in the European Paleozoic framework. Geol Sci Am Bull 125:89–108

    Google Scholar 

  125. Wallis SR, Platt JP, Knott SD (1993) Recognition of synconvergence extension in accretionary wedges with examples from the Caiabrian Arc and the Eastern Alps. Am J Sci 293:463–495

    Google Scholar 

  126. Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175

    Google Scholar 

  127. Xypolias P (2010) Vorticity analysis in shear zones: a review of methods and applications. J Struct Geol 32:2072–2092

    Google Scholar 

Download references

Acknowledgments

Research funded by PRIN 2015 (University of Torino: R. Carosi and University of Torino: C. Montomoli), PRA 2018_41 (C. Montomoli) and funds Ricerca Locale University of Torino (60%, R. Carosi; S. Iaccarino). We thank the Editor Christian Dullo, Philippe Rossi and an anonymous reviewer for their comments that improved the quality of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Carosi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

531_2020_1898_MOESM1_ESM.tif

Supplementary file1 Polar histograms used to derive the angle ν needed for the calculation of kinematic vorticity. A1= flow apophysis 1; A2 = flow apophysis 2; n = total number of data; Wk = kinematic vorticity number. Dashed line represents the bisector of the angle between A1 and A2 apophyses (TIF 2878 kb)

531_2020_1898_MOESM2_ESM.tif

Supplementary file2 Fry graphs used for the finite strain analysis, obtained with the center-to-center method on the XZ and YZ sections of the finite strain ellipsoid; n = number of centers (TIF 3294 kb)

531_2020_1898_MOESM3_ESM.tif

Supplementary file3 Back-scattered electron (BSE) images showing the microstructural position of selected monazite grains (TIF 2369 kb)

531_2020_1898_MOESM4_ESM.tif

Supplementary file4 BSE images of selected monazite, where the position of the EMP chemical analyses (red dots, see Online resource 5) are reported (TIF 1850 kb)

Supplementary file5 Chemical analysis of the monazite selected for petrochronology (XLSX 118 kb)

531_2020_1898_MOESM6_ESM.xlsx

Supplementary file6 Full dataset of isotopic data obtained from the monazites of selected samples (CD1, CD6, MTM10 and SL6) and of the analyzed standards (XLSX 81 kb)

531_2020_1898_MOESM7_ESM.tif

Supplementary file7 Compositional maps of Y of selected monazite for petrochronology, where ages obtained for each spot are reported. U = age corresponding to the 207-corrected 206Pb/238U systematics; Th = age obtained with the 208Pb/232Th systematics; spot size is 7 µm (TIF 3717 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonetti, M., Carosi, R., Montomoli, C. et al. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France). Int J Earth Sci (Geol Rundsch) 109, 2261–2285 (2020). https://doi.org/10.1007/s00531-020-01898-6

Download citation

Keywords

  • Maures–Tanneron massif
  • Transpression
  • East variscan shear zone
  • Sardinian basement
  • Vorticity
  • Monazite petrochronology