Linking structures with the genesis and activity of mud volcanoes: examples from Emilia and Marche (Northern Apennines, Italy)

Abstract

Mud volcanism is known to be strictly linked to tectonic structures, since they have the ability to trap hydrocarbon and other fluids, and eventually induce them to migrate from a deep reservoir (e.g. sited into an anticline core, where large overpressures may be generated), to the surface. A central theme is how fluids can migrate upward, and which is the role in this process of near structures (i.e. structures directly controlling the mud volcano system) and far structures (i.e. faults located far away from the mud volcano system). In this study, we investigate the role of both types of structures in the genesis and evolution of mud volcanoes. In particular, we investigate six mud volcano case studies from the Emilia-Romagna and Marche Pede–Apennine margin, in Italy, through integration of fieldwork, interpretation of available seismic reflection profiles and aerial photos. The results of these analyses support an intimate link of the investigated mud volcanoes with anticline structures. We discuss two different fluid migration settings, particularly (i) mud volcanoes emplaced on outcropping anticlines, and (ii) mud volcanoes located on top of buried structures, discerning when fluids are likely to exploit anticline-related fracture sets, or secondary structures and porosity. Finally, we speculate on how far structures, via the seismic triggering, may play a role in the occurrence of historical eruption of some of the investigated mud volcanoes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Bally AW, Burbi L, Cooper C, Ghelardoni R (1986) Balanced sections and seismic reflection profiles across the central Apennines. Mem Soc Geol Ital 35:257–310

    Google Scholar 

  2. Barberi F, Scandone P (1983) Structural model of Italy, scale 1: 500,000, Progetto Finalizzato Geodin. Cons. Naz. delle Ric., Rome

  3. Bicocchi G, Tassi F, Bonini M, Capecchiacci F, Ruggieri G, Buccianti A, Burgassi P, Vaselli O (2013) The high pCO2 Caprese Reservoir (Northern Apennines, Italy): relationships between present- and paleo-fluid geochemistry and structural setting. Chem Geol 351:40–56. https://doi.org/10.1016/j.chemgeo.2013.05.001

    Article  Google Scholar 

  4. Boccaletti M, Coli M, Eva C, Ferrari G, Giglia G, Lazzarotto A, Merlanti F, Nicolich R, Papani G, Postpischl D (1985) Consideration on the seismotectonics of the Northern Apennines. Tectonophysics 117:7–38. https://doi.org/10.1016/0040-1951(85)90234-3

    Article  Google Scholar 

  5. Bonasera F (1952) I vulcanelli di Fango del Preappennino Marchigiano. Rivista Geografica Italiana 59:16–26

    Google Scholar 

  6. Bonini M (2007) Interrelations of mud volcanism, fluid venting, and thrust-anticline folding: examples from the external northern Apennines (Emilia-Romagna, Italy). J Geophys Res 112(B8). https://doi.org/10.1029/2006JB004859

    Article  Google Scholar 

  7. Bonini M (2008) Elliptical mud volcano caldera as stress indicator in an active compressional setting (Nirano, Pede-Apennine Margin, northern Italy). Geology 36(2):131–134. https://doi.org/10.1130/g24158a.1

    Article  Google Scholar 

  8. Bonini M (2012) Mud volcanoes: indicators of stress orientation and tectonic controls. Earth Sci Rev 115:121–152. https://doi.org/10.1016/j.earscirev.2012.09.002

    Article  Google Scholar 

  9. Bonini M, Rudolph ML, Manga M (2016) Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes. Tectonophysics 672–673:190–211. https://doi.org/10.1016/j.tecto.2016.01.037

    Article  Google Scholar 

  10. Bons PD, van Milligen BP (2001) New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks. Geology 29(10):919–922

    Google Scholar 

  11. Brown KM (1990) The nature and hydrological significance of mud diapirism and diatremes for accretionary systems. J Geophys Res 95:8969–8982

    Google Scholar 

  12. Calamita F, Deiana G (1987) The arcuate shape of the Umbria-Marche-Sabina Apennines (central Italy). Tectonophysics 146:139–147

    Google Scholar 

  13. Calindri S (1781) Dizionario Corografico, Geografico, Orittologico, Storico ec. ec. ec. della Italia, Bologna

  14. Capozzi R, Picotti V (2002) Fluid migration and origin of a mud volcano in the Northern Apennines (Italy): the role of deeply rooted normal faults. Terra Nova 14(5):363–370

    Google Scholar 

  15. Capozzi R, Picotti V (2010) Spontaneous fluid emissions in the Northern Apennines: geochemistry, structures and implications for the petroleum system. Geol Soc Lond Spec Publ 348(1):115–135

    Google Scholar 

  16. Capozzi R, Menato V, Rabbi E (1994) Manifestazioni superficiali di fluidi ed evoluzione tettonica recente del margine Appenninico Emiliano-Romagnolo: indagine preliminare. Atti Ticinensi di Scienze della Terra 1(247):e254

    Google Scholar 

  17. Cartwright J, Huuse M, Aplin A (2007) Seal bypass systems. AAPG Bull 91(8):1141–1166. https://doi.org/10.1306/04090705181

    Article  Google Scholar 

  18. Ceramicola S, Dupré S, Somoza L, Woodside J (2018) Cold seep systems. In: Submarine geomorphology. Springer, Cham, pp 367–387

    Google Scholar 

  19. Chiarabba C, Amato A, Anselmi M, Baccheschi P, Bianchi I, Cattaneo M, Cecere G, Chiaraluce L, Ciaccio MG, De Gori P, De Luca G, Di Bona M, Di Stefano R, Faenza L, Govoni A, Improta L, Lucente FP, Marchetti A, Margheriti L, Mele F, Michelini A, Monachesi G, Moretti M, Pastori M, Piana Agostinetti N, Piccinini D, Roselli P, Seccia D, Valoro L (2009) The 2009 L’Aquila (central Italy) MW6.3 earthquake: Main shock and aftershocks. Geophys Res Lett 36:L18308. https://doi.org/10.1029/2009gl039627

    Article  Google Scholar 

  20. Chiaraluce L, Di Stefano R, Tinti E, Scognamiglio L, Michele M, Casarotti E, Lombardi A (2017) The 2016 Central Italy seismic sequence: a first look at the mainshocks, aftershocks, and source models. Seismol Res Lett 88(3):757–771. https://doi.org/10.1785/0220160221

    Article  Google Scholar 

  21. Damiani AV (1964) Studio della salsa di Offida (Ascoli Piceno-Marche). L’Universo 3:473–487

    Google Scholar 

  22. Davies RJ (2003) Kilometer-scale fluidization structures formed during early burial of a deep-water slope channel on the Niger Delta. Geology 31(11):949–952. https://doi.org/10.1130/G19835.1

    Article  Google Scholar 

  23. De Prunele A, Ruffine L, Riboulot V, Peters CA, Croguennec C, Guyader V, Germain Y (2017) Focused hydrocarbon-migration in shallow sediments of a pockmark cluster in the Niger Delta (Off Nigeria). Geochem Geophys Geosyst 18(1):93–112. https://doi.org/10.1002/2016GC006554

    Article  Google Scholar 

  24. Dimitrov LI (2002) Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59(1–4):49–76. https://doi.org/10.1016/S0012-8252(02)00069-7

    Article  Google Scholar 

  25. Doglioni C, Gueguen E, Harabaglia P, Mongelli F (1999) On the origin of west-directed subduction zones and applications to the western Mediterranean. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: tertiary extension within the Alpine Orogen 156. Geological Society, London, Special Publications, pp 541–561. https://doi.org/10.1144/GSL.SP.1999.156.01.24

    Google Scholar 

  26. Etiope G, Martinelli G, Caracausi A, Italiano F (2007) Methane seeps and mud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geophys Res Lett. https://doi.org/10.1029/2007gl030341

    Article  Google Scholar 

  27. Evans RJ, Davies RJ, Stewart SA (2007) Internal structure and eruptive history of a kilometre scale mud volcano system, South Caspian Sea. Basin Res 19(1):153–163. https://doi.org/10.1111/j.1365-2117.2007.00315.x

    Article  Google Scholar 

  28. Evans RJ, Stewart SA, Davies RJ (2008) The structure and formation of mud volcano summit calderas. J Geol Soc 165(4):769–780. https://doi.org/10.1144/0016-76492007-118

    Article  Google Scholar 

  29. DISS Working Group (2015) Database of Individual Seismogenic Sources (DISS), Version 3.2.0: a compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia, https://doi.org/10.6092/ingv.it-diss3.2.0

  30. Gasperi G, Bettelli G, Panini F, Pizziolo M, Bonazzi U, Fioroni C, Fregni P, Vaiani, SC (2005) Note illustrative della carta geologica d’Italia alla scala 1:50.000, Foglio 219, Sassuolo. Servizio Geologico d’Italia, p 196

  31. Guerrieri L, Blumetti AM, Esposito E, Michetti AM, Porfido S, Serva L, Vittori E (2009) Capable faulting, environmental effects and seismic landscape in the area affected by the 1997 Umbria–Marche (Central Italy) seismic sequence. Tectonophysics 476(1):269–281

    Google Scholar 

  32. Hancock PL (1985) Brittle microtectonics: principles and practice. J Struct Geol 7(3–4):437–457

    Google Scholar 

  33. Hensen C, Scholz F, Nuzzo M, Valadares V, Gràcia E, Terrinha P, Bartolome R (2015) Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea. Geology 43(4):339–342. https://doi.org/10.1130/G36359.1

    Article  Google Scholar 

  34. Jakubov AA, Ali-Zade AA, Zeinalov MM (1971) Mud Volcanoes of the Azerbaijan SSR, Atlas. Azerbaijan Academy of Sciences, Baku, p 257 (in Russian)

    Google Scholar 

  35. Judd A, Hovland M (2009) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge University Press, Cambridge

    Google Scholar 

  36. Karstens J, Berndt C (2015) Seismic chimneys in the Southern Viking Graben-implications for palaeo fluid migration and overpressure evolution. Earth Planet Sci Lett 412:88–100. https://doi.org/10.1016/j.epsl.2014.12.017

    Article  Google Scholar 

  37. Kopf AJ (2002) Significance of mud volcanism. Rev Geophys 40(2):1005. https://doi.org/10.1029/2000rg000093

    Article  Google Scholar 

  38. Kopf A, Behrmann JH (2000) Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex. Geol Soc Lond Spec Publ 174(1):169–204

    Google Scholar 

  39. Lacombe O, Bellahsen N (2016) Thick-skinned tectonics and basement-involved fold–thrust belts: insights from selected Cenozoic orogens. Geol Mag 153(5–6):763–810

    Google Scholar 

  40. Lavecchia G, Boncio P, Creati N (2003) A lithospheric-scale seismogenic thrust in central Italy. J Geodyn 36(1):79–94

    Google Scholar 

  41. Lupi M, Saenger EH, Fuchs F, Miller SA (2013) Lusi mud eruption triggered by geometric focusing of seismic waves. Nat Geosci 6:642–646. https://doi.org/10.1038/ngeo1884

    Article  Google Scholar 

  42. Lupi M, Saenger EH, Fuchs F, Miller SA (2014) Corrigendum: Lusi mud eruption triggered by geometric focusing of seismic waves. Nat Geosci 7(9):687. https://doi.org/10.1038/NGEO2239

    Article  Google Scholar 

  43. Lupi M, Ricci BS, Kenkel J, Ricci T, Fuchs F, Miller SA, Kemna A (2015) Subsurface fluid distribution and possible seismic precursory signal at the Salse di Nirano mud volcanic field, Italy. Geophys J Int 204:907–917

    Google Scholar 

  44. Maestrelli D, Iacopini D, Jihad AA, Bond CE, Bonini M (2017a) Seismic and structural characterization of fluid escape pipes using 3D and partial stack seismic from the Loyal Field (Scotland, UK): a multiphase and repeated intrusive mechanism. Mar Pet Geol 88:489–510. https://doi.org/10.1016/j.marpetgeo.2017.08.016

    Article  Google Scholar 

  45. Maestrelli D, Bonini M, Delle Donne D, Manga M, Piccardi L, Sani F (2017b) Dynamic triggering of mud volcano eruptions during the 2016–2017 Central Italy seismic sequence. J Geophys Res Solid Earth 122:9149–9165. https://doi.org/10.1002/2017JB014777

    Article  Google Scholar 

  46. Maestrelli D, Benvenuti M, Bonini M, Carnicelli S, Piccardi L, Sani F (2018) The structural hinge of a chain-foreland basin: quaternary activity of the Pede-Apennine Thrust front (Northern Italy). Tectonophysics 723:117–135. https://doi.org/10.1016/j.tecto.2017.12.006

    Article  Google Scholar 

  47. Manga M, Bonini M (2012) Large historical eruptions at subaerial mud volcanoes, Italy. Nat Hazards Earth Syst Sci 12(11):3377. https://doi.org/10.5194/nhess-12-3377-2012

    Article  Google Scholar 

  48. Manga M, Brumm M, Rudolph ML (2009) Earthquake triggering of mud volcanoes. Mar Pet Geol 26(9):1785–1798. https://doi.org/10.1016/j.marpetgeo.2009.01.019

    Article  Google Scholar 

  49. Martelli L, Bonini M, Calabrese L, Corti G, Ercolessi G, Molinari FC, Piccardi L, Pondrelli S, Sani F, Severi P (2017) Seismotectonic Map of the Emilia-Romagna Region and Surrounding Areas, Scale 1:250,000, 2nd edn. D.R.E.AM, Firenze

    Google Scholar 

  50. Martinelli G, Judd A (2004) Mud volcanoes of Italy. Geol J 39(1):49–61. https://doi.org/10.1002/gj.943

    Article  Google Scholar 

  51. Martinelli G, Albarello D, Mucciarelli M (1995) Radon emissions from mud volcanoes in northern Italy: possible connection with local seismicity. Geophys Res Lett 22:1989–1992

    Google Scholar 

  52. Mazzini A, Svensen H, Akhmanov GG, Aloisi G, Planke S, Malthe-Sørenssen A, Istadi B (2007) Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet Sci Lett 261(3–4):375–388

    Google Scholar 

  53. Mazzini A, Nermoen A, Krotkiewski M, Podladchikov Y, Planke S, Svensen H (2009) Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano, Indonesia. Mar Pet Geol 26(9):1751–1765. https://doi.org/10.1016/j.marpetgeo.2009.03.001

    Article  Google Scholar 

  54. Medialdea T, Somoza L, Pinheiro LM, Fernández-Puga MC, Vázquez JT, León R, Vegas R (2009) Tectonics and mud volcano development in the Gulf of Cádiz. Mar Geol 261(1–4):48–63. https://doi.org/10.1016/j.margeo.2008.10.007

    Article  Google Scholar 

  55. Mellors R, Kilb D, Aliyev A, Gasanov A, Yetirmishli G (2007) Correlations between earthquakes and large mud volcano eruptions. J Geophys Res-Solid Earth 112:B04304. https://doi.org/10.1029/2006JB004489

    Article  Google Scholar 

  56. Miller SA, Mazzini A (2018) More than ten years of Lusi: a review of facts, coincidences, and past and future studies. Mar Pet Geol 90:10–25. https://doi.org/10.1016/j.marpetgeo.2017.06.019

    Article  Google Scholar 

  57. Miller SA, Collettini C, Chiaraluce L, Cocco M, Barchi M, Kaus BJ (2004) Aftershocks driven by a high-pressure CO2 source at depth. Nature 427(6976):724

    Google Scholar 

  58. Minissale A, Magro G, Martinelli G, Vaselli O, Tassi GF (2000) Fluid geochemical transect in the Northern Apennines (central-northern Italy): fluid genesis and migration and tectonic implications. Tectonophysics 319(3):199–222

    Google Scholar 

  59. Molli G (2008) Northern Apennine–Corsica orogenic system: an updated overview. Geol Soc Lond Spec Publ 298–1:413–442. https://doi.org/10.1144/SP298.19

    Article  Google Scholar 

  60. Oppo D, Capozzi R, Picotti V (2013) A new model of the petroleum system in the Northern Apennines, Italy. Mar Pet Geol 48:57–76. https://doi.org/10.1016/j.marpetgeo.2013.06.005

    Article  Google Scholar 

  61. Papani G, De Nardo MT, Bettelli G, Rio D, Tellini C, Vernia L (2002) Note Illustrative della Carta Geologica d’Italia alla scala 1:50.000, Foglio 218, Castelnuovo ne’ Monti. Servizio Geologico. d’Italia, p 140

  62. Guerrera F, Tramontana M, Mattioli M, Pieruccini P, Cardellini Galdenzi S, Pennacchioni, E, Piergiovanni A, Sandroni P, Tosti S, (2014) Note illustrative alla carta geologica d’Italia alla scala 1:50.000, Foglio 292, Jesi. Ispra, Servizio Geologico d’Italia, p 122

  63. Pieri M, Groppi G (1981) Subsurface geological structure of the Po Plain, CNR, Progetto Finalizzato Publication 414, pp 1–13

  64. Planke S, Svensen H, Hovland M, Banks DA, Jamtveit B (2003) Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar Lett 23(3–4):258–268. https://doi.org/10.1007/s00367-003-0152-z

    Article  Google Scholar 

  65. Pucci S, De Martini PM, Civico R, Villani F, Nappi R, Ricci T, Azzaro R, Pantosti D (2017) Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy). Geophys Res Lett 44:2138–2147. https://doi.org/10.1002/2016GL071859

    Article  Google Scholar 

  66. Revil A (2002) Genesis of mud volcanoes in sedimentary basins: a solitary wave-based mechanism. Geophys Res Lett. https://doi.org/10.1029/2001GL014465

    Article  Google Scholar 

  67. Ricci Lucchi F (1987) Semi-allochthonous sedimentation in the Apenninic thrust belt. Sed Geol 50(1–3):119–134

    Google Scholar 

  68. Roberts KS, Davies RJ, Stewart SA, Tingay M (2011) Structural controls on mud volcano vent distributions: examples from Azerbaijan and Lusi, east Java. J Geol Soc 168(4):1013–1030. https://doi.org/10.1144/0016-76492010-158

    Article  Google Scholar 

  69. Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. http://doi.org/10.6092/INGV.IT-CPTI15

  70. Rudolph ML, Manga M (2012) Frequency dependence of mud volcano response to earthquakes. Geophys Res Lett. https://doi.org/10.1029/2012GL052383

    Article  Google Scholar 

  71. Sciarra A, Cantucci B, Ricci T, Tomonaga Y, Mazzini A (2019) Geochemical characterization of the Nirano mud volcano, Italy. Appl Geochem 102:77–87

    Google Scholar 

  72. Serpieri A (1888) Scritti di sismologia nuovamente raccolti e pubblicati da G. Giovannozzi. Parte I, Il terremoto del 12 Marzo 1873. Casa Editrice Calasanziana, Firenze, p 232

  73. Slack JF, Turner RJ, Ware PL (1998) Boron-rich mud volcanoes of the Black Sea region: modern analogues to ancient sea-floor tourmalinites associated with Sullivan-type Pb–Zn deposits? Geology 26(5):439–442. https://doi.org/10.1130/0091-7613(1998)026%3c0439:BRMVOT%3e2.3.CO;2

    Article  Google Scholar 

  74. Somoza L, Medialdea T, León R, Ercilla G, Vázquez JT, Hernández-Molina J, Fernández-Puga MC (2012) Structure of mud volcano systems and pockmarks in the region of the Ceuta Contourite Depositional System (Western Alborán Sea). Mar Geol 332:4–26. https://doi.org/10.1016/j.margeo.2012.06.002

    Article  Google Scholar 

  75. Stewart SA, Davies RJ (2006) Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG Bull 90(5):771–786. https://doi.org/10.1306/11220505045

    Article  Google Scholar 

  76. Tassi F, Bonini M, Montegrossi G, Capecchiacci F, Capaccioni B, Vaselli O (2012) Origin of light hydrocarbons in gases from mud volcanoes and CH4-rich emissions. Chem Geol 294–295:113–126

    Google Scholar 

  77. Terakawa T, Zoporowski A, Galvan B, Miller SA (2010) High-pressure fluid at hypocentral depths in the L’Aquila region inferred from earthquake focal mechanisms. Geology 38(11):995–998. https://doi.org/10.1130/G31457.1

    Article  Google Scholar 

  78. Vannoli P, Basili R, Valensise G (2004) New geomorphic evidence for anticlinal growth driven by blind-thrust faulting along the northern Marche coastal belt (central Italy). J Seismol 8(3):297–312

    Google Scholar 

  79. Vannoli P, Vannucci G, Bernardi F, Palombo B, Ferrari G (2015) The source of the 30 October 1930 Mw 5.8 Senigallia (Central Italy) earthquake: a convergent solution from instrumental, macroseismic, and geological data. Bull Seismol Soc Am 105(3):1548–1561

    Google Scholar 

  80. Walter TR, Wang R, Zimmer M, Grosser H, Lühr B, Ratdomopurbo A (2007) Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophys Res Lett 34(5):L05304. https://doi.org/10.1029/2006gl028710

    Article  Google Scholar 

  81. Wang C-Y, Manga M (2010) Hydrologic responses to earthquakes and a general metric. Geofluids 10:206–216. https://doi.org/10.1111/j.1468-8123.2009.00270.x

    Article  Google Scholar 

  82. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

Download references

Acknowledgements

We kindly thank Luis Somoza and an anonymous Reviewer for their careful and constructive revisions. We thank ENI S.p.A., particularly Dr. Alessandro Fattorini, for providing us the seismic sections shown in this study. We are also grateful to the Osservatorio Geologico di Coldigioco and to Dr. Alessandro Montanari for hosting one of us (D.M.) during the fieldwork. Finally, we kindly thank Olivier Lacombe for the constructive discussion about the structural setting of the Marche mud volcanoes. This study has been partly funded by the Tuscany Ph.D. Regional program [Grant Number POR ICO FSE 2014/2020-Asse C] and by University of Florence ordinary funds 2014-2016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniele Maestrelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maestrelli, D., Bonini, M. & Sani, F. Linking structures with the genesis and activity of mud volcanoes: examples from Emilia and Marche (Northern Apennines, Italy). Int J Earth Sci (Geol Rundsch) 108, 1683–1703 (2019). https://doi.org/10.1007/s00531-019-01730-w

Download citation

Keywords

  • Mud volcanism
  • Anticline structures
  • Fracture systems
  • Seismic interpretation
  • Seismic triggering
  • Northern Apennines