Rock magnetic signature of a Miocene playa cycle in Central Asia and environmental implications

Abstract

The increased aridification of Central Asia during the Miocene coincides in time with lake formations and the evolution of playa environments in the region. However, Miocene continental climate dynamics and the forcing of aridification are still not well constrained. Neogene lacustrine mudflat deposits in the Ili Basin in southeast Kazakhstan provide a well-exposed paleoclimate archive. Here, we present a detailed rock magnetic study of a middle Miocene playa cycle deposited in a closed basin. We use high-resolution rock magnetic parameters, lithological studies and geochemistry to reconstruct the playa environment and the depositional conditions. The rock magnetic mineralogy of the playa cycle is controlled by hematite and two fine-grained magnetite phases. Increased magnetic concentrations occur during dry mudflat conditions, with a lower groundwater table and increased aridity. The underlying processes controlling the observed variation in magnetic concentrations are a complex interplay of diagenetic processes during and after deposition. The data support an authigenic origin of both magnetite phases, one formed before and the other after sediment consolidation. Early diagenetic formation of fine-grained magnetite by microbial activity is followed by post-depositional formation of a secondary fine-grained magnetite phase. The rock magnetic results such as magnetic concentration-dependent parameters, ARM/SIRM and s-ratio indicate a sensitive record of (ground) water availability and aridity changes in the Ili Basin. We suggest that they can serve as an effective proxy for detailed paleo-environment reconstruction of playa evolution, not only in the middle Miocene Ili Basin but also in comparable floodplain/playa lake settings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdul Aziz H, Hilgen F, Krijgsman W, Sanz E, Calvo JP (2000) Astronomical forcing of sedimentary cycles in the middle to late Miocene continental Calatayud Basin (NE Spain). Earth Planet Sci Lett 177(1–2):9–22. https://doi.org/10.1016/S0012-821X(00)00035-2

    Article  Google Scholar 

  2. Ahmed I, Maher BA (2018) Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proc Natl Acad Sci USA 115(8):1736–1741. https://doi.org/10.1073/pnas.1719186115

    Article  Google Scholar 

  3. Amante C, Eakins BW (2009) ETOPO1 1 arc‐minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum Nesdis NGDC‐24, Nat Geophys Data Center, NOAA, Boulder. https://doi.org/10.7289/v5c8276m

  4. Appel E (1987) Stress anisotropy in Ti-rich titanomagnetites. Phys Earth Planet Inter 46(1–3):233–240. https://doi.org/10.1016/0031-9201(87)90185-3

    Article  Google Scholar 

  5. Appel E, Soffel HC (1985) Domain state of Ti-rich titanomagnetites deduced from domain structure observations and susceptibility measurements. J Geophys 56:121–132

    Google Scholar 

  6. Arenas C, Alonso Zarza AM, Pardo G (1999) Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain). Sed Geol 125:23–45. https://doi.org/10.1016/S0037-0738(98)00146-8

    Article  Google Scholar 

  7. Bazhanov VS, Kostenko NN (1961) Geologicheskiy razrez Dzhungarskogo Alatau i ego paleozoologicheskoye obosnovanie [Geological section of Dzhungarian Alatau and its paleontological basis]. In: Galuzo IG (ed) Materialy po Istorii Fauny i Flory Kazakhstana. Akademia Nauk Kazakhskoy SSR, Alma Ata, pp 47–52

    Google Scholar 

  8. Beske-Diehl SJ, Soroka WL (1984) Magnetic properties of variably oxidized pillow basalt. Geophys Res Lett 11:225–228. https://doi.org/10.1029/GL011i003p00217

    Article  Google Scholar 

  9. Bloemendal J, King J, Hall FR, Doh S-J (1992) Rock magnetism of late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology. J Geophys Res 97:4361–4375. https://doi.org/10.1029/91JB03068

    Article  Google Scholar 

  10. Bowler JM, Teller JT (1986) Quaternary evaporites and hydrological changes, Lake Tyrrell, North–West Victoria. Aust J Earth Sci 33:43–63. https://doi.org/10.1080/08120098608729349

    Article  Google Scholar 

  11. Bowles J, Jackson M, Chen A, Solheid P (2009) Interpretation of low-temperature data, part 1: superparamagnetism and paramagnetism. IRM Quart 19:7–11

    Google Scholar 

  12. Briere PR (2000) Playa, playa lake, sabkha: proposed definitions for old terms. J Arid Environ 45:1–7. https://doi.org/10.1006/jare.2000.0633

    Article  Google Scholar 

  13. Canfield DE, Berner RA (1987) Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim Cosmochim Acta 51:645–659. https://doi.org/10.1016/0016-7037(87)90076-7

    Article  Google Scholar 

  14. Caves JK, Winnick MJ, Graham SA, Sjostrom DJ, Mulch A, Chamberlain CP (2015) Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet Sci Lett 428:33–43. https://doi.org/10.1016/j.epsl.2015.07.023

    Article  Google Scholar 

  15. Chang L, Winklhofer M, Roberts AP, Heslop D, Florindo F, Dekkers MJ, Krijgsman W, Kodama K, Yamamoto Y (2013) Low-temperature magnetic properties of pelagic carbonates: oxidation of biogenic magnetite and identification of magnetosome chains. J Geophys Res 118:6049–6065. https://doi.org/10.1002/2013JB010381

    Article  Google Scholar 

  16. Channell JET, Hodell DA, Margari V, Skinner LC, Tzedakis PC, Kesler MS (2013) Biogenic magnetite, detrital hematite, and relative paleointensity in quaternary sediments from the southwest Iberian margin. Earth Planet Sci Lett 376:99–109. https://doi.org/10.1016/j.epsl.2013.06.026

    Article  Google Scholar 

  17. Crusius J, Calvert S, Pedersen T, Sage D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet Sci Lett 145:65–78. https://doi.org/10.1016/S0012-821X(96)00204-X

    Article  Google Scholar 

  18. Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth Sci Rev 159:160–185. https://doi.org/10.1016/j.earscirev.2016.05.010

    Article  Google Scholar 

  19. Dean WE, Gardner JV, Piper DZ (1997) Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochim Cosmochim Acta 61:4507–4518. https://doi.org/10.1016/S0016-7037(97)00237-8

    Article  Google Scholar 

  20. Demory F, Oberhänsli H, Nowaczyk NR, Gottschalk M, Wirth R, Naumann R (2005) Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism. Glob Planet Change 46:145–166. https://doi.org/10.1016/j.gloplacha.2004.11.010

    Article  Google Scholar 

  21. Deng CL, Liu QS, Wang W, Liu CC (2007) Chemical overprint on the natural remanent magnetization of a subtropical red soil sequence in the Bose Basin, southern China. Geophys Res Lett 34:L22308. https://doi.org/10.1029/2007GL031400

    Article  Google Scholar 

  22. Deocampo DM, Cuadros J, Wing-Dudek T, Olives J, Amouric M (2009) Saline lake diagenesis as revealed by coupled mineralogy and geochemistry of multiple ultrafine clay phases: pliocene Olduvai Gorge. Tanzania Am J Sci 309:834–868. https://doi.org/10.2475/09.2009.03

    Article  Google Scholar 

  23. Deotare BC, Kajale MD, Rajaguru SN, Basavaiah N (2004) Late Quaternary geomorphology, palynology and magnetic susceptibility of playas in western margin of the Indian Thar Desert. J Ind Geophys Union 8(1):15–25

    Google Scholar 

  24. Dinarès-Turell J, Hoogakker BAA, Roberts AP, Rohling EJ, Sagnotti L (2003) Quaternary climatic control of biogenic magnetite production and eolian dust input in cores from the Mediterranean sea. Palaeogeogr Palaeoclimatol Palaeoecol 190:195–209. https://doi.org/10.1016/S0031-0182(02)00605-3

    Article  Google Scholar 

  25. Dzhamangaraeva AK (1997) Pliocene charophytes from Aktau Mountain, southeastern Kazakhstan. Geobios 30:475–479. https://doi.org/10.1016/S0016-6995(97)80115-5

    Article  Google Scholar 

  26. Erickson BE, Helz GR (2000) Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim Cosmochim Acta 64(7):1149–1158. https://doi.org/10.1016/S0016-7037(99)00423-8

    Article  Google Scholar 

  27. Eugster HP, Hardie LA (1978) Saline lakes. In: Learman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 237–293. https://doi.org/10.1007/978-1-4757-1152-3_8

    Google Scholar 

  28. Fang XM, Zan JB, Appel E, Lu Y, Song CH, Dai S, Tuo SB (2015) An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys J Int 201(1):78–89. https://doi.org/10.1093/gji/ggv002

    Article  Google Scholar 

  29. Florindo F, Roberts A, Palmer MR (2003) Magnetite dissolution in siliceous sediments. Geochem Geophys Geosyst 4(7):1053. https://doi.org/10.1029/2003GC000516

    Article  Google Scholar 

  30. Frisch K, Voigt S, Voigt T, Hellwig A, Verestek V, Weber Y (2019) Extreme aridity prior to lake expansion deciphered from facies evolution in the Miocene Ili Basin, SE Kazakhstan. Sedimentology 66:1716–1745. https://doi.org/10.1111/sed.12556

    Article  Google Scholar 

  31. Geiss CE, Zanner CW (2006) How abundant is pedogenic magnetite? Abundance and grain size estimates for loessic soils based on rock magnetic analyses. J Geophys Res 111:B12–S21. https://doi.org/10.1029/2006jb004564

    Article  Google Scholar 

  32. Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wei JJ, Yuan BY, Liu TS (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416:159–163. https://doi.org/10.1038/416159a

    Article  Google Scholar 

  33. Hardie LA, Smoot JP, Eugster HP (1978) Saline lakes and their deposits: a sedimentological approach. In: Matter A, Tucker ME (ed) Modern and ancient lake sediments. Int Assoc Sedimentol Spec Publ, Oxford, pp 7–41. https://doi.org/10.1002/9781444303698.ch2

  34. Hellwig A, Voigt S, Mulch A, Frisch K, Bartenstein A, Pross J, Gerdes A, Voigt T (2018) Late Oligocene to early Miocene humidity change recorded in terrestrial sequences in the Ili Basin (south–eastern Kazakhstan, Central Asia. Sedimentology 65:517–539. https://doi.org/10.1111/sed.12390

    Article  Google Scholar 

  35. Herb C, Koutsodendris A, Zhang W, Appel E, Fang X, Voigt S, Pross J (2015) Late Plio–Pleistocene humidity fluctuations in the western Qaidam Basin (NE Tibetan Plateau) revealed by an integrated magnetic-palynological record from lacustrine sediments. Quart Res 84:457–466. https://doi.org/10.1016/j.yqres.2015.09.009

    Article  Google Scholar 

  36. Housden J, O’Reilly W (1990) On the intensity and stability of the natural remanent magnetization of ocean floor basalts. Phys Earth Planet Inter 64:261–278. https://doi.org/10.1016/0031-9201(90)90042-V

    Article  Google Scholar 

  37. Hu S, Deng C, Appel E, Verosub KL (2002) Environmental magnetic studies of lacustrine sediments. Chin Sci Bull 47(7):613–616. https://doi.org/10.1360/02tb9141

    Article  Google Scholar 

  38. Hu S, Goddu S, Herb C, Appel E, Gleixner G, Wang S, Yang X, Zhu X (2015) Climate variability and its magnetic response recorded in a lacustrine sequence in Heqing basin at the SE Tibetan Plateau since 900 ka. Geophys J Int 201:444–458. https://doi.org/10.1093/gji/ggv033

    Article  Google Scholar 

  39. Huerta P, Armenteros I, Recio C, Blanco JA (2010) Palaeogroundwater evolution in playa–lake environments: sedimentary facies and stable isotope record (Palaeogene, Almazán Basin, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 286:135–148. https://doi.org/10.1016/j.palaeo.2009.12.008

    Article  Google Scholar 

  40. Huggett JM (2005) Low-temperature illitization of smectite in the late Eocene and early Oligocene of the Isle of Wight (Hampshire Basin), UK. Am Mineral 90:1192–1202. https://doi.org/10.2138/am.2005.1674

    Article  Google Scholar 

  41. Jelinek V (1981) Characterization of the magnetic fabrics of rocks. Tectonophysics 79:63–67. https://doi.org/10.1016/0040-1951(81)90110-4

    Article  Google Scholar 

  42. Karlin R, Levi S (1985) Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. J Geophys Res 90:10373–10392. https://doi.org/10.1029/JB090iB12p10373

    Article  Google Scholar 

  43. Katz B, Elmore RD, Engel MH (1998) Authigenesis of magnetite in organic-rich sediment next to a dike: implications for thermoviscous and chemical remagnetizations. Earth Planet Sci Lett 163:221–234. https://doi.org/10.1016/S0012-821X(98)00189-7

    Article  Google Scholar 

  44. Katz B, Elmore RD, Cogoini M, Engel MH, Ferry S (2000) Associations between burial diagenesis of smectite, chemical remagnetization, and magnetite authigenesis in the Vocontian trough, SE France. J Geophys Res 105:851–868. https://doi.org/10.1029/1999JB900309

    Article  Google Scholar 

  45. Kordikova EG, Mavrin AV (1996) Stratigraphy and Oligocene–Miocene mammalian biochronology of the Aktau Mountains, Dzhungarian Alatau range, Kazakhstan. Palaeovertebrata 25:141–174

    Google Scholar 

  46. Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE, Rytsk E (2014) Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res 25:103–125. https://doi.org/10.1016/j.gr.2012.12.023

    Article  Google Scholar 

  47. Kruiver PP, Krijgsman W, Langereis CG, Dekkers MJ (2002) Cyclostratigraphy and rock-magnetic investigation of the NRM signal in late Miocene palustrine-alluvial deposits of the Librilla section (SE Spain). J Geophys Res 107(B12):2334. https://doi.org/10.1029/2001JB000945

    Article  Google Scholar 

  48. Larson ED, Walker TR (1975) Development of chemical remanent magnetization during early stages of red-bed formation in late Cenozoic sediments, Baja, California. Geol Soc Am Bull 86:639–650. https://doi.org/10.1130/0016-7606(1975)86%3c639:DOCRMD%3e2.0.CO;2

    Article  Google Scholar 

  49. Li Y-X, Yu ZC, Kodama KP (2006a) Sensitive moisture response to Holocene millennial-scale climate variations in the Mid-Atlantic region, USA. Holocene 17(1):3–8. https://doi.org/10.1177/0959683606069386

    Article  Google Scholar 

  50. Li Y-X, Yu ZC, Kodama KP, Moeller RE (2006b) A 14,000-year environmental change history revealed by mineral magnetic data from White lake, New Jersey, USA. Earth Planet Sci Lett 2006:27–40. https://doi.org/10.1016/j.epsl.2006.03.052

    Article  Google Scholar 

  51. Liddicoat JC, Opdyke ND, Smith GI (1980) Palaeomagnetic polarity in a 930-m core from Searles Valley, California. Nature 286:22–25. https://doi.org/10.1038/286022a0

    Article  Google Scholar 

  52. Liu J, Zhu R, Roberts AP, Li S, Chang J-H (2004) High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. J Geophys Res 109:B03103. https://doi.org/10.1029/2003JB002813

    Article  Google Scholar 

  53. Lowenstein TK, Hardie LA (1985) Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–644. https://doi.org/10.1111/j.1365-3091.1985.tb00478.x

    Article  Google Scholar 

  54. Lucas SG, Bayshashov BU, Tyutkova LA, Zhamangara AK, Aubekerov BZ (1997) Mammalian biochronology of the Paleogene–Neogene boundary at Aktau Mountain, eastern Kazakhstan. Paläontol Z 71:305–314. https://doi.org/10.1007/BF02988498

    Article  Google Scholar 

  55. Maher BA (1998) Magnetic properties of modern soils and quaternary loessic paleosols: paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 137(1–2):25–54. https://doi.org/10.1016/S0031-0182(97)00103-X

    Article  Google Scholar 

  56. Maher BA, Taylor RM (1988) Formation of ultrafine-grained magnetite in soils. Nature 336:368–370. https://doi.org/10.1038/336368a0

    Article  Google Scholar 

  57. Maher BA, Alekseev AO, Alekseeva T (2003) Magnetic mineralogy of soils across the Russian steppe: climate dependence of pedogenic magnetite formation. Palaeogeogr Palaeoclimatol Palaeoecol 201:321–341. https://doi.org/10.1016/S0031-0182(03)00618-7

    Article  Google Scholar 

  58. Maher K, Bargar JR, Brown GE (2013) Environmental speciation of actinides. Inorg Chem 52(7):3510–3532. https://doi.org/10.1021/ic301686d

    Article  Google Scholar 

  59. Maxbauer DP, Feinberg JM, Fox DL (2016a) Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges. Earth Sci Rev 155:28–48. https://doi.org/10.1016/j.earscirev.2016.01.014

    Article  Google Scholar 

  60. Maxbauer DP, Feinberg JM, Fox DL (2016b) MAX UnMix: a web application for unmixing magnetic coercivity distributions. Comput Geosci 95:140–145. https://doi.org/10.1016/j.cageo.2016.07.009

    Article  Google Scholar 

  61. McCabe C, Elmore RD (1989) The occurrence and origin of late Paleozoic remagnetization in the sedimentary rocks of North America. Rev Geophys 27:471–494. https://doi.org/10.1029/RG027i004p00471

    Article  Google Scholar 

  62. McNeill DF (1990) Biogenic magnetite from surface Holocene carbonate sediments, Great Bahama Bank. J Geophys Res 95:4363–4371. https://doi.org/10.1029/JB095iB04p04363

    Article  Google Scholar 

  63. Miao Y, Herrmann M, Wu F, Yan X, Yang S (2012) What controlled mid-late Miocene long-term aridification in Central Asia? Global cooling or Tibetan Plateau uplift: a review. Earth Sci Rev 112:155–172. https://doi.org/10.1016/j.earscirev.2012.02.003

    Article  Google Scholar 

  64. Miot J, Li J, Benzerara K, Sougrati MT, Ona-Nguema G, Bernard S, Jumas J-C, Guyot F (2014) Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochim Cosmochim Acta 139:327–343. https://doi.org/10.1016/j.gca.2014.04.047

    Article  Google Scholar 

  65. Moreau MG, Ader M, Enkin RJ (2005) The magnetization of clay-rich rocks in sedimentary basins: low-temperature experimental formation of magnetic carriers in natural samples. Earth Planet Sci Lett 230:193–210. https://doi.org/10.1016/j.epsl.2004.11.013

    Article  Google Scholar 

  66. Moskowitz BM, Frankel RB, Bazylinski DA (1993) Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet Sci Lett 120:283–300. https://doi.org/10.1016/0012-821X(93)90245-5

    Article  Google Scholar 

  67. Negrini RM, Erbes DB, Faber K, Herrera A, Roberts AP, Cohen AS, Wigand PE, Foit FF (2000) A paleoclimate record for the past 250,000 years from Summer lake, Oregon, USA: I. Chronology and magnetic proxies for lake level. J Paleolimnol 24:125–149. https://doi.org/10.1023/A:1008144025492

    Article  Google Scholar 

  68. Nichols GJ, Fisher JA (2007) Processes, facies and architecture of fluvial distributary system deposits. Sed Geol 195:75–90. https://doi.org/10.1016/j.sedgeo.2006.07.004

    Article  Google Scholar 

  69. Nigmatova SA, Bayshashov BU, Zhamangara AK, Lucas SG, Bayadilov KO, Kasymkhankyzy A (2018) The new data on biostratigraphy of the basic geological section of the continental Cenozoic deposits of Aktau Mountains (south–east Kazakhstan, Ili Basin). News Acad Sci Rep Kazakhstan Ser Geol Tech Sci 5(431):150–162. https://doi.org/10.32014/2018.2518-170x.21

    Article  Google Scholar 

  70. Orgeira M, Egli R, Compagnucci R (2011) A quantitative model of magnetic enhancement in loessic soils. In: Petrovsky E, Ivers D, Harinarayana T, Herrero-Bervera E (eds) The earth’s magnetic interior. Springer, Heidelerg, pp 361–397. https://doi.org/10.1007/978-94-007-0323-0_25

    Google Scholar 

  71. Peck JA, King JW, Colman SM, Kravchinsky VA (1994) A rock-magnetic record from Lake Baikal, Siberia: evidence for late Quaternary climate change. Earth Planet Sci Lett 122:221–238. https://doi.org/10.1016/0012-821X(94)90062-0

    Article  Google Scholar 

  72. Pluhar CJ, Holt J, Kirschvink J, Adams R (1992) Magnetostratigraphy of the Confidence Hills formation, Southern Death Valley, California. San Bernardino County Mus Assoc Q 39(2):12–19

    Google Scholar 

  73. Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386:788–795. https://doi.org/10.1038/386788a0

    Article  Google Scholar 

  74. Rosen MR (1991) Sedimentologic and geochemical constraints on the evolution of Bristol Dry Lake Basin, California, USA. Palaeogeogr Palaeoclimatol Palaeoecol 84:229–257. https://doi.org/10.1016/0031-0182(91)90046-T

    Article  Google Scholar 

  75. Rosen MR (1994) The importance of groundwater in playas: a review of playa classifications and the sedimentology and hydrology of playas. In: Rosen MR (ed) Paleoclimate and basin evolution of Playa systems, 289th edn. Geological Society of America, Boulder, USA, pp 1–18. https://doi.org/10.1130/spe289-p1

    Google Scholar 

  76. Rosenbaum JG, Reynolds RL (2004) Basis for paleoenvironmental interpretation of magnetic sediment from Upper Klamath lake (Oregon): effects of weathering and mineralogical sorting. J Paleolimnol 31:253–265. https://doi.org/10.1023/B:JOPL.0000019228.46421.f4

    Article  Google Scholar 

  77. Rosenbaum JG, Reynolds RL, Adam DP, Drexler J, Sarna-Wojcicki AM, Whitney GC (1996) Record of middle Pleistocene climate change from Buck lake, Cascade Range, southern Oregon-evidence from sediment magnetism, trace element geochemistry, and pollen. Geol Soc Am Bull 108:1328–1341. https://doi.org/10.1130/0016-7606(1996)108%3c1328:ROMPCC%3e2.3.CO;2

    Article  Google Scholar 

  78. Rowan CJ, Roberts AP (2006) Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet Sci Lett 241:119–137. https://doi.org/10.1016/j.epsl.2005.10.017

    Article  Google Scholar 

  79. Roy PD, Sinha R, Smykatz-Kloss W, Singhvi AK, Nagar YC (2008) Playas of the Thar Desert: mineralogical and geochemical archives of late Holocene climate. Asian J Earth Sci 1:43–61. https://doi.org/10.3923/ajes.2008.43.61

    Article  Google Scholar 

  80. Sagnotti L, Florindo F, Wilson GS, Roberts AP, Verosub KLT (1998) Environmental magnetism of lower Miocene strata from the CRP-1 core, McMurdo sound, Antarctica. Terra Antart 5:661–667

    Google Scholar 

  81. Sandgren P, Risberg J (1990) Magnetic mineralogy of the sediments in Lake Ådran, eastern Sweden, and an interpretation of early Holocene water level changes. Boreas 19:57–68. https://doi.org/10.1111/j.1502-3885.1990.tb00422.x

    Article  Google Scholar 

  82. Schütt B (2000) Holocene paleohydrology of playa lakes in northern and central Spain: a reconstruction based on the mineral composition of lacustrine sediments. Quart Int 73–74:7–27. https://doi.org/10.1016/S1040-6182(00)00062-8

    Article  Google Scholar 

  83. Smith BM (1987) Consequences of the maghemitization on the magnetic properties of submarine basalts: synthesis of previous works and results concerning basement rocks from mainly D.S.D.P. Legs 51 and 52. Phys Earth Planet Inter 46(1–3):206–226. https://doi.org/10.1016/0031-9201(87)90183-x

    Article  Google Scholar 

  84. Snowball IF, Thompson R (1988) The occurrence of Greigite in sediments from Loch Lomond. J Quart Sci 3:121–125. https://doi.org/10.1002/jqs.3390030203

    Article  Google Scholar 

  85. Tang Z, Ding Z, White PD, Dong X, Ji J, Jiang H, Luo P, Wang X (2011) Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth Planet Sci Lett 302:439–447. https://doi.org/10.1016/j.epsl.2010.12.042

    Article  Google Scholar 

  86. Tohver E, Weil AB, Solum JG, Hall CM (2008) Direct dating of carbonate remagnetization by 40Ar/39Ar analysis of the smectite–illite transformation. Earth Planet Sci Lett 274:524–530. https://doi.org/10.1016/j.epsl.2008.08.002

    Article  Google Scholar 

  87. van Velzen AJ, Dekkers MJ (1999) Low-temperature oxidation of magnetite in loess-paleosol sequences: a correction of rock magnetic parameters. Stud Geophys Geod 43:357–375. https://doi.org/10.1023/A:1023278901491

    Article  Google Scholar 

  88. van Velzen AJ, Zijderveld JDA (1995) Effects of weathering on single-domain magnetite in early Pliocene marine marls. Geophys J Int 121:267–278. https://doi.org/10.1111/j.1365-246X.1995.tb03526.x

    Article  Google Scholar 

  89. Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222. https://doi.org/10.1038/377220a0

    Article  Google Scholar 

  90. Verestek V, Appel E, Voigt S, Frisch K (2018) Constrained magnetostratigraphic dating of a continental middle Miocene section in the arid Central Asia. Front Earth Sci 6:49. https://doi.org/10.3389/feart.2018.00049

    Article  Google Scholar 

  91. Voigt S, Weber Y, Frisch K, Bartenstein A, Hellwig A, Petschick R, Bahr A, Pross J, Koutsodendris A, Voigt T, Verestek V, Appel E (2017) Climatically forced moisture supply, sediment flux and pedogenesis in Miocene mudflat deposits of south–east Kazakhstan, Central Asia. Deposit Rec 3:209–232. https://doi.org/10.1002/dep2.34

    Article  Google Scholar 

  92. Warthmann R, Vasconcelos C, Sass H, McKenzie JA (2005) Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation. Extremophiles 9:255–261. https://doi.org/10.1007/s00792-005-0441-8

    Article  Google Scholar 

  93. Watson A (1985) Structure, chemistry and origins of gypsum crusts in southern Tunisia and the central Namib Desert. Sedimentology 32:855–875. https://doi.org/10.1111/j.1365-3091.1985.tb00737.x

    Article  Google Scholar 

  94. Wei Z, Zhong W, Shang S, Ye S, Tang X, Xue J, Ouyang J, Smol SP (2018) Lacustrine mineral magnetic record of postglacial environmental changes from Dahu Swamp, southern China. Global Planet Change 170:62–75. https://doi.org/10.1016/j.gloplacha.2018.08.010

    Article  Google Scholar 

  95. Zhang WL, Appel E, Fang XM, Song CH, Cirpka O (2012) Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications. Quat Res 78:139–148. https://doi.org/10.1016/j.yqres.2012.03.011

    Article  Google Scholar 

  96. Zhou LP, Oldfield F, Wintle AG, Robinson SG, Wang JT (1990) Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346:737–739. https://doi.org/10.1038/346737a0

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the administration and rangers of the State National Park Altyn Emel for providing access to the Aktau Mountains, and gratefully acknowledge Konstantin Kossov and Julia Zhilkina for their support in the field. We thank Christoph Geiss and Jaume Dinarès-Turell for their thoughtful comments that improved this manuscript. This study was financed by the Deutsche Forschungsgemeinschaft (DFG grant AP 34/41-1 and VO 687/16-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Verena Verestek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verestek, V., Appel, E., Frisch, K. et al. Rock magnetic signature of a Miocene playa cycle in Central Asia and environmental implications. Int J Earth Sci (Geol Rundsch) 108, 2271–2290 (2019). https://doi.org/10.1007/s00531-019-01761-3

Download citation

Keywords

  • Rock magnetism
  • Paleoclimate
  • Playa
  • Central Asia