Tectonically assisted exhumation and cooling of Variscan granites in an anatectic complex of the Central Iberian Zone, Portugal: constraints from LA-ICP-MS zircon and apatite U–Pb ages

Abstract

Understanding the exhumation of middle to lower crustal rocks is of utmost importance to unravel intracrustal mass transfer processes during orogenic build-up. The Figueira de Castelo Rodrigo–Lumbrales Anatectic Complex (FCR–LAC) is located within the autochthonous terrane of the Variscan Central Iberian Zone and is an example of the association between S-type granites and migmatites. The anatectic complex contacts to the north and south with low-grade metamorphic units through the Huebra and Juzbado–Penalva do Castelo shear zones, respectively. Integration of new U–Pb zircon and apatite age data allowed us to obtain Variscan crystallization ages, inherited zircon ages and unprecedented cooling rates for different facies of the FCR–LAC granites. The zircon crystallization ages mostly cluster around 313–317 Ma for the syn-tectonic granites, whereas the dated late-tectonic granite provided an age of 300 Ma. The cooling rates range from 13 to 35 °C Ma−1, which implies fast exhumation (0.3–0.84 mm a−1) and shallow emplacement (ca. 8 km deep), compatible with exhumation facilitated by large crustal-scale shear zones. Inherited zircon in the granites reveals melting of Cadomian metasediments (650–550 Ma), Upper Cambrian–Lower Ordovician (495–470 Ma) metaigneous rocks (Ollo de Sapo formation) and of minor older components, suggesting protolith affinity with the Northern Domain of the Central Iberian Zone.

This is a preview of subscription content, access via your institution.

Fig. 1

(modified from Silva and Ribeiro 2000)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aleinikoff JN, Schenck WS, Plank MO et al (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U–Pb geochronology of zircon and monazite. Bull Geol Soc Am 118:39–64. https://doi.org/10.1130/B25659.1

    Article  Google Scholar 

  2. Alves Ribeiro J, Monteiro-Santos FA, Pereira MF et al (2017) Magnetotelluric imaging of the lithosphere across the Variscan Orogen (Iberian autochthonous domain, NW Iberia). Tectonics 36:3065–3080. https://doi.org/10.1002/2017TC004593

    Article  Google Scholar 

  3. Annen C, Scaillet B, Sparks RSJ (2006) Thermal constraints on the emplacement rate of a large intrusive complex: the Manaslu Leucogranite, Nepal Himalaya. J Petrol 47:71–95

    Article  Google Scholar 

  4. Arenas R, Sánchez Martínez S, Díez Fernández R et al (2016) Allochthonous terranes involved in the Variscan suture of NW Iberia: a review of their origin and tectonothermal evolution. Earth Sci Rev 161:140–178. https://doi.org/10.1016/J.EARSCIREV.2016.08.010

    Article  Google Scholar 

  5. Ashwal LD, Tucker RD, Zinner EK (1999) Slow cooling of deep crustal granulites and Pb-loss in zircon. Geochim Cosmochim Acta 63:2839–2851. https://doi.org/10.1016/S0016-7037(99)00166-0

    Article  Google Scholar 

  6. Azevedo MR, Valle Aguado B (2013) Origem e instalação de Granitóides Variscos na Zona Centro-Ibérica. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol 1. Geologia Pré-mesozóica de Portugal. Escolar Editora, Lisbon, pp 377–401

    Google Scholar 

  7. Baksi AK (1994) Geochronological studies on whole-rock basalts, Deccan Traps, India: evaluation of the timing of volcanism relative to the KT boundary. Earth Planet Sci Lett 121:43–56. https://doi.org/10.1016/0012-821X(94)90030-2

    Article  Google Scholar 

  8. Barbarin B (1988) Use of zircon typology for the study of some granites from the Massif Central, France. Rend Soc Ital di Miner e Petrol 43:463–476

    Google Scholar 

  9. Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47:329–353. https://doi.org/10.1093/petrology/egi077

    Article  Google Scholar 

  10. Benisek A, Finger F (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib Mineral Petrol 114:441–451

    Article  Google Scholar 

  11. Bento dos Santos TM, Munhá JM, Tassinari CCG et al (2010) Thermochronology of central Ribeira Fold Belt, SE Brazil: petrological and geochronological evidence for long-term high temperature maintenance during Western Gondwana amalgamation. Precambr Res 180:285–298. https://doi.org/10.1016/J.PRECAMRES.2010.05.002

    Article  Google Scholar 

  12. Bento dos Santos TM, Munhá JM, Tassinari CCG et al (2011) Metamorphic PT evolution of granulites in the central Ribeira Fold Belt, SE Brazil. Geosci J 15:27–51. https://doi.org/10.1007/s12303-011-0004-1

    Article  Google Scholar 

  13. Bento dos Santos TM, Tassinari CCG, Fonseca PE (2014) Garnet–biotite diffusion mechanisms in complex high-grade orogenic belts: understanding and constraining petrological cooling rates in granulites from Ribeira Fold Belt (SE Brazil). J S Am Earth Sci 56:128–138. https://doi.org/10.1016/J.JSAMES.2014.09.003

    Article  Google Scholar 

  14. Cerling TE, Brown FH, Bowman JR (1985) Low-temperature alteration of volcanic glass: hydration, Na, K, 18O and Ar mobility. Chem Geol Isot Geosci Sect 52:281–293. https://doi.org/10.1016/0168-9622(85)90040-5

    Article  Google Scholar 

  15. Cherniak DJ, Watson EB (2000) Pb diffusion in zircon. Contrib Mineral Petrol 160:383–390. https://doi.org/10.1007/s00410-009-0483-5

    Article  Google Scholar 

  16. Cherniak DJ, Lanford WA, Ryerson FJ (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim Cosmochim Acta 55:1663–1673. https://doi.org/10.1016/0016-7037(91)90137-T

    Article  Google Scholar 

  17. Chesley JT, Halliday AN, Snee LW et al (1993) Thermochronology of the Cornubian batholith in southwest England: implications for pluton emplacement and protracted hydrothermal mineralization. Geochim Cosmochim Acta 57:1817–1835. https://doi.org/10.1016/0016-7037(93)90115-D

    Article  Google Scholar 

  18. Chew DM, Petrus JA, Kamber BS (2014) U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem Geol. https://doi.org/10.1016/j.chemgeo.2013.11.006

    Article  Google Scholar 

  19. Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61:1–18. https://doi.org/10.1016/S0012-8252(02)00107-1

    Article  Google Scholar 

  20. Clemens JD, Stevens G (2016) Melt segregation and magma interactions during crustal melting: breaking out of the matrix. Earth Sci Rev 160:333–349. https://doi.org/10.1016/j.earscirev.2016.07.012

    Article  Google Scholar 

  21. Corfu F, Hanchar JM, Hoskin PWO, Kinny PD (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500. https://doi.org/10.2113/0530469

    Article  Google Scholar 

  22. Corsini M, Rolland Y (2009) Late evolution of the southern European Variscan belt: exhumation of the lower crust in a context of oblique convergence. Comptes Rendus Geosci 341:214–223. https://doi.org/10.1016/j.crte.2008.12.002

    Article  Google Scholar 

  23. Costa MM, Neiva AMR, Azevedo MR, Corfu F (2014) Distinct sources for syntectonic Variscan granitoids: insights from the Aguiar da Beira region, Central Portugal. Lithos 196–197:83–98. https://doi.org/10.1016/j.lithos.2014.02.023

    Article  Google Scholar 

  24. Dallmeyer RD, Martínez Catalán JR, Arenas R et al (1997) Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277:307–337. https://doi.org/10.1016/S0040-1951(97)00035-8

    Article  Google Scholar 

  25. Dias da Silva Í, Gómez-Barreiro J, Martínez Catalán JR et al (2017) Structural and microstructural analysis of the Retortillo Syncline (Variscan belt, Central Iberia). Implications for the Central Iberian Orocline. Tectonophysics 717:99–115. https://doi.org/10.1016/j.tecto.2017.07.015

    Article  Google Scholar 

  26. Dias da Silva Í, Pereira MF, Silva JB, Gama C (2018) Time–space distribution of silicic plutonism in a gneiss dome of the Iberian Variscan Belt: the Évora Massif (Ossa-Morena Zone, Portugal). Tectonophysics 747–748:298–317. https://doi.org/10.1016/j.tecto.2018.10.015

    Article  Google Scholar 

  27. Dias G, Leterrier J, Mendes A et al (1998) U–Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 45:349–369. https://doi.org/10.1016/S0024-4937(98)00039-5

    Article  Google Scholar 

  28. Dias R, Ribeiro A, Romão J et al (2016) A review of the arcuate structures in the Iberian Variscides; constraints and genetic models. Tectonophysics 681:170–194. https://doi.org/10.1016/j.tecto.2016.04.011

    Article  Google Scholar 

  29. Díaz-Azpiroz M, Barcos L, Balanyá JC et al (2014) Applying a general triclinic transpression model to highly partitioned brittle-ductile shear zones: a case study from the Torcal de Antequera massif, external Betics, southern Spain. J Struct Geol 68:316–336. https://doi.org/10.1016/J.JSG.2014.05.010

    Article  Google Scholar 

  30. Díez Fernández R, Pereira MF (2016) Extensional orogenic collapse captured by strike-slip tectonics: constraints from structural geology and U–Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif). Tectonophysics 691:290–310. https://doi.org/10.1016/j.tecto.2016.10.023

    Article  Google Scholar 

  31. Díez Fernández R, Pereira MF (2017) Strike-slip shear zones of the Iberian Massif: are they coeval? Lithosphere 9:726–744. https://doi.org/10.1130/L648.1

    Article  Google Scholar 

  32. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274. https://doi.org/10.1007/BF00373790

    Article  Google Scholar 

  33. Escuder-Viruete J, Arenas R, Catalán JRM (1994) Tectonothermal evolution associated with Variscan crustal extension in the Tormes Gneiss Dome (NW Salamanca, Iberian Massif, Spain). Tectonophysics 238:117–138. https://doi.org/10.1016/0040-1951(94)90052-3

    Article  Google Scholar 

  34. Fernández C, Czeck DM, Díaz-Azpiroz M (2013) Testing the model of oblique transpression with oblique extrusion in two natural cases: steps and consequences. J Struct Geol 54:85–102. https://doi.org/10.1016/J.JSG.2013.07.001

    Article  Google Scholar 

  35. Ferreira N, Iglesias M, Noronha F et al (1987) Granitoides da zona Centro-Ibérica e seu enquadramento geodinâmico. In: Bea F, Carmina A, Gonzalo JC, Plaza ML (eds) Geologia de los granitoides y rocas asociadas del Macizo Hespérico. Editorial Rueda, Madrid, pp 37–53

    Google Scholar 

  36. Gallien F, Mogessie A, Bjerg E et al (2010) Timing and rate of granulite facies metamorphism and cooling from multi-mineral chronology on migmatitic gneisses, Sierras de La Huerta and Valle Fértil, NW Argentina. Lithos 114:229–252. https://doi.org/10.1016/j.lithos.2009.08.011

    Article  Google Scholar 

  37. García Garzon J, Locutura J (1981) Datación por el método Rb/Sr de los granitos de Lumbrales Sobradillo y Villar de Ciervos-Puerto Seguro. Boletín Geol Min 92(1):68–72

    Google Scholar 

  38. García-Arias M, Díez-Montes A, Villaseca C, Blanco-Quintero IF (2018) The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: a review. Earth Sci Rev 176:345–372. https://doi.org/10.1016/j.earscirev.2017.11.004

    Article  Google Scholar 

  39. Gutiérrez-Alonso G, Fernández-Suárez J, Gutiérrez-Marco JC et al (2007) U–Pb depositional age for the upper Barrios Formation (Armorican Quartzite facies) in the Cantabrian zone of Iberia: implications for stratigraphic correlation and paleogeography. Spec Pap Soc Am 423:287–296

    Google Scholar 

  40. Gutiérrez-Alonso G, Collins AS, Fernández-Suárez J et al (2015) Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike-slip shear zones in northwestern Iberia. Tectonophysics 643:44–54. https://doi.org/10.1016/j.tecto.2014.12.009

    Article  Google Scholar 

  41. Gutiérrez-Alonso G, Fernández-Suárez J, López-Carmona A, Gärtner A (2018) Exhuming a cold case: the early granodiorites of the northwest Iberian Variscan belt—a Visean magmatic flare-up? Lithosphere 10:194–216. https://doi.org/10.1130/l706.1

    Article  Google Scholar 

  42. Hodges KV, Heinrich DH, Karl KT (2003) Geochronology and thermochronology in orogenic systems. Treatise Geochem 3:263–292. https://doi.org/10.1016/B0-08-043751-6/03024-3

    Article  Google Scholar 

  43. Iglesias M, Ribeiro A (1981) La zone de cisaillement ductile de Juzbado (Salamanca)–Penalva Do Castelo (Viseu): un linéament ancien réactivé pendant l’orogénese hercynienne? Comun dos Serviços Geol Port 67(1):89–93

    Google Scholar 

  44. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  45. Jadamec MA, Turcotte DL, Howell P (2007) Analytic models for orogenic collapse. Tectonophysics 435:1–12. https://doi.org/10.1016/j.tecto.2007.01.007

    Article  Google Scholar 

  46. Jochum KP, Weis U, Stoll B et al (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  47. Köksal S, Cemal Göncüoglu M, Toksoy-Köksal F et al (2008) Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from central Anatolia, Turkey. Mineral Petrol 93:185–211. https://doi.org/10.1007/s00710-007-0228-y

    Article  Google Scholar 

  48. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329. https://doi.org/10.1016/j.gr.2013.03.001

    Article  Google Scholar 

  49. Lopez-Sanchez MA, Aleinikoff JN, Marcos A et al (2016) An example of low-Th/U zircon overgrowths of magmatic origin in a late orogenic Variscan intrusion: the San Ciprián massif (NW Spain). J Geol Soc Lond 173:282–291. https://doi.org/10.1144/jgs2015-071

    Article  Google Scholar 

  50. Ludwig KR (2003) User’s manual for Isoplot/Ex version 300, a geochronological toolkit for Microsoft Excel. Geochronology Center Special Publication, Berkeley, p 72

    Google Scholar 

  51. Macedo CCR (1988) Granitóides, Complexo Xisto-Grauváquico e Ordovícico na região entre Trancoso e Pinhel—geologia, petrologia, geocronologia. Universidade de Coimbra

  52. Martínez Catalán JR, Rubio Pascual FJ, Montes AD et al (2014) The late Variscan HT/LP metamorphic event in NW and Central Iberia: relationships to crustal thickening, extension, orocline development and crustal evolution. Geol Soc Lond Spec Publ 405:225–247. https://doi.org/10.1144/SP405.1

    Article  Google Scholar 

  53. Mata J, Alves CF, Martins L et al (2015) 40Ar/39Ar ages and petrogenesis of the West Iberian Margin onshore magmatism at the Jurassic–Cretaceous transition: geodynamic implications and assessment of open-system processes involving saline materials. Lithos 236–237:156–172

    Article  Google Scholar 

  54. Mateus A, Munhá J, Ribeiro A et al (2016) U–Pb SHRIMP zircon dating of high-grade rocks from the upper allochthonous terrane of Bragança and Morais Massifs (NE Portugal); geodynamic consequences. Tectonophysics 675:23–49. https://doi.org/10.1016/J.TECTO.2016.02.048

    Article  Google Scholar 

  55. Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337

    Article  Google Scholar 

  56. Meert JG, Hall C, Nédélec A, Madison Razanatseheno MO (2001) Cooling of a late-syn orogenic pluton: evidence from laser K-feldspar modelling of the Carion Granite, Madagascar. Gondwana Res 4:541–550. https://doi.org/10.1016/S1342-937X(05)70353-1

    Article  Google Scholar 

  57. Miyazaki T, Santosh M (2005) Cooling history of the Puttetti alkali syenite pluton, southern India. Gondwana Res 8:567–574. https://doi.org/10.1016/S1342-937X(05)71156-4

    Article  Google Scholar 

  58. Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) The use and abuse of Th–U ratios in the interpretation of zircon. In: Geophysical research abstracts, European Geosciences Union, p 12113

  59. Munhá JMU, Cordani UG, Tassinari CG, Palácios T (2005) Petrologia e Termocronologia de Gnaisses Migmatíticos da Faixa de Dobramentos Araçuaí (Espirito Santo, Brasil). Rev Bras Geociências 35:123–134

    Article  Google Scholar 

  60. Nabelek PI, Hofmeister AM, Whittington AG (2012) The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth Planet Sci Lett 317–318:157–164. https://doi.org/10.1016/j.epsl.2011.11.009

    Article  Google Scholar 

  61. Nance RD, Gutiérrez-Alonso G, Keppie JD et al (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222. https://doi.org/10.1016/j.gr.2009.08.001

    Article  Google Scholar 

  62. Orejana D, Merino Martínez E, Villaseca C, Andersen T (2015) Ediacaran–Cambrian paleogeography and geodynamic setting of the Central Iberian Zone: constraints from coupled U–Pb–Hf isotopes of detrital zircons. Precambr Res 261:234–251. https://doi.org/10.1016/J.PRECAMRES.2015.02.009

    Article  Google Scholar 

  63. Pastor-Galán D, Dias da Silva ÍF, Groenewegen T, Krijgsman W (2019) Tangled up in folds: tectonic significance of superimposed folding at the core of the Central Iberian curve (West Iberia). Int Geol Rev 61:240–255. https://doi.org/10.1080/00206814.2017.1422443

    Article  Google Scholar 

  64. Pereira I, Dias R, Bento dos Santos T, Mata J (2017) Exhumation of a migmatite complex along a transpressive shear zone: inferences from the Variscan Juzbado–Penalva do Castelo Shear Zone (Central Iberian Zone). J Geol Soc Lond 174:1004–1018. https://doi.org/10.1144/jgs2016-159

    Article  Google Scholar 

  65. Pereira MF, Díez Fernández R, Gama C et al (2018) S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). Int J Earth Sci 107:251–267. https://doi.org/10.1007/s00531-017-1488-3

    Article  Google Scholar 

  66. Pochon A, Poujol M, Gloaguen E et al (2016) U-Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). American Mineralogist 101(11):2430–2442. https://doi.org/10.2138/am-2016-5736

    Article  Google Scholar 

  67. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220. https://doi.org/10.1007/BF00381441

    Article  Google Scholar 

  68. Rey P, Vanderhaeghe O, Teyssier C (2001) Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342:435–449. https://doi.org/10.1016/S0040-1951(01)00174-3

    Article  Google Scholar 

  69. Ribeiro ML (2001) Carta geológica simplificada do Parque Arqueológico do vale do Côa: Escala 1:80.000: Notícia explicativa, p 71

  70. Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca P, Araújo A, Oliveira J, Romão J, Chaminé H, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics 26(6):1–24. https://doi.org/10.1029/2006TC002058

    Article  Google Scholar 

  71. Roda-Robles E, Vieira R, Lima A, Pesquera-Pérez A (2009) Petrogenetic links between granites and pegmatites in the Fregeneda–Almendra area (Salamanca, Spain and Guarda, Portugal): new insights from 40Ar/39Ar dating in micas. Estud Geol 19:305–310

    Google Scholar 

  72. Roda-Robles E, Villaseca C, Pesquera A et al (2018) Petrogenetic relationships between Variscan granitoids and Li-(FP)-rich aplite-pegmatites in the Central Iberian Zone: geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geol Rev 95:408–430. https://doi.org/10.1016/j.oregeorev.2018.02.027

    Article  Google Scholar 

  73. Rodrigues JF, Bento dos Santos T, Castro P, et al (2013) Deformação não-coaxial na Faixa Metamórfica Porto-Viseu Détachement extensional ou par thrust/underthrust contracional. In: 9a Conferência Anual do GGET/SGP. Estremoz, pp 131–134

  74. Rubatto D (2017) Zircon: the metamorphic mineral. Rev Mineral Geochem 83:261–295. https://doi.org/10.2138/rmg.2017.83.9

    Article  Google Scholar 

  75. Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U–Pb zircon dating by ion microprobe: some examples from the Western Alps. Cathodoluminescence in geosciences. Springer, New York, pp 373–400

    Google Scholar 

  76. Sá A, Meireles C, Coke C, Gutiérrez-Marco J (2005) Unidades litoestratigráficas do Ordovícico da região de Trás-os-Montes (Zona Centro Ibérica). Comun Geol 92:31–74

    Google Scholar 

  77. Schaltegger U, Davies JHFL (2017) Petrochronology of zircon and baddeleyite in igneous rocks: reconstructing magmatic processes at high temporal resolution. Rev Mineral Geochem 83(1):297–328. https://doi.org/10.2138/rmg.2017.83.10

    Article  Google Scholar 

  78. Schoene B, Bowring SA (2006) U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib Mineral Petrol 151:615–630. https://doi.org/10.1007/s00410-006-0077-4

    Article  Google Scholar 

  79. Schoene B, Bowring SA (2007) Determining accurate temperature–time paths from U–Pb thermochronology: an example from the Kaapvaal craton, southern Africa. Geochim Cosmochim Acta 71:165–185. https://doi.org/10.1016/j.gca.2006.08.029

    Article  Google Scholar 

  80. Schulmann K, Schaltegger U, Jezek J et al (2002) Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in Western Europe). Am J Sci 302:856–879. https://doi.org/10.2475/ajs.302.10.856

    Article  Google Scholar 

  81. Schulmann K, Lexa O, Štípská P et al (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26:273–297. https://doi.org/10.1111/j.1525-1314.2007.00755.x

    Article  Google Scholar 

  82. Scibiorski E, Tohver E, Jourdan F (2015) Rapid cooling and exhumation in the western part of the Mesoproterozoic Albany-Fraser Orogen, Western Australia. Precambr Res 265:232–248. https://doi.org/10.1016/j.precamres.2015.02.005

    Article  Google Scholar 

  83. Siégel C, Bryan SE, Allen CM, Gust DA (2018) Use and abuse of zircon-based thermometers: a critical review and a recommended approach to identify antecrystic zircons. Earth Sci Rev 176:87–116. https://doi.org/10.1016/j.earscirev.2017.08.011

    Article  Google Scholar 

  84. Silva A, Ribeiro ML (2000) Carta Geológica Simplificada do Parque Arqueológico do Vale do Côa. In: Parque Arq. Vila Nova de Foz Côa

  85. Sláma J, Kosler J, Crowley JL et al (2007) Plesovice zircon—a new natural standard for U–Pb and Hf isotopic microanalysis. Geochim Cosmochim Acta 71:A947–A947

    Google Scholar 

  86. Sousa MB, Sequeira AJD (1993) O limite Precâmbrico–Câmbrico na Zona Centro Ibérica, em Portugal. XII Reun Geol do Oeste Penins 1:17–28

    Google Scholar 

  87. Spear FS, Parrish RR (1996) Petrology and cooling rates of the Valhalla Complex, British Columbia, Canada. J Petrol 37:733–765

    Article  Google Scholar 

  88. Steenken A, Siegesmund S, Heinrichs T, Fügenschuh B (2002) Cooling and exhumation of the Rieserferner Pluton (Eastern Alps, Italy/Austria). Int J Earth Sci 91:799–817. https://doi.org/10.1007/s00531-002-0260-4

    Article  Google Scholar 

  89. Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R (2012) Routine low-damage apatite U–Pb dating using laser ablation–multicollector–ICPMS. Geochem Geophys Geosyst. https://doi.org/10.1029/2011gc003928

    Article  Google Scholar 

  90. Tsuchiya N, Fujino K (2000) Evaluation of cooling history of the Quaternary Takidani Pluton using thermoluminescence technique. Proc World Geotherm Congr 2000:3939–3944

    Google Scholar 

  91. Valle Aguado B, Azevedo MR, Schaltegger U et al (2005) U–Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. Lithos 82:169–184. https://doi.org/10.1016/j.lithos.2004.12.012

    Article  Google Scholar 

  92. Valle Aguado B, Azevedo MR, Nolan J et al (2017) Granite emplacement at the termination of a major Variscan transcurrent shear zone: the late collisional Viseu batholith. J Struct Geol 98:15–37. https://doi.org/10.1016/j.jsg.2017.04.002

    Article  Google Scholar 

  93. Vanderhaeghe O (2009) Migmatites, granites and orogeny: flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477:119–134. https://doi.org/10.1016/j.tecto.2009.06.021

    Article  Google Scholar 

  94. Vanderhaeghe O, Teyssier C (2001) Crustal-scale rheological transitions during late-orogenic collapse. Tectonophysics 335:211–228. https://doi.org/10.1016/S0040-1951(01)00053-1

    Article  Google Scholar 

  95. Vanderhaeghe O, Kruckenberg S, Gerbault M et al (2018) Crustal-scale convection and diapiric upwelling of a partially molten orogenic root (Naxos dome, Greece). Tectonophysics 746:459–469. https://doi.org/10.1016/j.tecto.2018.03.007

    Article  Google Scholar 

  96. Vavra G (1990) On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contrib Mineral Petrol 106:90–99. https://doi.org/10.1007/BF00306410

    Article  Google Scholar 

  97. Vavra G (1993) A guide to quantitative morphology of accessory zircon. Chem Geol 110:15–28. https://doi.org/10.1016/0009-2541(93)90245-E

    Article  Google Scholar 

  98. Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Front 9(5):1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001

    Article  Google Scholar 

  99. Vieira R (2010) Aplitopegmatitos com Elementos Raros da Região entre Almendra (Vila Nova de Foz Côa) e Barca dAlva (Figueira de Castelo Rodrigo) Campo Aplitopegmatítico da Fregeneda-Almendra

  100. Villar Alonso P, Fernández Ruiz J, Bellido F et al (2000) Memoria del mapa geológico de España 1:50,000, Lumbrales (Hoja 475). In: Série magna, 1ae d, 2asérie. Madrid

  101. Villaros A, Couzinié OLS, Mintrone JFMM (2018) Plutons and domes: the consequences of anatectic magma extraction—example from the southeastern French Massif Central. Int J Earth Sci 107:2819–2842. https://doi.org/10.1007/s00531-018-1630-x

    Article  Google Scholar 

  102. Villaseca C, Barbero L, Rogers G (1998) Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 43:55–79. https://doi.org/10.1016/S0024-4937(98)00002-4

    Article  Google Scholar 

  103. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304. https://doi.org/10.1016/0012-821X(83)90211-X

    Article  Google Scholar 

  104. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433. https://doi.org/10.1007/s00410-006-0068-5

    Article  Google Scholar 

  105. Whittington AG, Hofmeister AM, Nabelek PI (2009) Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458:319–321. https://doi.org/10.1038/nature07818

    Article  Google Scholar 

  106. Wiedenbeck M, Allé P, Corfu F et al (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  107. Williams IS, Buick IS, Cartwright I (1996) An extended episode of early mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Metamorph Geol 14:29–47. https://doi.org/10.1111/j.1525-1314.1996.00029.x

    Article  Google Scholar 

  108. Yakymchuk C, Kirkland CL, Clark C (2018) Th/U ratios in metamorphic zircon. J Metamorph Geol 36:715–737. https://doi.org/10.1111/jmg.12307

    Article  Google Scholar 

  109. Yuguchi T, Sueoka S, Iwano H et al (2017) Spatial distribution of the apatite fission-track ages in the Toki granite, central Japan: exhumation rate of a Cretaceous pluton emplaced in the East Asian continental margin. Isl Arc 26:1–4. https://doi.org/10.1111/iar.12219

    Article  Google Scholar 

  110. Žák J, Verner K, Finger F et al (2011) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40. https://doi.org/10.1016/j.lithos.2010.10.002

    Article  Google Scholar 

  111. Zhang H, Harris N, Parrish R et al (2004) Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett 228:195–212. https://doi.org/10.1016/J.EPSL.2004.09.031

    Article  Google Scholar 

Download references

Acknowledgements

J. A. Ferreira thanks the financial support attributed by Fundação para a Ciência e Tecnologia (FCT) doctoral Grant (PD/BD/114486/2016). We would like to acknowledge the University of Portsmouth for providing technical support during sample preparation and the analytical facilities for the SEM and LA-ICP-MS analyses. This publication was supported by FCT—Project UID/GEO/50019/2019—Instituto Dom Luiz. The authors are grateful to the Editor in Chief Prof. Wolf-Christian Dullo, the Topic Editor Prof. J. F. Moyen, and reviewers Ícaro Dias da Silva and Marc Poujol for providing very helpful and insightful reviews with many comments and suggestions, therefore, improving our work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. A. Ferreira.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, J.A., Bento dos Santos, T., Pereira, I. et al. Tectonically assisted exhumation and cooling of Variscan granites in an anatectic complex of the Central Iberian Zone, Portugal: constraints from LA-ICP-MS zircon and apatite U–Pb ages. Int J Earth Sci (Geol Rundsch) 108, 2153–2175 (2019). https://doi.org/10.1007/s00531-019-01755-1

Download citation

Keywords

  • Iberian Variscan Orogeny
  • Syn-tectonic granites
  • U–Pb geochronology
  • Cooling rates
  • Exhumation rates