The Roman Eifel Aqueduct: archaeoseismological evidence for neotectonic movement at the transition of the Eifel to the Lower Rhine Embayment

Abstract

The Lower Rhine Embayment and adjacent areas are characterised by neotectonic deformation resulting in differential crustal movement. Slip rates along the fault systems are very low (< 0.1 mm/a). Significant earthquakes are known to have occurred in the past but the faulting behaviour is not adequately known which hampers the risks assessment. We analysed the archaeological record of the largest Roman aqueduct north of the Alps. This so called Eifel Aqueduct is 95.4 km long, has its source in the Eifel mountains and supplied the ancient city of Cologne with calcareous fresh water. The aqueduct crosses major faults of the Lower Rhine Embayment perpendicular. Analyses of the aqueduct´s gradient gives weak evidence for creep along the Kirspenich Fault resulting in differential movement of hanging and foot wall in the order of a few centimetres. Vertical offsets of 15 and 35 cm are documented exactly where the aqueduct crosses the Holzheim Fault system close to the city of Mechernich. Here, also structural damage of the aqueduct is recorded and archaeological evidence exists for repair works on the aqueduct. We interpret these observations as well as the construction of a 4 km long deviation as necessary measures to keep the aqueduct operational after earthquake damage. The timing of the event falls within the period of aqueduct operation which is reconstructed to be between 80 ± 10 and 270 ± 10 CE. Supporting evidence for earthquake activity within this period is seen in the roof collapse of the nearby Kakus cave.

This is a preview of subscription content, access via your institution.

Fig. 1

Location of faults after Basili et al. (2013), magnitudes and locations of earthquakes after Leydecker (2011)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data: Geobasis (2018a)

Fig. 6
Fig. 7

References

  1. Ahorner L (1962) Untersuchungen zur quartären Bruchtektonik der Niederrheinischen Bucht. E&G Quat Sci J 13:24–105

    Google Scholar 

  2. Alexandre P, Kusman D, Petermans T, Camelbeeck T (2008) The 18 September 1692 earthquake in the Belgian Ardenne and its aftershocks. In: Fréchet J, Meghraoui M, Stucchi M (eds) Historical seismology. Springer, Dordrecht, pp 209–230

    Google Scholar 

  3. Basili R, Kastelic V, Demircioglu MB, Garcia Moreno D, Nemser E S, Petricca P, Sboras SP, Besana-Ostman GM, Cabral J, Camelbeeck T, Caputo R, Danciu L, Domac H, Fonseca J, García-Mayordomo J, Giardini D, Glavatovic B, Gulen L, Ince Y, Pavlides S, Sesetyan K, Tarabusi G, Tiberti MM, Utkucu M, Valensise G, Vanneste K, Vilanova S, Wössner J (2013) The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share-edsf/. https://doi.org/10.6092/ingv.it-share-edsf

  4. Boenigk W, Frechen M (2005) The Pliocene and Quaternary fluvial archives of the Rhine system. Quat Sci Rev 25:550–574

    Article  Google Scholar 

  5. Camelbeeck T, Meghraoui M (1998) Geological and geophysical evidence for large paleao-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophys J Int 132:347–362

    Article  Google Scholar 

  6. Camelbeeck T, Vanneste K, Alexandre P, Verbeeck K, Petermans T, Rosset P, Everaerts M, Warnant M, Van Camp M (2007) Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea. In: Stein S, Mazzotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. Geol Soc Am, Boulder, pp 193–224

    Google Scholar 

  7. Cloetingh S, Ziegler PA, Beekman F, Andriessen PAM, Matenco L, Bada G, Garcia-Castellanos D, Hardebol N, Dèzes P, Sokoutis D (2005) Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quat Sci Rev 24:241–304

    Article  Google Scholar 

  8. Cohen KM, Stouthamer E, Berendsen HJA (2002) Fluvial deposits as a record for Late Quaternary neotectonic activity in the Rhine-Meuse delta, The Netherlands. Netherlands J Geosci 81:389–405

    Article  Google Scholar 

  9. Eick CA (1867) Die römische Wasserleitung aus der Eifel nach Köln, mit Rücksicht auf die zunächst gelegenen römischen Niederlassungen, Befestigungswerke und Heerstrassen: Ein Beitrag zur Alterthumskunde in Rheinlande. Max Cohen und Sohn, Bonn

    Google Scholar 

  10. Galadini F, Hinzen KG, Stiros S (2006) Archaeoseismology: methodological issues and procedure. J Seism 10:395–414

    Article  Google Scholar 

  11. Geobasis NRW (2018a) Digitales Geländemodell Gitterweite 1 m, (Stand 2018-11-14). ©Land NRW 2018, dl-de/by-2-0. https://www.govdata.de/dl-de/by-2-0, https://www.opengeodata.nrw.de/produkte/geobasis/dgm/dgm1/. Accessed 18 Nov 2018

  12. Geobasis NRW (2018b) Geologische Karte von Nordrhein-Westfalen (2018) 1:100,000 ©Land NRW 2018, dl-de/by-2-0. https://www.govdata.de/dlde/by-2-0, WMS-Service: http://www.wms.nrw.de/gd/GK100. Accessed 22 Dec 2018

  13. Gold RD, Friedrich A, Kübler S, Salamon M (2017) Apparent Late Quaternary Fault-Slip Rate Increase in the Southern Lower Rhine Graben, Central Europe. Bull Seism Soc Am 107:563–580

    Article  Google Scholar 

  14. Görres B, Sager B, Campbell J (2006) Geodätische Bestimmung von Bodenbewegungen im Bereich des Erftsprungsystems. Zeitschrift für Vermessungswesen 131:16–24

    Google Scholar 

  15. Grewe K (1985) Planung und Trassierung römischer Wasserleitungen. Schriftenreihe der Frontinus-Gesellschaft suppl 1:1–80

    Google Scholar 

  16. Grewe K (1986) Atlas der römischen Wasserleitungen nach Köln. Rheinland-Verlag GmbH, Köln

    Google Scholar 

  17. Grützner C, Fischer P, Reicherter K (2016) Holocene surface ruptures of the Rurrand Fault, Germany—insights from palaeoseismology, remote sensing and shallow geophysics. Geophys J Intern 204:1662–1677

    Article  Google Scholar 

  18. Haberey W (1964) Neues zur Wasserversorgung des römischen Köln. II. Teil. Bonner Jahrbücher 164:246–287

    Google Scholar 

  19. Hinzen KG (2005) The use of engineering seismological models to interpret archaeoseismological findings in Tolbiacum, Germany: a case study. Bull Seism Soc Am 95:521–539

    Article  Google Scholar 

  20. Hinzen KG, Reamer SK (2007) Seismicity, seismotectonics, and seismic hazard in the Northern Rhine area. In: Stein S, Mazzotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. Geol Soc Am, Boulder, pp 225–242

    Google Scholar 

  21. Hinzen KG, Schütte S (2003) Evidence for earthquake damage on Roman buildings in Cologne, Germany. Seism Res Lett 74:124–140

    Article  Google Scholar 

  22. Hinzen KG, Schreiber S, Fleischer C, Reamer SK, Wiosna I (2013) Archeoseismic study of damage in Roman and Medieval structures in the center of Cologne, Germany. J Seism 17:399–424

    Article  Google Scholar 

  23. Houtgast RF, van Balen RT (2000) Neotectonics of the Roer Valley Rift System, the Netherlands. Glob Planet Change 27:131–146

    Article  Google Scholar 

  24. Joachim HE, von Koenigswald W, Meyer W (1998) Karstein und Katzensteine. Rheinische Kunststätten, Rheinischer Verein für Denkmalpflege und Landschaftschutz, Köln

    Google Scholar 

  25. Klein W, Krickel B, Riecken J, Salamon M (2016) Eine interdisziplinäre Betrachtung der vertikalen Bodenbewegungen in der Eifel. ZfV-Zeitschrift für Geodäsie Geoinf Landmanag 141:27–34

    Google Scholar 

  26. Kübler S, Streich R, Lück E, Hoffmann M, Friedrich AM, Strecker MR (2017) Active faulting in a populated low-strain setting (Lower Rhine Graben, Central Europe) identified by geomorphic, geophysical and geological analysis. Geol Soc Lond Spec Pub 432:127–146

    Article  Google Scholar 

  27. La Baume P (1980) Das römische Köln: Geschichtlicher Überblick. Köln I Führer zu vor-und frühgeschichtlichen Denkmälern, pp 38–52

  28. Leydecker G (2011) Earthquake catalogue for Germany and adjacent areas for the years 800 to 2008. Geol Jahrb E59:1–198

  29. Marra F, Montone P, Pirro M, Boschi E (2004) Evidence of active tectonics on a Roman aqueduct system (II–III century AD) near Rome, Italy. J Struct Geol 26:679–690

    Article  Google Scholar 

  30. McCalpin JP, Reicherter K (2019) Introduction to the special issue: paleoseismology, active tectonics and archaeoseismology. Geomorph 326:1–5

    Article  Google Scholar 

  31. Meyer WT (2013) Geologie der Eifel. E. Schweizerbart, Stuttgart

    Google Scholar 

  32. Meyer WT, Stets J (2002) Pleistocene to recent tectonics in the Rhenish Massif (Germany). Netherlands J Geosci 81:217–221

    Article  Google Scholar 

  33. Nöggerath J (1858) Die Marmorgewinnung aus den römischen Wasserleitungen in der preußischen Rheinprovinz. Westermanns illustrierte deutsche Monatshefte 4:165–171

    Google Scholar 

  34. Pelzing R, Lehmann K, Klostermann J (2000) Paläoseismologische Untersuchungen an der Rurrand-Verwerfung, Niederrheinische Bucht. D-A-CH-Mitteilungsblatt 19:8–10

    Google Scholar 

  35. Preusser F (2008) Characterisation and evolution of the River Rhine system. Neth J Geosci 87:7–19

    Google Scholar 

  36. Prinz L, McCann T, Schäfer A, Asmus S, Lokay P (2016) The geometry, distribution and development of sand bodies in the Miocene-age Frimmersdorf Seam (Garzweiler open-cast mine), Lower Rhine Basin, Germany: implications for seam exploitation. Geol Mag 155:685–706

    Article  Google Scholar 

  37. Rademacher C (1911) Der Kartstein bei Eiserfey in der Eifel. Prähistorische Zeitschrift 3:201–232

    Article  Google Scholar 

  38. Ribbert KH (1985) Erläuterungen zu Blatt 5405 Mechernich. Geologisches Landesamt Nordrhein-Westfalen, Krefeld

    Google Scholar 

  39. Röbel F, Ahorner L (1958) Das Euskirchener Erdbeben vom 5. August 1957. Sonderveröff geol Inst Köln 4:11–15

    Google Scholar 

  40. Schäfer A, Utescher T, Klett M, Valdivia-Manchego M (2005) The Cenozoic Lower Rhine Basin–rifting, sedimentation, and cyclic stratigraphy. Int J Earth Sci 94:621–639

    Article  Google Scholar 

  41. Senckler A (1852) IV. Miscellen. Jahrbücher des Vereins von Alterthumsfreunden im Rheinlande 18:214–216

    Google Scholar 

  42. van Dinter M (2017) Living along the Limes: landscape and settlement in the Lower Rhine Delta during Roman and early Medieval times. Utrecht Stud Earth Sci 135:223

    Google Scholar 

  43. Vanneste K, Camelbeeck T, Verbeeck K (2013) A model of composite seismic sources for the Lower Rhine Graben, Northwest Europe. Bull Seism Soc Am 103:984–1007

    Article  Google Scholar 

  44. Verbeeck K et al (2017) Episodic activity of a dormant fault in tectonically stable Europe: the Rauw fault (NE Belgium). Tectonophysics 699:146–163

    Article  Google Scholar 

  45. Wenz S, Scholz D, Sürmelihindi G, Passchier CW, Jochum KP, Andreae MO (2016) 230Th/U-dating of carbonate deposits from ancient aqueducts. Quat Geochron 32:40–52

    Article  Google Scholar 

  46. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Article  Google Scholar 

Download references

Acknowledgements

We thank Klaus Grewe for introducing us to the Roman Eifel Aqueduct. The inspiration to consider the roof collapse of the Kakus cave was by Wighart von Koenigswald. The comments of 2 anonymous reviewers are appreciated as they helped to improve the initial manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Hoffmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, G., Kummer, S., Márquez, R. et al. The Roman Eifel Aqueduct: archaeoseismological evidence for neotectonic movement at the transition of the Eifel to the Lower Rhine Embayment. Int J Earth Sci (Geol Rundsch) 108, 2349–2360 (2019). https://doi.org/10.1007/s00531-019-01766-y

Download citation

Keywords

  • Earthquake
  • Risk assessment
  • Vulnerability
  • Faulting
  • Subsidence
  • Geoarchaeology