Skip to main content

Advertisement

Log in

Geodynamic transition from subduction to extension: evidence from the geochronology and geochemistry of granitoids in the Sangsang area, southern Lhasa Terrane, Tibet

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The northward subduction of the Neo-Tethys oceanic lithosphere and subsequent collision between India and Asia continents gave rise to the Tibetan Plateau. However, how and when oceanic subduction started to transform to an intraplate environment are still open questions. The granitoids distributed in Lhasa Terrane of south Tibet offer a unique chance for us to investigate the deep geodynamic processes. Here, we present zircon U–Pb–Hf isotope, whole-rock major and trace element and Sr–Nd isotope data of granitoid intrusions in the Sangsang area of the southern Lhasa Terrane. The Sangsang granodiorites and granites were crystallized at ca. 54 Ma, while the emplacement age of the quartz monzonites is ca. 47 Ma. The granodiorites are characterized by relatively high Mg# values (35.3–41.1) and Fe2O3t (5.16–6.26 wt%) contents, and low Na2O + K2O contents (6.4–6.9 wt%) and A/CNK values (0.91–0.99), which are similar to the geochemical characteristics of I-type, high-K calc-alkaline rocks. They have high 87Sr/86Sri ratios (0.706455–0.706490), and low εNd(t) (− 3.58 to − 2.96) and zircon εHf(t) (− 3.4 to 0.3) values, indicating they were derived from a hybrid source of ancient mafic crust and juvenile lower crust. The coeval granites have lower Mg# values (22.5–27.25) and similar zircon εHf(t) values (− 2.6 to 1.1), suggesting they were probably differentiation productions of the granodiorites. The quartz monzonites have higher Na2O + K2O contents (9.18–9.59 wt%) and A/CNK values (0.98–1.03), higher zircon εHf(t) values (− 2.2 to 2.6) and more depleted Sr and Nd isotopes than the granodiorites and granites. The quartz monzonites were probably produced by melting of mixed juvenile crustal materials and metagreywacke. The new geochronological and geochemical data help constrain the geodynamic processes in the Lhasa Terrane during the Early Cenozoic, as the Sangsang granitoids represent the change from subduction termination to intraplate extension at the southern margin of the Lhasa Terrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73. https://doi.org/10.1016/S0024-4937(99)00052-3

    Article  Google Scholar 

  • Balcaen L, De Schrijver I, Moens L, Vanhaecke F (2005) Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference materials by multi-collector ICP-mass spectrometry. Int J Mass Spectrom 242:251–255. https://doi.org/10.1016/j.ijms.2004.10.025

    Article  Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626. https://doi.org/10.1016/S0024-4937(98)00085-1

    Article  Google Scholar 

  • Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol 48:43–55. https://doi.org/10.1016/0009-2541(85)90034-8

    Article  Google Scholar 

  • BGMRXAR (Bureau of Geology Mineral Resources of Xizang Autonomous Region) (1993) Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing, pp 1–450 (in Chinese)

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for phanerozoic U–Pb geochronology. Chem Geol 200:155–170. https://doi.org/10.1016/S0009-2541(03)00165-7

    Article  Google Scholar 

  • Blichert-Toft J, Albarede F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258. https://doi.org/10.1016/S0012-821x(97)00040-X

    Article  Google Scholar 

  • Bonin BL, Azzouni-Sekkal A, Bussy F, Ferrag S (1998) Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos 45:45–70. https://doi.org/10.1016/S0024-4937(98)00025-5

    Article  Google Scholar 

  • Chan GHN, Aitchison JC, Crowley QG, Horstwood MSA, Searle MP, Parrish RR, Chan JSL (2015) U–Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Res 27:719–732

    Article  Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Earth Environ Sci Trans R Soc Edinb 83:1–26. https://doi.org/10.1017/S0263593300007720

    Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138. https://doi.org/10.1093/petrology/28.6.1111

    Article  Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini JC (2007) Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat Geosci 1:64

    Article  Google Scholar 

  • Chen J-L, Xu J-F, Zhao W-X, Dong Y-H, Wang B-D, Kang Z-Q (2011) Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: implications for lower crustal flow beneath the Southern Tibetan Plateau. Lithos 125:928–939. https://doi.org/10.1016/j.lithos.2011.05.006

    Article  Google Scholar 

  • Chu ZY, Chen FK, Yang YH, Guo JH (2009) Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry. J Anal At Spectrom 24:1534–1544. https://doi.org/10.1039/B904047a

    Article  Google Scholar 

  • Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68:173–196. https://doi.org/10.1016/j.earscirev.2004.05.001

    Article  Google Scholar 

  • Chung S-L, Chu M-F, Ji J, O'Reilly SY, Pearson NJ, Liu D, Lee T-Y, Lo C-H (2009) The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics 477(1–2):36–48

    Article  Google Scholar 

  • Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61:1–18. https://doi.org/10.1016/S0012-8252(02)00107-1

    Article  Google Scholar 

  • Dong G-C, Mo X-X, Zhao Z-D, Guo T-Y, Wang L-L, Chen T (2005) Geochronologic constraints on the magmatic underplating of the Gangdisê belt in the India–Eurasia collision: evidence of SHRIMP II zircon U–Pb dating. Acta Geol Sin (Engl Ed) 79(6):787–794

    Article  Google Scholar 

  • Dong YH, Xu JF, Zeng QG, Wang Q, Mao GZ, Li J (2006) Is there a Neo-Tethys’ Subduction Record earlier than arc volcanic rocks in the Sangri Group? Acta Petrol Sin 22:661–668 (in Chinese with an English abstract)

    Google Scholar 

  • Gao S, Liu XM, Yuan HL, Hattendorf B, Gunther D, Chen L, Hu SH (2002) Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Newslett J Geostand Geoanal 26:181–196. https://doi.org/10.1111/j.1751-908X.2002.tb00886.x

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147. https://doi.org/10.1016/S0016-7037(99)00343-9

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269. https://doi.org/10.1016/S0024-4937(02)00082-8

    Article  Google Scholar 

  • Guo L, Liu Y, Liu S, Cawood PA, Wang Z, Liu H (2013a) Petrogenesis of early to middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet: implications for early history of the Neo-Tethys. Lithos 179:320–333. https://doi.org/10.1016/j.lithos.2013.06.011

    Article  Google Scholar 

  • Guo Z, Wilson M, Zhang M, Cheng Z, Zhang L (2013b) Post-collisional, K-rich mafic magmatism in south Tibet: constraints on Indian slab-to-wedge transport processes and plateau uplift. Contrib Miner Petrol 165:1311–1340

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Zircon 53:27–62

    Article  Google Scholar 

  • Huang F, Chen J-L, Xu J-F, Wang B-D, Li J (2015a) Os–Nd–Sr isotopes in Miocene ultrapotassic rocks of southern Tibet: partial melting of a pyroxenite-bearing lithospheric mantle? Geochim Cosmochim Acta 163:279–298. https://doi.org/10.1016/j.gca.2015.04.053

    Article  Google Scholar 

  • Huang F, Xu JF, Chen JL, Kang ZQ, Dong YH (2015b) Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group: products of continental marginal arc and intra-oceanic arc during the subduction of Neo-Tethys Ocean? Acta Petrol Sin 31:2089–2100 (in Chinese with an English abstract)

    Google Scholar 

  • Huang F, Xu J-F, Chen J-L, Wu J-B, Zeng Y-C, Xiong Q-W, Chen X-F, Yu H-X (2016) Two Cenozoic tectonic events of N-S and E–W extension in the Lhasa Terrane: evidence from geology and geochronology. Lithos 245:118–132. https://doi.org/10.1016/j.lithos.2015.08.014

    Article  Google Scholar 

  • Huang F, Xu J, Zeng Y, Chen J, Wang B, Yu H, Chen L, Huang W, Tan R (2017a) Slab breakoff of the Neo-Tethys Ocean in the Lhasa terrane inferred from contemporaneous melting of the mantle and crust. Geochem Geophys Geosyst 18:4074–4095. https://doi.org/10.1002/2017GC007039

    Article  Google Scholar 

  • Huang F, Xu J-F, Liu Y-S, Li J, Chen J-L, Li X-Y (2017b) Re–Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton. Contrib Mineral Petrol 172(28):5. https://doi.org/10.1007/s00410-017-1342-4

    Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155. https://doi.org/10.1016/0012-821x(80)90125-9

    Article  Google Scholar 

  • Jahn BM, Condie KC (1995) Evolution of the Kaapvaal-Craton as viewed from geochemical and Sm–Nd isotopic analyses of intracratonic pelites. Geochim Cosmochim Acta 59:2239–2258

    Article  Google Scholar 

  • Ji W-Q, Wu F-Y, Chung S-L, Li J-X, Liu C-Z (2009) Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245

    Article  Google Scholar 

  • Ji W-Q, Wu F-Y, Liu C-Z, Chung S-L (2012) Early Eocene crustal thickening in southern Tibet: new age and geochemical constraints from the Gangdese batholith. J Asian Earth Sci 53:82–95. https://doi.org/10.1016/j.jseaes.2011.08.020

    Article  Google Scholar 

  • Jiang Z-Q, Wang Q, Wyman DA, Li Z-X, Yang J-H, Shi X-B, Ma L, Tang G-J, Gou G-N, Jia X-H, Guo H-F (2014) Transition from oceanic to continental lithosphere subduction in southern Tibet: evidence from the Late Cretaceous–Early Oligocene (~ 91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese. Lithos 196–197:213–231. https://doi.org/10.1016/j.lithos.2014.03.001

    Article  Google Scholar 

  • Jiang Z, Wang Q, Wyman DA, Shi X, Yang J, Ma L, Gou G (2015) Zircon U–Pb geochronology and geochemistry of Late Cretaceous–early Eocene granodiorites in the southern Gangdese batholith of Tibet: petrogenesis and implications for geodynamics and Cu ± Au ± Mo mineralization. Int Geol Rev 57:373–392. https://doi.org/10.1080/00206814.2015.1009503

    Article  Google Scholar 

  • Kang Z-Q, Xu J-F, Wilde SA, Feng Z-H, Chen J-L, Wang B-D, Fu W-C, Pan H-B (2014) Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos 200–201:157–168. https://doi.org/10.1016/j.lithos.2014.04.019

    Article  Google Scholar 

  • Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q, Zhang Q (2009) Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 477:20–35. https://doi.org/10.1016/j.tecto.2009.02.031

    Article  Google Scholar 

  • Lee HY, Chung SL, Ji J, Qian Q, Gallet S, Lo CH, Lee TY, Zhang Q (2012) Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. J Asian Earth Sci 53:96–114. https://doi.org/10.1016/j.jseaes.2011.08.019

    Article  Google Scholar 

  • Li X-H, Long W-G, Li Q-L, Liu Y, Zheng Y-F, Yang Y-H, Chamberlain KR, Wan D-F, Guo C-H, Wang X-C, Tao H (2010) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf–O isotopes and U–Pb age. Geostand Geoanal Res 34:117–134. https://doi.org/10.1111/j.1751-908X.2010.00036.x

    Article  Google Scholar 

  • Li CY, Zhang H, Wang FY, Liu JQ, Sun YL, Hao XL, Li YL, Sun WD (2012) The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos 150:101–110. https://doi.org/10.1016/j.lithos.2012.04.001

    Article  Google Scholar 

  • Li X, Mo X, Huang X, Dong G, Yu X, Luo M, Liu Y (2015) U–Pb zircon geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: petrogenesis and geodynamic implications. J Asian Earth Sci 97:38–50. https://doi.org/10.1016/j.jseaes.2014.10.017

    Article  Google Scholar 

  • Li X, Mo X, Scheltens M, Guan Q (2016) Mineral chemistry and crystallization conditions of the Late Cretaceous Mamba pluton from the eastern Gangdese, Southern Tibetan Plateau. J Earth Sci 27:545–570. https://doi.org/10.1007/s12583-016-0713-5

    Article  Google Scholar 

  • Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt–peridotite interactions in the trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571. https://doi.org/10.1093/petrology/egp082

    Article  Google Scholar 

  • Liu D, Zhao Z, Zhu D-C, Niu Y, DePaolo DJ, Mark Harrison T, Mo X, Dong G, Zhou S, Sun C, Zhang Z, Liu J (2014) Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta 143:207–231

    Article  Google Scholar 

  • Ludwing K (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Special Publication, Berkeley Geochronology Center, Berkeley, pp 1–70

    Google Scholar 

  • Lugmair GW, Marti K (1978) Lunar initial 143Nd–144Nd differential evolution of lunar crust and mantle. Earth Planet Sci Lett 39:349–357. https://doi.org/10.1016/0012-821x(78)90021-3

    Article  Google Scholar 

  • Ma L, Wang Q, Wyman DA, Jiang Z-Q, Yang J-H, Li Q-L, Gou G-N, Guo H-F (2013) Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr–Nd–Hf–O isotopic evidence from Zhengga diorite–gabbro. Chem Geol 349–350:54–70. https://doi.org/10.1016/j.chemgeo.2013.04.005

    Article  Google Scholar 

  • Ma L, Wang Q, Li Z, Wyman DA, Yang J, Jiang Z, Liu Y, Gou G, Guo H (2017a) Subduction of Indian continent beneath southern Tibet in the latest Eocene (~ 35 Ma): insights from the Quguosha gabbros in southern Lhasa block. Gondwana Res 41:77–92. https://doi.org/10.1016/j.gr.2016.02.005

    Article  Google Scholar 

  • Ma X, Xu Z, Chen X, Meert JG, He Z, Liang F, Meng Y, Ma S (2017b) The origin and tectonic significance of the volcanic rocks of the Yeba Formation in the Gangdese magmatic belt, South Tibet. J Earth Sci 28:265–282

    Article  Google Scholar 

  • Ma XX, Meert JG, Xu ZQ, Yi ZY (2018) Late Triassic intra-oceanic arc system within Neotethys: evidence from cumulate appinite in the Gangdese belt, southern Tibet. Lithosphere 10:545–565

    Article  Google Scholar 

  • Mahoney JJ, Frei R, Tejada MLG, Mo XX, Leat PT, Nagler TF (1998) Tracing the Indian Ocean mantle domain through time: isotopic results from Old West Indian, East Tethyan, and South Pacific seafloor. J Petrol 39:1285–1306. https://doi.org/10.1093/petrology/39.7.1285

    Article  Google Scholar 

  • Meng FY, Zhao ZD, Zhu DC, Mo XX, Guan Q, Huang Y, Dong GC, Zhou S, DePaolo DJ, Harrison TM, Zhang ZC, Liu JL, Liu YS, Hu ZC, Yuan HL (2014) Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: products of back-arc extension of Neo-Tethyan Ocean? Gondwana Res 26:505–520. https://doi.org/10.1016/J.Gr.2013.07.017

    Article  Google Scholar 

  • Miller RG, Onions RK (1985) Source of Precambrian chemical and clastic sediments. Nature 314:325–330. https://doi.org/10.1038/314325a0

    Article  Google Scholar 

  • Miskovic A, Schaltegger U (2009) Crustal growth along a non-collisional cratonic margin: a Lu–Hf isotopic survey of the Eastern Cordilleran granitoids of Peru. Earth Planet Sci Lett 279:303–315. https://doi.org/10.1016/j.epsl.2009.01.002

    Article  Google Scholar 

  • Mo X, Hou Z, Niu Y, Dong G, Qu X, Zhao Z, Yang Z (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242

    Article  Google Scholar 

  • Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol 250:49–67. https://doi.org/10.1016/j.chemgeo.2008.02.003

    Article  Google Scholar 

  • Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS, Vroon PZ (2008) Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol 255:231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040

    Article  Google Scholar 

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Lond Spec Publ 168:55–75. https://doi.org/10.1144/gsl.sp.1999.168.01.05

    Article  Google Scholar 

  • Patriat P, Achache J (1984) India Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311:615–621

    Article  Google Scholar 

  • Pearce J (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett J Geostand Geoanal 21:115–144

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32-Kbar—implications for continental growth and crust–mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236:773–796

    Article  Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828. https://doi.org/10.1130/0091-7613(1993)021%3c0825:Oohpta%3e2.3.Co;2

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (2016) Experimental constraints on the formation of silicic magmas. Elements 12:109–114

    Article  Google Scholar 

  • Shu C, Long X, Yin C, Yuan C, Wang Q, He X, Zhao B, Huang Z (2018) Continental crust growth induced by slab breakoff in collisional orogens: evidence from the Eocene Gangdese granitoids and their mafic enclaves, South Tibet. Gondwana Res 64:35–49

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661. https://doi.org/10.1007/s00410-004-0632-9

    Article  Google Scholar 

  • Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

    Article  Google Scholar 

  • Soderlund U, Patchett JP, Vervoort JD, Isachsen CE (2004) The Lu-176 decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324. https://doi.org/10.1016/S0012-821x(04)00012-3

    Article  Google Scholar 

  • Steiger RH, Jager E (1977) Subcommission on geochronology: convention on use of decay constants in geochronology and cosmochronology. Earth Planet Sci Lett 36:359–362. https://doi.org/10.1016/0012-821x(77)90060-7

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281. https://doi.org/10.1016/S0009-2541(00)00198-4

    Article  Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  • Wang Q, Zhu DC, Cawood PA, Zhao ZD, Liu SA, Chung SL, Zhang LL, Liu D, Zheng YC, Dai JG (2015a) Eocene magmatic processes and crustal thickening in southern Tibet: insights from strongly fractionated ca. 43 Ma granites in the western Gangdese Batholith. Lithos 239:128–141

    Article  Google Scholar 

  • Wang R, Richards JP, Hou ZQ, An F, Creaser RA (2015b) Zircon U–Pb age and Sr–Nd–Hf–O isotope geochemistry of the Paleocene–Eocene igneous rocks in western Gangdese: evidence for the timing of Neo-Tethyan slab breakoff. Lithos 224–225:179–194

    Article  Google Scholar 

  • Wang H, Wu Y-B, Gao S, Qin Z-W, Hu Z-C, Zheng J-P, Yang S-H (2016a) Continental growth through accreted oceanic arc: zircon Hf–O isotope evidence for granitoids from the Qinling orogen. Geochim Cosmochim Acta 182:109–130. https://doi.org/10.1016/j.gca.2016.03.016

    Article  Google Scholar 

  • Wang B-D, Wang L-Q, Chung S-L, Chen J-L, Yin F-G, Liu H, Li X-B, Chen L-K (2016b) Evolution of the Bangong–Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 245:18–33. https://doi.org/10.1016/j.lithos.2015.07.016

    Article  Google Scholar 

  • Wang C, Ding L, Zhang L-Y, Kapp P, Pullen A, Yue Y-H (2016c) Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos 262:320–333

    Article  Google Scholar 

  • Wen D-R, Liu D, Chung S-L, Chu M-F, Ji J, Zhang Q, Song B, Lee T-Y, Yeh M-W, Lo C-H (2008) Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol 252:191–201

    Article  Google Scholar 

  • White AJR, Chappell BW (1988) Some supracrustal (S-type) granites of the Lachlan Fold Belt. Earth Environ Sci Trans R Soc Edinb 79:169–181. https://doi.org/10.1017/S026359330001419X

    Google Scholar 

  • Wu F-Y, Ji W-Q, Wang J-G, Liu C-Z, Chung S-L, Clift PD (2014) Zircon U–Pb and Hf isotopic constraints on the onset time of India–Asia collision. Am J Sci 314:548–579. https://doi.org/10.2475/02.2014.04

    Article  Google Scholar 

  • Xie KJ, Zeng LS, Liu J, Gao LE, Hu GY (2011) Timing and geochemistry of the Linzizong Group volcanic rocks in Sangsang area, Ngamring County, southern Tibet. Geol Bull China 30:1339–1352 (in Chinese with English abstract)

    Google Scholar 

  • Xu JF, Castillo PR (2004) Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain. Tectonophysics 393:9–27. https://doi.org/10.1016/j.tecto.2004.07.028

    Article  Google Scholar 

  • Zeng Y-C, Chen J-L, Xu J-F, Wang B-D, Huang F (2016) Sediment melting during subduction initiation: geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet. Geochem Geophys Geosyst 17:4859–4877. https://doi.org/10.1002/2016gc006456

    Article  Google Scholar 

  • Zeng Y-C, Chen J-L, Xu J-F, Lei M, Xiong Q-W (2017) Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: constraints from geochronology and geochemistry. Gondwana Res 41:51–64. https://doi.org/10.1016/j.gr.2015.06.011

    Article  Google Scholar 

  • Zeng Y-C, Xu J-F, Chen J-L, Wang B-D, Huang F, Yu H-X, Chen X-F, Zhao P-P (2019) Breakup of Eastern Gondwana as inferred from the Lower Cretaceous Charong Dolerites in the central Tethyan Himalaya, southern Tibet. Palaeogeogr Palaeoclimatol Palaeoecol 515:70–82. https://doi.org/10.1016/j.palaeo.2017.10.010

    Article  Google Scholar 

  • Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM, Yuan HL (2007) Zircon U–Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: evidences for early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrol Sin 23:1347–1353 (in Chinese with an English abstract)

    Google Scholar 

  • Zhao ZD, Zhu DC, Dong GC, Mo XX, DePaolo D, Jia LL, Yuan HL (2011) The ~ 54 Ma gabbro-granite intrusive in southern Dangxung area, Tibet: petrogenesis and implications. Acta Petrol Sin 27:3513–3524 (in Chinese with English abstract)

    Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255. https://doi.org/10.1016/j.epsl.2010.11.005

    Article  Google Scholar 

  • Zhu D-C, Zhao Z-D, Niu Y, Dilek Y, Hou Z-Q, Mo X-X (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454. https://doi.org/10.1016/j.gr.2012.02.002

    Article  Google Scholar 

  • Zhu D-C, Wang Q, Zhao Z-D, Chung S-L, Cawood PA, Niu Y, Liu S-A, Wu F-Y, Mo X-X (2015) Magmatic record of India–Asia collision. Sci Rep 5:14289. https://doi.org/10.1038/srep14289

    Article  Google Scholar 

  • Zou J, Yu H, Wang B, Huang F, Zeng Y, Huang W, Wen Y, Zhang Z, Fan Z, Tan R (2018) Petrogenesis and geological implications of Early Jurassic granodiorites in Renqinze area, central part of southern Lhasa subterrane. Earth Sci 43(8):2795–2810 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

We thank the three anonymous reviewers for their constructive and thoughtful reviews which greatly improved the manuscript. Editors Prof. Wolf-Christian Dullo and Albrecht von Quadt are thanked for their helpful comments and editorial handling. Xuefeng Chen, Hai Wu and Qiuwei Xiong are appreciated for their help in the field investigation. We thank Dr. Xinyu Wang, Xianglin Tu and Shengling Sun for their help in major and trace element analyses, Dr. Congying Li and Feng Yang for their help in LA-ICP-MS zircon U–Pb dating, and Dr. Le Zhang for his help in zircon Lu–Hf isotopic analyses. Feng Huang thanks Hongli Li, Xiyao Li and Kang Cao for the early discussion and thanks Dr. Tyrone Rooney for offering the opportunity to complete the revision in Michigan State University. This research was supported by the National Key Research and Development Project of China (Project 2016YFC0600304), the Major State Basic Research Program of the People’s Republic of China (2015CB452602), the Second Tibetan Plateau Scientific Expedition and Research (STEP) (2019QZKK0702), the National Natural Science Foundation of China (41603033, 41730427, 41773026, 41703001 and 41803030), the Support Program of National Postdoctor Program for Innovative Talents (Grant BX201700213), China Postdoctoral Science Foundation funded project (2017M620847), the Fundamental Research Funds for the Central Universities (2652017213), and the University Research Project of Education Department (2017KY0783). Feng Huang is supported by a scholarship from the Chinese Scholarship Council (201704910210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifeng Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Li, M., Xu, J. et al. Geodynamic transition from subduction to extension: evidence from the geochronology and geochemistry of granitoids in the Sangsang area, southern Lhasa Terrane, Tibet. Int J Earth Sci (Geol Rundsch) 108, 1663–1681 (2019). https://doi.org/10.1007/s00531-019-01729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01729-3

Keywords

Navigation