Early dolomitization and partial burial recrystallization: a case study of Middle Triassic peritidal dolomites in the Villány Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data

Abstract

Peritidal carbonates of the Csukma Formation (Csukma Dolomite Member) in the Villány Hills, SW Hungary, were investigated to determine the nature of the dolomitization and recrystallization processes that affected these rocks during their complex tectonic evolution, and to evaluate if clumped isotope data preserved signals from the original dolomitization event or are indicative of the later recrystallization processes. Sedimentary and petrographic features, as well as geochemical characteristics integrated with the tectonic evolution of the area indicate that dolomitization likely occurred penecontemporaneously via geothermal convection of normal-to-slightly modified seawater in a near-surface to shallow burial setting. This was followed by partial recrystallization of the dolomites in an intermediate burial setting with low water-to-rock ratios. Results of this study suggest that the clumped isotope temperatures of dolomites, partially recrystallized via dissolution–re-precipitation, may provide a minimum estimate of the temperature of recrystallization. However, caution has to be taken when interpreting the thermal history and fluid evolution of successions that were affected by significant recrystallization, because the clumped isotope temperatures and the calculated fluid compositions might inaccurately represent the diagenetic conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Banner JL (1995) Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology 42:805–824

    Google Scholar 

  2. Barabás-Stuhl Á, Jámbor Á, Lendvai-Koleszár Z (1982) Documentation of the Máriakéménd-3 borehole. The State Geological, Geophysical and Mining Data Store, Budapest

    Google Scholar 

  3. Barabás-Stuhl Á, Szabolcsi I, Ursprung J (1983) Geological description of the Mesozoic and Paleozoic successions of the Nagykozár-2 borehole. The State Geological, Geophysical and Mining Data Store, Budapest

    Google Scholar 

  4. Bérczi-Makk Á, Konrád G, Rálisch-Felgenhauer Á, Török Á (2004) Tisza Unit. In: Haas J (ed) Geology of Hungary. Triassic. ELTE Eötvös Kiadó, Budapest, pp 303–360

    Google Scholar 

  5. Bleahu M, Mantea G, Bordea S, Panin S, Stefanescu M, Sikic K, Haas J, Kovács S, Péró C, Bérczi-Makk Á (1994) Triassic facies types, evolution and paleogeographic relations of the Tisza Megaunit. Acta Geol Hung 37:187–234

    Google Scholar 

  6. Bonifacie M, Calmels D, Eiler JM, Horita J, Chaduteau C, Vasconcelos C, Agrinier P, Katz A, Passey BH, Ferry JM (2017) Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. Geochim Cosmochim Acta 200:255–279

    Google Scholar 

  7. Botfalvai G, Győri O, Pozsgai E, Farkas IM, Sági T, Szabó M (2019) Sedimentological characteristics and paleoenvironmental implication of Triassic vertebrate localities in Villány (Villány Hills, Southern Hungary). Geol Carpath 70:135–152

    Google Scholar 

  8. Budai T, Haas J, Konrád G, Koroknai B (2014) Tisza mega-unit. In: Haas J, Budai T (eds) Geology of the pre-Cenozoic basement of Hungary. Explanatory notes for “Pre-Cenozoic geological map of Hungary” (1:500 000). Geological and Geophysical Institute of Hungary, Budapest

  9. Burke W, Denison R, Hetherington E, Koepnick R, Nelson H, Otto J (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    Google Scholar 

  10. Came RE, Azmy K, Tripati A, Olanipekun BJ (2017) Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 73–176 °C. Geochim Cosmochim Acta 199:31–47

    Google Scholar 

  11. Choquette PW, Hiatt EE (2008) Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites. Sedimentology 55:423–460

    Google Scholar 

  12. Császár G (2002) Urgon formations in Hungary: with special reference to the Eastern Alps, the Western Carpathians and the Apuseni Mountains. Institutum Geologicum Hungaricum

  13. Csontos L, Benkovics L, Bergerat F, Mansy JL, Wórum G (2002) Tertiary deformation history from seismic section study and fault analysis in a former European Tethyan margin (the Mecsek-Villány area, SW Hungary). Tectonophysics 357:81–102

    Google Scholar 

  14. Csontos L, Nagymarosy A, Horváth F, Kovác M (1992) Tertiary evolution of the intra-carpathian area: a model. Tectonophysics 208:221–241

    Google Scholar 

  15. Dale A, John CM, Mozley PS, Smalley PC, Muggeridge AH (2014) Time-capsule concretions: unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth Planet Sci Lett 394:30–37

    Google Scholar 

  16. Davies AJ, John CM (2019) The clumped (13C–18O) isotope composition of echinoid calcite: further evidence for “vital effects” in the clumped isotope proxy. Geochim Cosmochim Acta 245:172–189

    Google Scholar 

  17. Dawans JM, Swart PK (1988) Textural and geochemical alternations in late Cenozoic Bahamian dolomites. Sedimentology 35:385–403

    Google Scholar 

  18. Dickson J (1966) Carbonate identification and genesis as revealed by staining. J Sediment Res 36:491–505

    Google Scholar 

  19. Dunham RJ (1962) Classification of carbonate rocks according to depositional textures. In: Ham WE (ed) Classification of carbonate rocks—a symposium. American Association of Petroleum Geologists, Tulsa, pp 108–121

    Google Scholar 

  20. Eiler JM (2007) “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327

    Google Scholar 

  21. Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecological zones. Geol Rundsch 61:672–686

    Google Scholar 

  22. Ferry JM, Passey BH, Vasconcelos C, Eiler JM (2011) Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology 39:571–574

    Google Scholar 

  23. Folk RL (1959) Practical petrographic classification of limestones. AAPG Bull 43:1–38

    Google Scholar 

  24. Fülöp J (1966) Les formations Crétacées de la Montagne de Villány. Geol Hung Ser Geol 15:131

    Google Scholar 

  25. Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456

    Google Scholar 

  26. Gregg JM, Howard SA, Mazzullo S (1992) Early diagenetic recrystallization of Holocene (%3c 3000 years old) peritidal dolomites, Ambergris Cay, Belize. Sedimentology 39:143–160

    Google Scholar 

  27. Gregg JM, Shelton KL (1990) Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri. J Sediment Res 60:549–562

    Google Scholar 

  28. Haas J (2012) Geology of Hungary. Springer, New York

    Google Scholar 

  29. Haas J, Budai T, Raucsik B (2012) Climatic controls on sedimentary environments in the Triassic of the Transdanubian range (Western Hungary). Palaeogeogr Palaeoclimatol Palaeoecol 353:31–44

    Google Scholar 

  30. Haas J, Péró C (2004) Mesozoic evolution of the Tisza mega-unit. Int J Earth Sci 93:297–313

    Google Scholar 

  31. Honlet R, Gasparrini M, Muchez P, Swennen R, John CM (2018) A new approach to geobarometry by combining fluid inclusion and clumped isotope thermometry in hydrothermal carbonates. Terra Nova 30:199–206

    Google Scholar 

  32. Horita J (2014) Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochim Cosmochim Acta 129:111–124

    Google Scholar 

  33. Huntington KW, Budd DA, Wernicke BP, Eiler JM (2011) Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J Sediment Res 81:656–669

    Google Scholar 

  34. Jámbor Á (2012) Quaternary evolution. In: Haas J (ed) Geology of Hungary. Springer, Heidelberg, pp 201–213

    Google Scholar 

  35. John CM (2015) Burial estimates constrained by clumped isotope thermometry: example of the Lower Cretaceous Qishn Formation (Haushi-Huqf High, Oman). Special Publ Spec Publ 435:107–121

    Google Scholar 

  36. John CM, Bowen D (2016) Community software for challenging isotope analysis: first applications of ‘Easotope’ to clumped isotopes. Rapid Commun Mass Spectrom 30:2285–2300

    Google Scholar 

  37. Kaczmarek SE, Thornton BP (2017) The effect of temperature on stoichiometry, cation ordering, and reaction rate in high-temperature dolomitization experiments. Chem Geol 468:32–41

    Google Scholar 

  38. Konrád G (1998) Synsedimentary tectonic events in the Middle Triassic evolution of the SE Transdanubian part of the Tisza Unit. Acta Geol Hung 41:327–341

    Google Scholar 

  39. Konrád G, Budai T (2009) Characteristics of the Middle Triassic sequence of the western Mecsek Mts. Földtani Közlöny 139:119–130

    Google Scholar 

  40. Korte C, Kozur HW, Bruckschen P, Veizer J (2003) Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta 67:47–62

    Google Scholar 

  41. Korte C, Kozur HW, Veizer J (2005) δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeogr Palaeoclimatol Palaeoecol 226:287–306

    Google Scholar 

  42. Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger DH, Dunham JB, Ethington RL (eds) Concepts and models of dolomitization. SEPM, pp 87–110

  43. Land LS (1985) The origin of massive dolomite. J Geol Educ 33:112–125

    Google Scholar 

  44. Loyd SJ, Corsetti FA, Eagle RA, Hagadorn JW, Shen Y, Zhang X, Bonifacie M, Tripati AK (2015) Evolution of Neoproterozoic Wonoka-Shuram anomaly-aged carbonates: evidence from clumped isotope paleothermometry. Precamb Res 264:179–191

    Google Scholar 

  45. Lukoczki G (2019) Geochemistry and crystal structure of recrystallized dolomites. Dissertation, Oklahoma State University

  46. Lukoczki G, Haas J, Gregg JM, Machel HG, Kele S, John CM (2019) Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine–peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data. Mar Petrol Geol 101:440–458

    Google Scholar 

  47. MacDonald JM, John CM, Girard JP (2018) Testing clumped isotopes as a reservoir characterization tool: a comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2–4 km. Geol Soc Lond Spec Publ 468:189–202

    Google Scholar 

  48. Machel HG (1990) Bulk solution disequilibrium in aqueous fluids as exemplified by diagenetic carbonates. In: Meshri ID, Ortoleva PJ (eds) Prediction of reservoir quality through chemical modeling. AAPG, Tulsa, pp 71–83

    Google Scholar 

  49. Machel HG (1997) Recrystallization versus neomorphism, and the concept of ‘significant recrystallization’ in dolomite research. Sediment Geol 113:161–168

    Google Scholar 

  50. Machel HG (1999) Effects of groundwater flow on mineral diagenesis, with emphasis on carbonate aquifers. Hydrogeol J 7:94–107

    Google Scholar 

  51. Machel HG (2004) Concepts and models of dolomitization: a critical reappraisal. Geol Soc Lond Spec Publ 235:7–63

    Google Scholar 

  52. Malone MJ, Baker PA, Burns SJ (1994) Recrystallization of dolomite: evidence from the Monterey Formation (Miocene), California. Sedimentology 41:1223–1239

    Google Scholar 

  53. Mangenot X, Gasparrini M, Rouchon V, Bonifacie M (2018) Basin-scale thermal and fluid flow histories revealed by carbonate clumped isotopes (Δ47)—Middle Jurassic carbonates of the Paris Basin depocentre. Sedimentology 65:123–150

    Google Scholar 

  54. Matthews A, Katz A (1977) Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochim Cosmochim Acta 41:1431–1438

    Google Scholar 

  55. McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale. Elsevier, New York, pp 127–144

  56. Meckler AN, Ziegler M, Millán MI, Breitenbach SF, Bernasconi SM (2014) Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Commun Mass Spectrom 28:1705–171

    Google Scholar 

  57. Melim LA, Scholle PA (2002) Dolomitization of the Capitan Formation forereef facies (Permian, west Texas and New Mexico): seepage reflux revisited. Sedimentology 49:1207–1227

    Google Scholar 

  58. Millán IM, Machel HG, Bernasconi SM (2016) Constraining temperatures of formation and composition of dolomitizing fluids in the Upper Devonian Nisku Formation (Alberta, Canada) with clumped isotopes. J Sediment Res 86:107–112

    Google Scholar 

  59. Miseta R, Palatinszky M, Makk J, Márialigeti K, Borsodi AK (2012) Phylogenetic diversity of bacterial communities associated with sulfurous karstic well waters of a Hungarian spa. Geomicrobiol J 29:101–113

    Google Scholar 

  60. Murray ST, Swart PK (2017) Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites. Geochim Cosmochim Acta 206:73–93

    Google Scholar 

  61. Nagy E, Nagy I (1976) Triasbildungen des Villányer Gebirges. Geol Hung Ser Geol 17:111–227

    Google Scholar 

  62. Nagymarosy A, Hámor G (2012) Genesis and evolution of the Pannonian basin. In: Haas J (ed) Geology of Hungary. Springer, Heidelberg, pp 149–200

    Google Scholar 

  63. Nédli Z, Tóth TM (2007) Origin and geodynamic significance of Upper Cretaceous lamprophyres from the Villány Mts (S Hungary). Miner Petrol 90:73–107

    Google Scholar 

  64. Nédli Z, Tóth TM, Downes H, Császár G, Beard A, Szabó C (2010) Petrology and geodynamical interpretation of mantle xenoliths from Late Cretaceous lamprophyres, Villány Mts (S Hungary). Tectonophysics 489:43–54

    Google Scholar 

  65. Ősi A, Botfalvai G, Prondvai E, Hajdu Z, Czirják G, Szentesi Z, Pozsgai E, Götz AE, Makádi L, Csengődi D (2013) First report of Triassic vertebrate assemblages from the Villány Hills (Southern Hungary). Cent Eur Geol 56:297–335

    Google Scholar 

  66. Petrik A (2009) Interpretation of the results of microtectonic measurements performed with respect to Mesozoic formations of the Villány Hills, Hungary. Földtani Közlöny 139:217–236

    Google Scholar 

  67. Petrik A (2010) Microtectonic measurements and interpretation of the Mesozoic formations in the Villány Hills and Görcsöny-Máriakéménd Ridge, Hungary. Cent Eur Geol 53:21–42

    Google Scholar 

  68. Pozsgai E (2016) Depositional environment of the Templomhegy Dolomite (Villány Hills) based on lithological and sedimentological observations. Mod Geogr 1–17

  69. Pozsgai E, Józsa S, Dunkl I, Sebe K, Thamó-Bozsó E, Sajó I, Dezső J, von Eynatten H (2017) Provenance of the Upper Triassic siliciclastics of the Mecsek Mountains and Villány Hills (Pannonian Basin, Hungary): constraints to the early Mesozoic paleogeography of the Tisza Megaunit. Int J Earth Sci 106:2005–2024

    Google Scholar 

  70. Radke BM, Mathis RL (1980) On the formation and occurrence of saddle dolomite. J Sediment Petrol 50:1149–1168

    Google Scholar 

  71. Rakusz G, Strausz L (1953) Geology of the Villány Mountains. Ann Rep Geol Inst Hung 41:3–27

    Google Scholar 

  72. Rálisch-Felgenhauer E (1985) Villány Hills, Villány, Templom Hill road-cut section (Villányi-hegység, Villány, Templomhegyi siklóbevágás), Magyarország geológiai alapszelvényei. Geological Institute of Hungary, Budapest

    Google Scholar 

  73. Rálisch-Felgenhauer E (1987) Villány Hills, Villány, Templom Hill lower quarry (Villányi-hegység, Villány, Templom-hegyi alsó kőfejtő), Magyarország geológiai alapszelvényei. Geological Institute of Hungary, Budapest

    Google Scholar 

  74. Rálisch-Felgenhauer E, Török Á (1993) Csukma Formation (Csukmai Formáció), Magyarország litosztratigráfiai alapegységei. Geological Institute of Hungary, Budapest, pp 248–251

    Google Scholar 

  75. Sanford WE, Whitaker FF, Smart PL, Jones GD (1998) Numerical analysis of seawater circulation in carbonate platforms: I. Geothermal convection. Am J Sci 298:801–828

    Google Scholar 

  76. Sena CM, John CM, Jourdan AL, Vandeginste V, Manning C (2014) Dolomitization of Lower Cretaceous peritidal carbonates by modified seawater: constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes. J Sediment Res 84:552–566

    Google Scholar 

  77. Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Res 57:967–975

    Google Scholar 

  78. Simms M (1984) Dolomitization by groundwater-flow systems in carbonate platforms. Trans Gulf Coast Assoc Geol Soc 34:411–420

    Google Scholar 

  79. Spötl C, Pitman J (1998) Saddle (baroque) dolomite in carbonates and sandstones: a reappraisal of a burial-diagenetic concept. Carbonate cementation in sandstones: distribution patterns and geochemical evolution. Spec Publ Int Ass Sediment 26:437–460

    Google Scholar 

  80. Spötl C, Vennemann TW (2003) Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun Mass Spectrom 17:1004–1006

    Google Scholar 

  81. Török Á (1998) Controls on development of Mid-Triassic ramps: examples from southern Hungary. Geol Soc Lond Spec Publ 149:339–367

    Google Scholar 

  82. Vahrenkamp VC, Swart PK, Ruiz J (1991) Episodic dolomitization of late Cenozoic carbonates in the Bahamas; evidence from strontium isotopes. J Sediment Res 61:1002–1014

    Google Scholar 

  83. Veillard CM, John CM, Krevor S, Najorka J (2019) Rock-buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X-ray diffraction analysis. Geochim Cosmochim Acta 252:190–212

    Google Scholar 

  84. Vörös A (2009) Tectonically-controlled Late Triassic and Jurassic sedimentary cycles on a peri-Tethyan ridge (Villány, southern Hungary). Cent Eur Geol 52:125–151

    Google Scholar 

  85. Vörös A (2010) The Mesozoic sedimentary sequences at Villány (southern Hungary). Földtani Közlöny 140:3–30

    Google Scholar 

  86. Wanless HR (1979) Limestone response to stress; pressure solution and dolomitization. J Sediment Res 49:437–462

    Google Scholar 

  87. Whitaker FF, Smart P, Vahrenkamp V, Nicholson H, Wogelius R (1994) Dolomitization by near-normal seawater? Field evidence from the Bahamas. Dolomites, a volume in honour of Dolomieu. Spec Publ Int Ass Sediment Geol 21:111–132

    Google Scholar 

  88. Whitaker FF, Xiao Y (2010) Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection. AAPG Bull 94:889–917

    Google Scholar 

  89. Wright WR (2001) Dolomitization, fluid-flow and mineralization of the Lower Carboniferous rocks of the Irish Midlands and Dublin Basin. Dissertation, University College Dublin

Download references

Acknowledgements

This work was supported by the American Association of Petroleum Geologists Grants-in-Aid Program, the Geological Society of America Graduate Student Research Grant Program, the International Association of Sedimentologists Post-Graduate Grant Scheme, and the Hungarian Scientific Research Fund (Grant number OTKA K124313). SK was supported by the National Research, Development and Innovation Office (NKFIH, Hungary) (Grant number KH 125584). The authors are indebted to Tamás Budai, Michael Grammer, Gyula Konrád, James Puckette and Pankaj Sarin for their continued help and support. The comments and suggestions of reviewers Arthur Adams and Oliver Weidlich are greatly appreciated. This is an Oklahoma State University Boone Pickens School of Geology contribution #2020-115.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Georgina Lukoczki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukoczki, G., Haas, J., Gregg, J.M. et al. Early dolomitization and partial burial recrystallization: a case study of Middle Triassic peritidal dolomites in the Villány Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data. Int J Earth Sci (Geol Rundsch) 109, 1051–1070 (2020). https://doi.org/10.1007/s00531-020-01851-7

Download citation

Keywords

  • Dolomitization
  • Recrystallization
  • Stable isotopes
  • Clumped isotopes
  • Strontium isotopes
  • Villány Hills