Permian–Triassic red-stained albitized profiles in the granitic basement of NE Spain: evidence for deep alteration related to the Triassic palaeosurface

Abstract

Extensive areas of the Variscan granitic basement in NE Spain display profiles of red-stained albitized facies characterized by albitization of Ca-plagioclase, chloritization of biotite and microclinization of orthoclase, along with the alteration of igneous quartz to secondary CL-dark quartz. These profiles have a geopetal structure beneath the Triassic unconformity, with a very intense and pervasive alteration in the upper part that progressively decreases with depth to 150–200 m where the alteration is restricted to the walls of fractures. The red albitized facies contains secondary maghemite and hematite that indicate oxidizing conditions. Dating of microclinized orthoclase and secondary monazite that have formed in the red-stained albitized facies yielded K–Ar and U–Th–Pbtotal ages of 240 and 250 Ma, respectively, suggesting that the alteration developed during the Permian–Triassic period. The geopetal disposition of the red albitized profile with respect to the Triassic unconformity, its large regional extent, and the fracture-controlled alteration in the lower part of the profile indicate groundwater interaction. The δ18O values of albitized plagioclase (+ 11‰), microclinized orthoclase (+ 13‰), and secondary CL-dark quartz (+ 12‰) suggest that the alteration temperature was about 55 °C. This “low” temperature suggests that the alteration occurred during interaction of the granitic rocks with Na-rich fluids below a surficial weathering mantle on the Permian–Triassic palaeosurface. The latter is possibly related to Triassic evaporitic environments in long-lasting, stable landscapes in which Na-rich solutions infiltrated deep regional groundwaters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Yao (2013)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The electronic supplementary information related to this article can be obtained in the datasets: Parcerisa et al. (2016) and Fàbrega et al. (2018).

References

  1. Aagaard P, Egeberg PK, Saigal GC (1990) Diagenetic albitization of detrital K-feldspars in Jurassic, lower cretaceous and tertiary clastic reservoir rocks from offshore Norway; II, formation water chemistry and kinetic considerations. J Sediment Res 60:575

    Article  Google Scholar 

  2. Ague JJ, van Haren JLM (1996) Assessing metasomatic mass and volume changes using the bootstrap, with application to deep crustal hydrothermal alteration of marble. Econ Geol 91:1169–1182. https://doi.org/10.2113/gsecongeo.91.7.1169

    Article  Google Scholar 

  3. Aguilar C, Liesa M, Castineiras P, Navidad M (2014) Late Variscan metamorphic and magmatic evolution in the eastern Pyrenees revealed by U–Pb age zircon dating. J Geol Soc Lond 171:181–192. https://doi.org/10.1144/jgs2012-086

    Article  Google Scholar 

  4. Aguilar C, Liesa M, Štípská P, Schulmann K, Muñoz JA, Casas JM (2015) P–T–t–d evolution of orogenic middle crust of the Roc de Frausa Massif (Eastern Pyrenees): a result of horizontal crustal flow and Carboniferous doming? J Metamorph Geol 33:273–294. https://doi.org/10.1111/jmg.12120

    Article  Google Scholar 

  5. Algeo TJ, Twitchett RJ (2010) Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geol 38:1023–1026. https://doi.org/10.1130/G31203.1

    Article  Google Scholar 

  6. Anadón P, Cabrera L, Colombo F, Marzo M, Riba O (1986) Syntectonic intraformational unconformities in alluvial fan deposits, Eastern Ebro Basin Margins (NE Spain). Foreland Basins. Blackwell Publishing Ltd., Oxford, pp 259–271

    Google Scholar 

  7. Baker JH (1985) Rare earth and other trace element mobility accompanying albitization in a Proterozoic granite, W. Bergslagen, Sweden. Mineral Mag 49:107–115. https://doi.org/10.1180/minmag.1985.049.350.17

    Article  Google Scholar 

  8. Barth SR (2000) Geochemical and boron, oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland. Appl Geochem 15:937–952. https://doi.org/10.1016/S0883-2927(99)00101-8

    Article  Google Scholar 

  9. Battiau-Queney Y (1997) Preservation of old palaeosurfaces in glaciated areas: examples from the French western Alps. Geol Soc Lond Spec Publ 120:125–132. https://doi.org/10.1144/GSL.SP.1997.120.01.08

    Article  Google Scholar 

  10. Beinlich A, Klemd R, John T, Gao J (2010) Trace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid–rock interaction. Geochim Cosmochim Acta 74:1892–1922. https://doi.org/10.1016/j.gca.2009.12.011

    Article  Google Scholar 

  11. Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18:358–365. https://doi.org/10.1016/S0169-5347(03)00093-4

    Article  Google Scholar 

  12. Benton MJ, Newell AJ (2014) Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Res 25:1308–1337. https://doi.org/10.1016/j.gr.2012.12.010

    Article  Google Scholar 

  13. Bernet M, Bassett K (2005) Provenance analysis by single-quartz-grain SEM-CL/optical microscopy. J Sediment Res. https://doi.org/10.2110/jsr.2005.038

    Article  Google Scholar 

  14. Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69:445–478. https://doi.org/10.2138/rmg.2008.69.12

    Article  Google Scholar 

  15. Boles JR (1982) Active albitization of plagioclase, Gulf Coast Tertiary. Am J Sci 282:165–180

    Article  Google Scholar 

  16. Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos 93:89–106

    Article  Google Scholar 

  17. Bourquin S, Bercovici A, López-Gómez J, Diez JB, Broutin J, Ronchi A, Durand M, Arche A, Linol B, Amour F (2011) The Permian–Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: palaeogeographic maps and geodynamic implications. Palaeogeogr Palaeoclimatol Palaeoecol 299:265–280

    Article  Google Scholar 

  18. Brookfield ME (2008) Palaeoenvironments and palaeotectonics of the arid to hyperarid intracontinental latest Permian–late Triassic Solway basin (UK). Sediment Geol 210:27–47

    Article  Google Scholar 

  19. Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: Quartz dissolution and related subsolidus changes. J Petrol 27:945–965

    Article  Google Scholar 

  20. Cherniak DJ, Pyle JM (2008) Th diffusion in monazite. Chem Geol 256:52–61. https://doi.org/10.1016/j.chemgeo.2008.07.024

    Article  Google Scholar 

  21. Cherniak DJ, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840. https://doi.org/10.1016/j.gca.2003.07.012

    Article  Google Scholar 

  22. Clément J-Y (1986) Minéralogie, pétrologie et géochimie du Permien de Lodève (Hérault, France). Diagenèse précoce, altération feldspathisante et mise en place des minéralisations uranifères. ENSMP, Mém Sci de la Terre 2: p 136

  23. Cocherie A, Albarede F (2001) An improved U–Th–Pb age calculation for electron microprobe dating of monazite. Geochim Cosmochim Acta 65:4509–4522. https://doi.org/10.1016/S0016-7037(01)00753-0

    Article  Google Scholar 

  24. Cocherie A, Legendre O, Peucat JJ, Kouamelan AN (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th–U-total lead determination: implications for lead behaviour in monazite. Geochim Cosmochim Acta. https://doi.org/10.1016/s0016-7037(98)00171-9

    Article  Google Scholar 

  25. Coombs DS (1954) The nature and alteration of some Triassic sediments from Southland, New Zealand. Trans R Soc New Zeal 82:65–109

    Google Scholar 

  26. Courel L (1982) Les facies de transgression du trias sur la bordure nord-est du Massif Central français. Geol Rundsch 71:773–781

    Article  Google Scholar 

  27. Dinarès-Turell J, Diez JB, Rey D, Arnal I (2005) “Buntsandstein” magnetostratigraphy and biostratigraphic reappraisal from eastern Iberia: early and Middle Triassic stage boundary definitions through correlation to Tethyan sections. Palaeogeogr Palaeoclimatol Palaeoecol 229:158–177. https://doi.org/10.1016/j.palaeo.2005.06.036

    Article  Google Scholar 

  28. Engvik AK, Putnis A, Fitz Gerald JD, Austrheim H (2008) Albitization of granitic rocks: the mechanism of replacement of oligoclase by albite. Can Miner 46:1401–1415. https://doi.org/10.3749/canmin.46.6.1401

    Article  Google Scholar 

  29. Enrique P (1990) The Hercynian intrusive rocks of the Catalonian Coastal Ranges (NE Spain). Acta Geol Hisp 25:39–64

    Google Scholar 

  30. Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York

    Google Scholar 

  31. Fàbrega C, Parcerisa D, Gómez-Gras D (2013) Multiple Feldspar replacement in Hercynian granites of the Montseny-Guilleries Massif (Catalan Coastal Ranges, NE Spain). Geophys Res Abstr 15: EGU2013-7193–2

  32. Fàbrega C, Parcerisa D, Gòmez-Gras D, Travé A, Franke C, Gurenko A (2016) Composició isotòpica de l’oxigen (18O/16O) en els feldspats i el quars dels granitoides hercinians: Guilleries-Montseny i Pirineus Orientals. In: Vilà M, Herms I, Cirés J (eds) Geoquímica ambiental a Catalunya. Recull d’articles. Monografies tècniques de l’Institut Cartogràfic i Geològic de Catalunya, núm. 5. Institut Cartogràfic i Geològic de Catalunya, Barcelona, Spain, pp 83–95 (in Catalan)

  33. Fàbrega C, Parcerisa D, Rossell JM, Gurenko A, Franke C (2017) Predicting instrumental mass fractionation (IMF) of stable isotope SIMS analyses by response surface methodology (RSM). J Anal At Spectrom 32:731–748. https://doi.org/10.1039/C6JA00397D

    Article  Google Scholar 

  34. Fàbrega C, Parcerisa D, Gómez-Gras D, Travé A, Thiry M, Franke C, Gurenko A, Solé J (2018) Geochemical data of albitized profiles in Europe [Dataset]. 1 v. Universitat Politècnica de Catalunya. DOI: 10.5821/data-2117-114114-1. URL: https://upcommons.upc.edu/handle/2117/102354

  35. Fallourd S, Poujol M, Boulvais P, Paquette JL, de Saint Blanquat M, Rémy P (2014) In situ LA-ICP-MS U–Pb titanite dating of Na–Ca metasomatism in orogenic belts: The North Pyrenean example. Int J Earth Sci 103:667–682

    Article  Google Scholar 

  36. Fiebig J, Hoefs J (2002) Hydrothermal alteration of biotite and plagioclase as inferred from intragranular oxygen isotope- and cation-distribution patterns. Eur J Mineral 14:49–60. https://doi.org/10.1127/0935-1221/2002/0014-0049

    Article  Google Scholar 

  37. Franke C, Thiry M, Gómez-Gras D, Jelenska M, Kodzialko-Hofmokl M, Lagroix F, Parcerisa D, Spassov S, Szuszkiewicz A, Turniak K (2010) Paleomagnetic age constrains and magneto-mineralogic implications for the Triassic paleosurface in Europe. Geophys Res Abstr 12: EGU2010-7858

  38. Frape SK, Fritz P (1982) The chemistry and isotopic composition of saline groundwaters from the Sudbury Basin, Ontario. Can J Earth Sci 19:645–661. https://doi.org/10.1139/e82-053

    Article  Google Scholar 

  39. Frape SK, Fritz P (1987) Geochemical trends for groundwaters from the Canadian Shield. Saline water and gases in crystalline rocks. Geological Association of Canada, Ottawa, pp 19–38

    Google Scholar 

  40. Frape SK, Fritz P, Blackmer AJ (1984) Saline groundwater discharges from crystalline rocks near Thunder Bay. In: Ontario, Canada: International Symposium on Hydrochemical Balances of Freshwater Systems, Upsala, Sweden. pp 369–379

  41. Galán-Abellán AB, Martínez-Frías J (2018) Environmental conditions of E Iberia’s Early Triassic: an Earth example for understanding the habitability of ancient Mars. Episodes 41:33–50. https://doi.org/10.18814/epiugs/2018/v41i1/018004

    Article  Google Scholar 

  42. Galán-Abellán B, López-Gómez J, Barrenechea JF, Marzo M, de la Horra R, Arche A (2013) The beginning of the Buntsandstein cycle (Early–Middle Triassic) in the Catalan Ranges, NE Spain: sedimentary and palaeogeographic implications. Sediment Geol 296:86–102. https://doi.org/10.1016/j.sedgeo.2013.08.006

    Article  Google Scholar 

  43. Gómez-Gras D (1993) El Permotría de la cordillera costero catalana: facies y petrología sedimentaria (Parte I). Bol Geol Min Esp 104:115–161

    Google Scholar 

  44. Gómez-Gras D, Roigé M, Fondevilla V, Oms O, Boya S, Remacha E (2016) Provenance constraints on the Tremp Formation paleogeography (southern Pyrenees): Ebro Massif vs Pyrenees sources. Cretac Res 57:414–427. https://doi.org/10.1016/j.cretres.2015.09.010

    Article  Google Scholar 

  45. Hall MM, Veeraraghavan VG, Rubin H, Winchell PG (1977) The approximation of symmetric X-ray peaks by Pearson type VII distributions. J Appl Crystallogr 10:66–68. https://doi.org/10.1107/S0021889877012849

    Article  Google Scholar 

  46. Hamilton M, Elmore D, Weaver B, Dulin S, Suneson NH (2014) Petrology and paleomagnetism of the Long Mountain Granite, Wichita Mountains, Oklahoma. Igneous Rocks South Okla Aulacogen: Okla Geol Surv Guideb 38:319–326

    Google Scholar 

  47. Hamilton EM, Elmore RD, Weaver BL, Dulin S, Jackson J (2016) Paleomagnetic and petrologic study of the age, origin, and significance of early and late Paleozoic events in the Long Mountain Granite, Wichita Mountains, Oklahoma. GSA Bull 128:187–202

    Google Scholar 

  48. Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: The role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contrib Miner Petrol. https://doi.org/10.1007/s00410-010-0599-7

    Article  Google Scholar 

  49. Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flögel S, Söding E (2006) Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Palaeogeogr Palaeoclimatol Palaeoecol 240:3–46

    Article  Google Scholar 

  50. Jamtveit B, Putnis CV, Malthe-Sørenssen A (2009) Reaction induced fracturing during replacement processes. Contrib Miner Petrol 157:127–133. https://doi.org/10.1007/s00410-008-0324-y

    Article  Google Scholar 

  51. Joachimski MM, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y (2012) Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195–198. https://doi.org/10.1130/G32707.1

    Article  Google Scholar 

  52. Julivert M, Durán H (1990) Paleozoic stratigraphy of the Central and Northern part of the Catalonian Coastal Ranges (NE Spain). Acta Geol Hisp 25:3–12

    Google Scholar 

  53. Kastner M, Siever R (1979) Low temperature feldspars in sedimentary rocks. Am J Sci 279:435–479

    Article  Google Scholar 

  54. Kloppmann W, Girard J-P, Négrel P (2002) Exotic stable isotope compositions of saline waters and brines from the crystalline basement. Chem Geol 184:49–70. https://doi.org/10.1016/S0009-2541(01)00352-7

    Article  Google Scholar 

  55. Lee MR, Parsons I (1997) Dislocation formation and albitization in alkali feldspars from the Shap granite. Am Miner. https://doi.org/10.2138/am-1997-5-616

    Article  Google Scholar 

  56. Linol B, Bercovici A, Bourquin S, Diez JB, López-Gómez J, Broutin J, Durand M, Villanueva-Amadoz U (2009) Late Permian to Middle Triassic correlations and palaeogeographical reconstructions in south-western European basins: new sedimentological data from Minorca (Balearic Islands, Spain). Sediment Geol 220:77–94. https://doi.org/10.1016/j.sedgeo.2009.06.003

    Article  Google Scholar 

  57. López-Gómez J, Arche A, Marzo M, Durand M (2005) Stratigraphical and palaeogeographical significance of the continental sedimentary transition across the Permian–Triassic boundary in Spain. Palaeogeogr Palaeoclimatol Palaeoecol 229:3–23

    Article  Google Scholar 

  58. Ludwig KR (2003) User’s Manual for Isoplot 3.00—a geochronological toolkit for microsoft excel. Berkeley Geochronol Cent Spec Publ 4:25–32

    Google Scholar 

  59. Magri F, Bayer U, Pekdeger A, Otto R, Thomsen C, Maiwald U (2009) Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig-Holstein area (North German Basin). Tectonophysics 470:183–194. https://doi.org/10.1016/j.tecto.2008.04.019

    Article  Google Scholar 

  60. Mark DF, Kelley SP, Lee MR, Parnell J, Sherlock SC, Brown DJ (2008) Ar–Ar dating of authigenic K-feldspar: quantitative modelling of radiogenic argon-loss through subgrain boundary networks. Geochim Cosmochim Acta 72:2695–2710. https://doi.org/10.1016/j.gca.2008.03.018

    Article  Google Scholar 

  61. Martínez FJ, Reche J, Iriondo A (2008) U-Pb Shrimp-RG zircon ages of Variscan igneous rocks from the Guilleries massif (NE Iberia pre-Mesozoic basement). Geological implications. Comptes Rendus Geosci 340:223–232. https://doi.org/10.1016/j.crte.2007.12.006

    Article  Google Scholar 

  62. Morad S, Bergan M, Knarud R, Nystuen JP (1990) Albitization of detrital plagioclase in Triassic reservoir sandstones from the Snorre Field, Norwegian North Sea. J Sediment Petrol 60:411–425

    Google Scholar 

  63. Morad S, El-Ghali MAK, Caja MA, Sirat M, Al-Ramadan K, Mansurbeg H (2010) Hydrothermal alteration of plagioclase in granitic rocks from Proterozoic basement of SE Sweden. Geol J 45:105–116

    Article  Google Scholar 

  64. Nkotagu H (1996) Application of environmental isotopes to groundwater recharge studies in a semi-arid fractured crystalline basement area of Dodoma, Tanzania. J Afr Earth Sci 22:443–457. https://doi.org/10.1016/0899-5362(96)00022-X

    Article  Google Scholar 

  65. Oms O, Dinarès-Turell J, Vicens E, Estrada R, Vila B, Galobart A, Bravo AM (2007) Integrated stratigraphy from the Vallcebre Basin (southeastern Pyrenees, Spain): new insights on the continental Cretaceous–Tertiary transition in southwest Europe. Palaeogeogr Palaeoclimatol Palaeoecol 255:35–47. https://doi.org/10.1016/j.palaeo.2007.02.039

    Article  Google Scholar 

  66. Parcerisa D, Casas L, Franke C, Gómez-Gras D, Lacasa G, Núñez JA, Thiry M (2010a) Geomorphological stability of Permo-Triassic albitized profiles—case study of the Montseny-Guilleries High (NE Iberia). Geophys Res Abstr 12: EGU2010-15607

  67. Parcerisa D, Thiry M, Schmitt JM (2010b) Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France). Int J Earth Sci 99:527–544. https://doi.org/10.1007/s00531-008-0405-1

    Article  Google Scholar 

  68. Parcerisa D, Franke C, Fàbrega C, Yao K, Thiry M (2013), Implications from paleomagnetic age constrains and petrology analyses on the reconstruction of the Triassic paleosurface in Europe—examples from Catalonia and the Polish Sudetes, Abstract GP12A-02 presented at 2013 Fall Meeting, AGU, San Francisco, CA, USA, 9–13 Dec

  69. Parcerisa D, Fàbrega C, Gurenko A, Franke C (2016) Geostandards of the Valentí Masachs Geology Museum [Dataset] 1 v. Universitat Politècnica de Catalunya. DOI: 10.5821/data-2117-103444-1. URL: https://upcommons.upc.edu/handle/2117/103444

  70. Parrish RR (1990) U–Pb dating of monazite and its application to geological problems. Can J Earth Sci. https://doi.org/10.1139/e90-152

    Article  Google Scholar 

  71. Parsons I, Lee MR (2009) Mutual replacement reactions in alkali feldspars I: microtextures and mechanisms. Contrib Miner Petrol 157:641–661. https://doi.org/10.1007/s00410-008-0355-4

    Article  Google Scholar 

  72. Parsons I, Magee CW, Allen CM, Shelley JMG, Lee MR (2009) Mutual replacement reactions in alkali feldspars II: trace element partitioning and geothermometry. Contrib Miner Petrol 157:663–687

    Article  Google Scholar 

  73. Perez R, Boles JR (2005) An empirically derived kinetic model for albitization of detrital plagioclase. Am J Sci 305:312–343

    Article  Google Scholar 

  74. Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123–146

    Article  Google Scholar 

  75. Petersson J, Stephens MB, Mattsson H, Möller C (2012) Albitization and quartz dissolution in Paleoproterozoic metagranite, central Sweden—implications for the disposal of spent nuclear fuel in a deep geological repository. Lithos 148:10–26. https://doi.org/10.1016/j.lithos.2012.06.001

    Article  Google Scholar 

  76. Petersson J, Fallick AE, Broman C, Eliasson T (2014) Imprints of multiple fluid regimes on episyenites in the Bohus granite, Sweden. Lithos 196–197:99–114

    Article  Google Scholar 

  77. Plümper O, Putnis A (2009) The complex hydrothermal history of granitic rocks: multiple feldspar replacement reactions under subsolidus conditions. J Petrol 50:967–987. https://doi.org/10.1093/petrology/egp028

    Article  Google Scholar 

  78. Poujol M, Boulvais P, Kosler J (2010) Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U–Th–Pb dating of monazite, titanite and zircon. J Geol Soc Lond 167:751–767. https://doi.org/10.1144/0016-76492009-144

    Article  Google Scholar 

  79. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Miner Mag 66:689–708

    Article  Google Scholar 

  80. Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124. https://doi.org/10.2138/rmg.2009.70.3

    Article  Google Scholar 

  81. Putnis A, Hinrichs R, Putnis CV, Golla-Schindler U, Collins LG (2007) Hematite in porous red-clouded feldspars: evidence of large-scale crustal fluid-rock interaction. Lithos 95:10–18

    Article  Google Scholar 

  82. Ramseyer K, Boles JR, Lichtner PC (1992) Mechanism of plagioclase albitization. J Sediment Petrol 62:349–456

    Google Scholar 

  83. Retallack GJ (1999) Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol Soc Am Bull 111:52–70

    Article  Google Scholar 

  84. Ricordel C, Parcerisa D, Thiry M, Moreau MG, Gómez-Gras D (2007) Triassic magnetic overprints related to albitization in granites from the Morvan massif (France). Palaeogeogr Palaeoclimatol Palaeoecol 251:268–282. https://doi.org/10.1016/j.palaeo.2007.04.001

    Article  Google Scholar 

  85. Roberts MP, Pin C, Clemens JD, Paquette JL (2000) Petrogenesis of mafic to felsic plutonic rock associations: the calc-alkaline querigut complex, French Pyrenees. J Petrol 41:809–844. https://doi.org/10.1093/petrology/41.6.809

    Article  Google Scholar 

  86. Rogers DB, Dreiss SJ (1995) Saline groundwater in Mono Basin, California: 1. Distribution. Water Resour Res 31:3131–3150. https://doi.org/10.1029/95WR02108

    Article  Google Scholar 

  87. Röhling HG (1991) A lithostratigraphic subdivision of the Lower Triassic in the Northwest German Lowlands and the German sector of the North Sea, based on gamma-ray and sonic logs. Geol Jb A119:3–24

    Google Scholar 

  88. Røyne A, Jamtveit B, Mathiesen J, Malthe-Sørenssen A (2008) Controls on rock weathering rates by reaction-induced hierarchical fracturing. Earth Planet Sci Lett 275:364–369. https://doi.org/10.1016/j.epsl.2008.08.035

    Article  Google Scholar 

  89. Ruffell A, Hounslow M (2006) Triassic: seasonal rivers, dusty deserts and saline lakes. In: Rawson PF, Brenchley P (eds) The Geology of England and Wales. Geological Society of London, London, pp 295–325

    Google Scholar 

  90. Rusk BG (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Am Miner 91:1300–1312. https://doi.org/10.2138/am.2006.1984

    Article  Google Scholar 

  91. Rusk B, Reed M (2002) Scanning electron microscope–cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30:727. https://doi.org/10.1130/0091-7613(2002)030%3c0727:SEMCAO%3e2.0.CO;2

    Article  Google Scholar 

  92. Saha D, Dwivedi SN, Roy GK, Reddy DV (2013) Isotope-based investigation on the groundwater flow and recharge mechanism in a hard-rock aquifer system: the case of Ranchi urban area, India. Hydrogeol J 21:1101–1115. https://doi.org/10.1007/s10040-013-0974-3

    Article  Google Scholar 

  93. Saigal GC, Morad S, Bjørlykke K, Egeberg PK, Aagaard P (1988) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway, I. Textures and origin. J Sediment Petrol 58:1003–1013

    Google Scholar 

  94. Saighi O, Michelot JL, Filly A (2001) Isotopic characteristics of meteoric water and groundwater in Ahaggar Massif (central Sahara). In: IAEA (eds) Isotope tehcniques in water resource investigations in arid and semi-arid regions. IAEA, Vienna, pp 7–25

    Google Scholar 

  95. Schmitt JM (1986) Albitisation triasique, hydrothermalisme jurassique et altération supergène récente: métallogénie des gisements uranifères du Rouergue. Louis Pasteur University

  96. Schmitt JM (1992) Triassic albitization in southern France: an unusual mineralogical record from a major continental paleosurface. In: Schmitt JM, Gall Q (eds) Mineralogical and geochemical records of paleoweathering. ENSMP, Mémories des Sciences de la Terre, Paris, pp 115–131

    Google Scholar 

  97. Schmitt JM, Baubron JC, Bonhomme MG (1984) Pétrographie et datations K–Ar des transformations minérales affectant le gîte uranifère de Bertholène (Aveyron-France). Miner Depos 19:123–131

    Article  Google Scholar 

  98. Scotese CR, Schettino A (2017) Late Permian–Early Jurassic Paleogeography of Western Tethys and the World. In: Soto J, Flinch J, Tari G (eds) Permo–Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, New York, pp 57–95

    Google Scholar 

  99. Simmons CT, Fenstemaker TR, Sharp JM (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52:245–275. https://doi.org/10.1016/S0169-7722(01)00160-7

    Article  Google Scholar 

  100. Simon-Coinçon R (1999) Palaeolandscape reconstruction of the south-western Massif Central (France). Palaeoweather Palaeosurf Relat Cont Depos 27:225–243

    Google Scholar 

  101. Solé J (2009) Determination of K–Ar ages in milligram samples using an infrared laser for argon extraction. Rapid Commun Mass Spectrom 23:3579–3590. https://doi.org/10.1002/rcm.4280

    Article  Google Scholar 

  102. Solé de Porta N, Calvet F, Torrentó L (1987) Análisis Palinológico del Triásico de los Catalánides (NE España). Cuad Geol Ibérica 11:237–254

    Google Scholar 

  103. Solé J, Enrique P (2001) X-ray fluorescence analysis for the determination of potassium in small quantities of silicate minerals for K–Ar dating. Anal Chim Acta. https://doi.org/10.1016/s0003-2670(01)01060-1

    Article  Google Scholar 

  104. Solé J, Cosca M, Sharp Z, Enrique P (2002) 40Ar/39Ar geochronology and stable isotope geochemistry of Late-Hercynian intrusions from north-eastern Iberia with implications for argon loss in K-feldspar. Int J Earth Sci 91:865–881

    Article  Google Scholar 

  105. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362. https://doi.org/10.1016/0012-821X(77)90060-7

    Article  Google Scholar 

  106. Stober I, Bucher K (1999a) Origin of salinity of deep groundwater in crystalline rocks. Terra Nova 11:181–185. https://doi.org/10.1046/j.1365-3121.1999.00241.x

    Article  Google Scholar 

  107. Stober I, Bucher K (1999b) Deep groundwater in the crystalline basement of the Black Forest region. Appl Geochem 14:237–254. https://doi.org/10.1016/S0883-2927(98)00045-6

    Article  Google Scholar 

  108. Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the early triassic greenhouse. Science 338:366–370. https://doi.org/10.1126/science.1224126

    Article  Google Scholar 

  109. Suzuki K, Adachi M (1994) Middle Precambrian detrital monazite and zircon from the hida gneiss on Oki-Dogo Island, Japan: their origin and implications for the correlation of basement gneiss of Southwest Japan and Korea. Tectonophysics 235:277–292. https://doi.org/10.1016/0040-1951(94)90198-8

    Article  Google Scholar 

  110. Suzuki K, Adachi M, Tanaka T (1991) Middle precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th–U-total Pb evidence from an electron microprobe monazite study. Sediment Geol 75:141–147. https://doi.org/10.1016/0037-0738(91)90055-I

    Article  Google Scholar 

  111. Suzuki K, Adachi M, Kajizuka I (1994) Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth Planet Sci Lett 128:391–405. https://doi.org/10.1016/0012-821X(94)90158-9

    Article  Google Scholar 

  112. Taylor HP (1977) Water/rock interactions and the origin of H2O in granitic batholiths: Thirtieth William Smith lecture. J Geol Soc Lond 133:509–558. https://doi.org/10.1144/gsjgs.133.6.0509

    Article  Google Scholar 

  113. Thiry M, Schmitt JM, Simon-Coinçon R (1999) Problems, progress and future research concerning palaeoweathering and palaeosurfaces. In: Thiry M, Simon-Coinçon R (eds) Palaeoweathering, Palaeosurfaces and Related Continental Deposits. Blackwell Science, Oxford, pp 3–17 (Special Publications of the International Association of Sedimentologists)

    Google Scholar 

  114. Thiry M, Théveniaut H, Simon-Coinçon R, Prognon C, Lenoir F, Lagroix F (2014) Persistent paléosurfaces in the basement of French Massif Central: geodynamic implications. Diagénèse: avancées récentes et perspectives. Association des Sédimentologistes Français, Orsay, pp 113–117

    Google Scholar 

  115. Trusheim F (1961) Über Diskordanzen im mitlleren Buntsandstein Norddeutschlands zwischen Weser und Ems. Erdöl Z 77:361–367

    Google Scholar 

  116. Vilà M, Pin C, Enrique P, Liesa M (2005) Telescoping of three distinct magmatic suites in an orogenic setting: generation of Hercynian igneous rocks of the Albera Massif (Eastern Pyrenees). Lithos 83:97–127. https://doi.org/10.1016/j.lithos.2005.01.002

    Article  Google Scholar 

  117. Williams ML, Jercinovic MJ, Goncalves P, Mahan K (2006) Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chem Geol 225:1–15. https://doi.org/10.1016/j.mce.2005.09.009

    Article  Google Scholar 

  118. Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol. https://doi.org/10.1016/j.chemgeo.2011.01.019

    Article  Google Scholar 

  119. Witkowski FW, Blundell DJ, Gutteridge P, Horbury AD, Oxtoby NH, Qing H (2000) Video cathodoluminescence microscopy of diagenetic cements and its applications. Mar Pet Geol 17:1085–1093. https://doi.org/10.1016/S0264-8172(00)00055-6

    Article  Google Scholar 

  120. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128. https://doi.org/10.1107/S0021889810030499

    Article  Google Scholar 

  121. Wolburg J (1968) Vom zyklischen Aufbau des Buntsandsteins. Neues Jahrb Geol Paläontol Monatsh 9:535–559

    Google Scholar 

  122. Wooding RA, Tyler SW, White I (1997) Convection in groundwater below an evaporating Salt Lake: 1. Onset of instability. Water Resour Res 33:1199–1217. https://doi.org/10.1029/96WR03533

    Article  Google Scholar 

  123. Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspars. Contrib Miner Petrol 104:507–515. https://doi.org/10.1007/BF00306660

    Article  Google Scholar 

  124. Yao KFE (2013) Albitization and oxidation of the granitoïd rocks related to the Triassic paleosurface in the Sudetes (SW Poland). École Nationale Supérieure des mines de Paris, Paris

    Google Scholar 

  125. Yao KFE, Franke C, Thiry M, Paweł A, Szuszkiewicz A, Turniak K (2011) Albitization as record of the Triassic Paleosurface in the Sudetic Crystalline basement (Poland). Geophys Res Abstr 13: EGU2011-5930

  126. Yerle JJ, Thiry M (1979) Albitisations et minéralisations uraniféres dans le socle et les sédiments permo-houillers du bassin de Brousse-Broquiés (Aveyron, France). Bull BRGM Ser 2(4):275–290

    Google Scholar 

  127. Zheng Y-F (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091. https://doi.org/10.1016/0016-7037(93)90042-U

    Article  Google Scholar 

  128. Zheng Y-F, Hoefs J (1993) Carbon and oxygen isotopic covariations in hydrothermal calcites. Miner Depos. https://doi.org/10.1007/bf00196332

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous reviewer and Douglas Elmore from University of Oklahoma, whose comments helped considerably to improve the focus of the paper. The authors are also indebted to Tony Milnes from University of Adelaide for his revision and helpful comments, and for language edition, that strengthened the manuscript. In addition, thanks to the technical staff of the Laboratorio General de Isotopos Estables of the Universidad de Salamanca (Spain) for the oxygen isotope CO2-fluorination analyses and their useful technical comments. We wish to thank Dr. Xavier Llobet of the CCiTUB of the Universitat de Barcelona (Spain) for his technical support in the EPMA analyses of silicates and the U–Th–Pbtotal monazite dating. Dr. Pura Alfonso, Escola Politècnica Superior d’Enginyeria de Manresa (Spain), for her support in analysing EPMA data. Abigail Jiménez, from the Escola Politècnica Superior d’Enginyeria de Manresa (Spain), for the preparation of the epoxi mounts for EPMA monazite analyses. Dr. Marc Poujol, from Geosciences Rennes, Université de Rennes 1, for the ICP-MS U/Pb and Th/Pb dating of our monazite internal standard and for sharing with us his knowledge about monazite dating. Dr. Carles Canet and Rufino Lozano, Universidad Nacional Autónoma de México (México) for the LFRX analyses and their kind support. This research was performed within the framework of DIHIME (CGL2015-66355-C2-1-R) and FEIBOB projects (PGC2018-093903-B-C22) of DGICYT, Ministerio de Economia y Competitividad, Gobierno de España and Grup Consolidat de Recerca “Geologia Sedimentària” (2017-SGR-824) and Grup de Recerca en Mineria Sostenible (2017-SGR-198) supported by the Comissionat per a Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Parcerisa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fàbrega, C., Parcerisa, D., Thiry, M. et al. Permian–Triassic red-stained albitized profiles in the granitic basement of NE Spain: evidence for deep alteration related to the Triassic palaeosurface. Int J Earth Sci (Geol Rundsch) 108, 2325–2347 (2019). https://doi.org/10.1007/s00531-019-01764-0

Download citation

Keywords

  • Red stained
  • Albitization
  • Alteration
  • Permian–Triassic
  • Palaeosurface
  • Isotope
  • Dating