Skip to main content
Log in

Geochemistry and Pb–Pb geochronology of the Neoarchean Nkout West metamorphosed banded iron formation, southern Cameroon

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Nkout West iron deposit of the northern edge of the Congo craton in southern Cameroon forms part of the northwest plunging isoclinal mega fold composed of metamorphosed banded iron formations (BIFs), which have been deformed and metamorphosed, resulting in recrystallized magnetite, quartz and silicates. Here, we present whole-rock geochemistry together with Pb–Pb isotopic compositions and dating of metamorphosed BIF, with the aim to constrain the genesis and elucidate the metamorphic resetting age. Based on the mineral composition, two types of BIF (magnetite BIF, garnet BIF) have been distinguished. The magnetite BIF shows high SiO2 and Fe2O3 and low Al2O3, TiO2, HFSE and ∑REE contents similar to detritus-free chemical sediments. In contrast, their high concentrations in garnet BIF indicate clay-rich-contaminated input. The Co/Zn ratios are consistent with trace metals of hydrothermal sources (0.14 for magnetite BIF) or with minor hydrogenous component (0.27 for garnet BIF). The PAAS-normalized REE-Y patterns of the studied metamorphosed BIFs show LREE depletion relative to HREE and positive Eu anomalies. The magnetite BIF exhibits positive Y anomaly (Y/Y*PAAS = 1.3), which is the signature inherited from sea water, but its Y/Ho (39.93) ratio suggests a mixture of hydrothermal solution with sea water. The garnet BIF shows positive Eu, negative Y anomalies and chondritic Y/Ho ratio (27.49), which is consistent with hydrothermal solution with significant clastic contamination. Whole-rock Pb concentration is roughly on average of 2.0–6.0 ppm, suggesting a hydrothermal Pb source. The Pb–Pb dating yielded an age of 2679 Ma, interpreted as the Neoarchean metamorphic event in the Ntem complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anderson KFE, Frances W, Rollinson GK, Charles JM (2014) Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, southern Cameroon. Ore Geol Rev 62:25–39

    Article  Google Scholar 

  • Anhaeusser CR, Walraven F (1997) Polyphase crustal evolution of the Archean Kraaipan granite-greenstone terrane, Kraapvaal Craton, South Africa. Economic Geology Research Unit, ISBN 1868381935

  • Armstrong, RA (1986) Geochronological studies on Archaean and Proterozoic formations of the foreland of the Namaqua Front and possible correlates on the Kaapvaal Craton. Ph.D thesis, University of the Witwatersrand, Johannesburg

  • Babinski M, Chemale F Jr, William RVS (1995) The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Res 72:235–245

    Article  Google Scholar 

  • Barley ME, Pickard AL, Hagemann SG, Folkert SL (1999) Hydrothermal origin for the 2 billion year old Mount Tom Price giant iron ore deposit, Hamersley Province, Western Australia. Mineral Deposita 34:784–789

    Article  Google Scholar 

  • Barrett TJ (1981) Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the North Appenines, Italy. Chem Geol 34:289–317

    Article  Google Scholar 

  • Barton ES, Armstrong RA, Cornell DH, Welke HJ (1986) Feasibility of total-rock Pb–Pb dating of metamorphosed banded iron formation: the Marydale Group, Southern Africa. Chem Geol 59:255–271

    Article  Google Scholar 

  • Basta FF, Maurice AE, Fontbote L, Favarger P (2011) Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: implications for the origin of Neoproterozoic BIF. Precambrian Res 187:277–292

    Article  Google Scholar 

  • Bau M (1993) Effects of syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations. Eur J Mineral 5:257–267

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron Formation, Transval Supergroup, South Africa. Precambrian Res 79:37–55

    Article  Google Scholar 

  • Bau M, Dulski P (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol 155:77–90

    Article  Google Scholar 

  • Bau M, Möller P (1993) Rare earth element systematics of the chemically precipitated component in Early Precambrian iron-formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochim Cosmochim Acta 57:2239–2249

    Article  Google Scholar 

  • Bauernhofer AH, Hauzenberger CA, Wallbrecher E, Muhongo S, Hoinkes G, Mogessie A, Opiyo-Akech N, Tenczer V (2009) Geochemistry of basement rocks from SE Kenya and NE Tanzania: indications for rifting and early Pan-African Subduction. Int J Earth Sci 98:1809–1834

    Article  Google Scholar 

  • Bekker A, Slack JF, Planavsky N, Krapez B, Hofmann A, Konhauser KO, Rouxel OJ (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes. Econ Geol 105:467–508

    Article  Google Scholar 

  • Beukes NJ, Klein C (1990) Geochemistry and sedimentology of a facies transition from microbanded to granular iron-formation in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Res 47:99–139

    Article  Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterization of Early Archean chemical sediments by trace element signatures. Earth Planet Sci Lett 222:43–60

    Article  Google Scholar 

  • Bonatti E (1975) Metallogenesis at oceanic spreading centers. Ann Rev Earth Planet Sci 3:401–433

    Article  Google Scholar 

  • Boynton WV (1984) Geochemistry of rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, New York, pp 63–114

    Chapter  Google Scholar 

  • Brooks C, Wendt I, Harre W (1968) A two-error regression treatment and its application to Rb–Sr and initial Sr87/Sr86 ratios of younger Variscan granitic rocks from the Schwarzwald massif, southwest Germany. J Geophys Res 73:6071–6084

    Article  Google Scholar 

  • Brooks C, Hart SR, Wendt I (1972) Realistic use of two error regression treatments as applied to rubidium–strontium data. Rev Geophys Space Phys 10:551–577

    Article  Google Scholar 

  • Caen Vachette M, Vialette Y, Bassot JP, Vidal P (1988) Apport de la géochronologie à la connaissance de la géologie gabonaise. Chron Rech Min 491:35–54

    Google Scholar 

  • Choi JH, Hariya Y (1992) Geochemistry and depositional environment of Mn oxide deposits in the Tokoro Belt, northeastern Hokkaido Japan. Econ Geol 87:1265–1274

    Article  Google Scholar 

  • Chombong NN, Suh CE (2013) 2883 Ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics. Episodes 36:47–57

    Google Scholar 

  • Evans JL (1978) The geology and geochemistry of the Dyke Lake area (parts of 23J/8, 9), Labrador. Mineral Development Division, Newfoundland Department of Mines and Energy, vol 39, pp 74–78

  • Ewers WE, Morris RC (1981) Studies of the Dales George member of the Brockman Iron Formation, Western Australia. Econ Geol 76:1929–1953

    Article  Google Scholar 

  • Faure G (1977) Principles of isotope geology. Wiley, New York, p 464

    Google Scholar 

  • Ganno S, Ngnotue T, Kouankap NGD, Nzenti JP, Notsa FM (2015) Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: implications for the origin and depositional environment. Chem Erde 75:375–387

    Article  Google Scholar 

  • Ganno S, Moudioh C, Nzina NA, Kouankap Nono GD, Nzenti JP (2016) Geochemical fingerprint and iron ore potential of the siliceous itabirite from Palaeoproterozoic Nyong Series, Zambi area, Southwestern Cameroon. Resour Geol 66(1):71–80

    Article  Google Scholar 

  • Ganno S, Njiosseu TEL, Ngnotué T, Kouankap NGD, Nzenti JP (2017) A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong Series, Southwestern Cameroon: constraints from petrography and geochemistry. Ore Geol Rev 80:860–875

    Article  Google Scholar 

  • Ganno S, Tsozué D, Kouankap Nono GD, Tchouatcha MS, Ngnotué T, Gamgne Takam R, Nzenti JP (2018) Geochemical constraints on the origin of mineralized banded iron formation from the Meyomessi area, Archaean Ntem Complex (Congo Craton), southern Cameroon. Resour Geol 68(3):287–302

    Article  Google Scholar 

  • Goodwin AM (1991) Precambrian geology: the dynamic evolution of the continental crust. Academic Press, New York, pp 1–666

    Book  Google Scholar 

  • Gross GA (1983) Iron-formation in fold belts marginal to the Ungava craton. In: Trendall AF, Morris RC (eds) Iron formation: facts and problems. Elsevier, Amsterdam, pp 253–294

    Chapter  Google Scholar 

  • Gross GA, McLeod CR (1980) A preliminary assessment of the chemical composition of iron-formation in Canada. Can Mineral 18:223–229

    Google Scholar 

  • Gurvich EG (2006) Metalliferous sediments of the world ocean: fundamental theory of deep-sea hydrothermal sedimentation. Springer, Berlin, p 416

    Google Scholar 

  • Hatton O, Davidson G (2004) Soldiers Cap Group iron-formations, Mt. Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Aust J Earth Sci 51:85–106

    Article  Google Scholar 

  • Hein JR, Schulz MS, Kang JK (1990) Insular and submarine ferro-manganese mineralization of the Tongap-Lau region. Mar Min 9:305–354

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, pp 582–589

    Google Scholar 

  • Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55

    Article  Google Scholar 

  • Ilouga CDI, Suh CE, Ghogomu RT (2013) Textures and rare earth elements composition of banded iron formations (BIF) at Njweng prospect, Mbalam Iron Ore District, Southern Cameroon. Int J Geosci 4:146–165

    Article  Google Scholar 

  • James HL (1954) Sedimentary facies of iron-formations. Econ Geol 49:235–293

    Article  Google Scholar 

  • James HL (1992) Precambrian iron-formations: nature, origin, and mineralogical evolution from sedimentation to metamorphism. In: Wolf KH, Chilingarian GV (eds) Diagenesis III. Developments in sedimentology. Elsevier, Amsterdam, pp 543–589

    Chapter  Google Scholar 

  • Kholodov VN, Butuzova GY (2001) Problems of iron and phosphorus geochemistry in the Precambrian. Lithol Min Resour 36(4):291–302

    Article  Google Scholar 

  • Klein C (2005) Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry and origin. Am Mineral 90:1473–1499

    Article  Google Scholar 

  • Klein C, Beukes NJ (1992) Time distribution. In: Schopf JW, Klein C (eds) stratigraphy, sedimentologic setting, and geochemistry of Precambrian iron-formation, in the proterozoic biosphere: a multidisciplinary study. Cambridge University Press, New York, pp 139–146

    Google Scholar 

  • Lan TG, Fan HR, Santosh M, Hu FF, Yang KF, Yang YH, Liu YS (2014) U–Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in eastern Shandong Province: constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton. Ore Geol Rev 56:472–486

    Article  Google Scholar 

  • Lascelles DF (2006) The Mount Gibson banded iron formation-hosted magnetite deposit: two distinct processes for the origin of high-grade iron ore. Econ Geol 101:651–666

    Article  Google Scholar 

  • Lascelles DF (2007) Black smokers and the Archean environment: uniformitarian model for the genesis of iron-formations. Ore Geol Rev 32:381–411

    Article  Google Scholar 

  • Lerouge C, Cocherie A, Toteu SF, Milesi JP, Penaye J, Tchameni R, Nsifa NE, Fanning CM (2006) Shrimp U/Pb zircon age evidence for paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-western Cameroon: consequences for the eburnean-transamazonian belt of NE Brazil and central Africa. J Afr Earth Sci 44:413–427

    Article  Google Scholar 

  • Li X-H, Chen Y, Li J, Yang C, Ling X-X, Tchouankoue JP (2016) New isotopic constraints on age and origin of Mesoarchean charnockite, trondhjemite and amphibolite in the Ntem Complex of NW Congo Craton, southern Cameroon. Precambrian Res 276:14–23

    Article  Google Scholar 

  • Ludwig KR (2011) Isoplot 3.00—a geochronological toolkit for excel. Berkely Geochronology Center, p 67 (special publication 4)

  • Manikyamba C, Balaram V, Naqvi SM (1993) Geochemical signatures of polygenetic origin of the banded iron formation (BIF) of Archean Sandur greenstone belt (schist belt), Karnataka nucleus, India. Precambrian Res 61:137–164

    Article  Google Scholar 

  • Marchig V, Gundlach H, Möller P, Schley F (1982) Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Mar Geol 50:241–256

    Article  Google Scholar 

  • Maurizot P, Abessolo A, Feybesse JL, John et Lecomte P (1986) Étude de prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985, rapport BRGM 85 CMR 066

  • McLennan SM, Hemming S, McDanniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments, vol 285. Geological Society of America, Special Paper, pp 21–40

    Chapter  Google Scholar 

  • Moorbath S, O’Nions RK, Pankhurst RJ (1973) Early Archaean age for the Isua Iron Formation, West Greenland. Nature 245:138–139

    Article  Google Scholar 

  • Ndime Ekah N, Ganno S, Soh Tamehe L, Nzenti JP (2018) Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa. J Afr Earth Sci 148:80–98

    Article  Google Scholar 

  • Nédélec A, Nsifa EN, Martin H (1990) Major and trace element geochemistry of the Archaean Ntem plutonic complex (South Cameroon): petrogenesis and crustal evolution provenance of detritus for the Nyong Group. Precambrian Res 47:35–50

    Article  Google Scholar 

  • Nsoh FE, Agbor TA, Etame J, Suh EC (2014) Ore-textures and geochemistry of the Nkout iron deposit South East Cameroon. Sci Technol Dév 15:43–52

    Google Scholar 

  • Nzenti JP, Barbey P, Macaudière J, Soba D (1988) Origin and evolution of the late Precambrian high-grade Yaounde gneisses (Cameroon). Precambrian Res 38:91–109

    Article  Google Scholar 

  • Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounte J, Ganwa A, Minyem D, Nsifa EN (2004) The 2.1 Ga West Central African Belt in Cameroon: extension and evolution. J Afr Earth Sci 3:159–164

    Article  Google Scholar 

  • Planavsky N, Bekker A, Rouxel OJ, Kamber B, Hofmann A, Knudsen A, Lyons WT (2010) Rare earth element and yttrium compositions of Archaean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74:6387–6405

    Article  Google Scholar 

  • Pouclet A, Tchameni R, Mezger K, Vidal M, Nsifa EN, Shang CK, Penaye J (2007) Archaean crustal accretion at the northern border of the Congo Craton (South Cameroon), the charnockite-TTG link. Bull Geol Soc Fr 178:331–342

    Article  Google Scholar 

  • Poulton SW, Fralick Philip W, Canfield Donald E (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci 3(7):486–490

    Article  Google Scholar 

  • Pufahl PK (2010) Bio-elemental sediments. In: James NP, Dalrymple RW (eds) Facies models 4, 4th edn. Geological Association of Canada, St. John’s, pp 477–504

    Google Scholar 

  • Rosholt JN, Zartman RE, Nkomo LT (1973) Lead isotope systematics and uranium depletion in the Granite Mountains, Wyoming. Bull Geol Soc Am 84:989–1002

    Article  Google Scholar 

  • Rosière CA, Spier CA, Rios FJ, Suckau VE (2008) The itabirites of the Quadrilátero Ferrífero and related high-grade iron ore deposits: an overview. In: Hagemann S, Rosière CA, Gutzmer J, Beukes NJ (eds) Banded iron formation-related high-grade iron ore. Reviews in economic geology, vol 15, pp 223–254

  • Rudnick RL, McLennan SM, Taylor SR (1985) Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochimica Cosmochimica Acta 49:1645–1655

    Article  Google Scholar 

  • Shang CK, Satir M, Siebel W, Taubald H, Nsifa EN, Westphal M, Reitter E (2001) Genesis of K-rich granitoids in the Sangmelima region, Ntem complex (Congo craton), Cameroon. Terra Nova 5:60–63

    Google Scholar 

  • Shang CK, Satir M, Siebel W, Nsifa NE, Taubald H, Liegeois JP, Tchoua FM (2004) Major and trace element geochemistry, Rb-Sr and Sm-Nd systematics of the TTG magmatism in the Congo Craton: case of the Sangmelima region, Ntem complex, southern Cameroon. J Afr Earth Sci 40:61–79

    Article  Google Scholar 

  • Shang CK, Liégeois JP, Satir M, Frisch W, Nsifa EN (2010) Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo Craton, Southern Cameroon: evidence for Pb-loss due to non-metamorphic causes. Gondwana Res 475:1–19

    Google Scholar 

  • Soh Tamehe L, Nzepang Tankwa M, Wei CT, Ganno S, Ngnotue T, Kouankap Nono GD, Simon SJ, Zhang JJ, Nzenti JP (2018) Geology and geochemical constrains on the origin and depositional setting of Kpwa-Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon. Ore Geol Rev 95:620–638

    Article  Google Scholar 

  • Soh Tamehe L, Wei CT, Ganno S, Simon SJ, Kouankap Nono GD, Nzenti JP, Lemdjou YB, Lin NH (2019) Geology of the Gouap iron deposit, Congo craton, southern Cameroon: implications for iron ore exploration. Ore Geol Rev 107:1097–1128

    Article  Google Scholar 

  • Spier CA, de Oliveira SB, Rosiere CA (2003) Geology and geochemistry of the Aguas Claras and Pico Iron Mines, Quadrilatero Ferrifero, Minas Gerais, Brazil. Mineral Deposita 38:751–774

    Article  Google Scholar 

  • Spier CA, de Oliveira SMB, Sial AN, Rios FJ (2007) Geochemistry and genesis of the banded iron formations of the Caue Formation, Quadrilatero Ferrıfero, Minas Gerais, Brazil. Precambrian Res 152:170–206

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Suh CE, Cabral A, Shemang EM, Mbinkar L, Mboudou GGM (2008) Two contrasting iron-ore deposits in the Precambrian mineral belt of Cameroon, West Africa. Explor Min Geol 17:197–207

    Article  Google Scholar 

  • Suh CE, Cabral AR, Ndime E (2009) Geology and ore fabrics of the Nkout high-grade haematite deposit, southern Cameroon. Smart Sci Explor Min 1:558–560

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, London, pp 1–328

    Google Scholar 

  • Tchameni R, Mezger K, Nsifa NE, Pouclet A (2000) Neoarchaean evolution in the Congo craton: evidence from K rich granitoids of the Ntem complex, Southern Cameroon. J Afr Earth Sci 30:133–147

    Article  Google Scholar 

  • Tchameni R, Mezger K, Nsifa NE, Pouclet A (2001) Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos 57(1):23–42

    Article  Google Scholar 

  • Tchameni R, Pouclet A, Mezger K, Nsifa EN, Vicat JP (2004) Monozircon and Sm-Nd whole rock ages from the Ebolowa greenstone belts: evidence for the terranes older than 2.9 Ga in the Ntem complex (Congo craton, South Cameroon). J Cameroon Acad Sci 4(3):213–224

    Google Scholar 

  • Tchameni R, Lerouge C, Penaye J, Cocherie A, Milesi JP, Toteu SF, Nsifa EN (2010) Mineralogical constraint for metamorphic conditions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (southern Cameroon) and retentively of U–Pb SHRIMP zircon dates. J Afr Earth Sci 58:67–80

    Article  Google Scholar 

  • Teutsong T, Bontognali TRR, Ndjigui PD, Vrijmoed JC, Teagle D, Cooper M, Vance D (2017) Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: implications for its origin. Ore Geol Rev 80:267–288

    Article  Google Scholar 

  • Tosdal RM, Wooden JL, Bouse RM (1999) Pb isotopes, ore deposits, and metallogenic terranes, Application of radiogenic isotopes to ore deposit research and exploration. Rev Econ Geol 12:1–28

    Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Nyobe JB (1994) U–Pb and Sm–Nd evidence for Eburnean and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Res 67:321–347

    Article  Google Scholar 

  • Toteu SF, Penaye J, Poudjom Djomani YH (2004) Geodynamic evolution of the Pan-African belt in Central Africa with special reference to Cameroon. Can J Earth Sci 41:73–85

    Article  Google Scholar 

  • Toteu SF, Penaye J, Deloule E, Van Schmus WR, Tchameni R (2006) Diachronous evolution of volcano-sedimentary basins, North of the Congo Craton: insights from U–Pb ion microprobe dating of zircons from the Poli, Lom and Yaounde Groups (Cameroon). J Afr Earth Sci 44:428–442

    Article  Google Scholar 

  • Toth JR (1980) Deposition of submarine crusts rich in manganese and iron. GSA Bull 91(1):44–54

    Article  Google Scholar 

  • Trendall AF (2002) The significance of iron-formation in the Precambrian stratigraphic record. Int Assoc Sedimentol Spec Publ 33:33–66

    Google Scholar 

  • Trendall AF, Blockley JG (1970) The iron formations of the Precambrian Hamersley Group Western Australia with special reference to the crocidolite. Geological Survey of Western Australia Bulletin, Perth

    Google Scholar 

  • Usui A, Someya M (1997) Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. In: Nicholson K, Hein JR, Buhn B, Dasgupta S (eds) Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geological Society London, Special Publication 119, pp 177–198

    Google Scholar 

  • Yang X-Q, Zhang Z-H, Duan S-G, Zhao X-M (2015) Petrological and geochemical features of the Jingtieshan banded iron formation (BIF): a unique type of BIF from the Northern Qilian Orogenic Belt, NW China. Ore Geol Rev 63:418–443

    Article  Google Scholar 

  • York D (1969) Least-squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324

    Article  Google Scholar 

  • Young GM (2013) Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geosci Front 4:247–261

    Article  Google Scholar 

  • Zhai M, Santosh M (2011) The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Res 20:6–25

    Article  Google Scholar 

  • Zhai MG, Santosh M (2013) Metallogeny of the North China Craton: link with secular changes in the evolving Earth. Gondwana Res 24:275–297

    Article  Google Scholar 

Download references

Acknowledgements

This study is a part of the senior author’s Ph.D. thesis at the University of Yaoundé I. The authors would like to express their gratitude to the management staff of ‘IMIC/CAMINEX SA’ for the permission to collect diamond drill core samples from the Nkout West deposit and logistic facilities during field work. We are thankful to Professor A. Von Quadt and one anonymous reviewer for their helpful and suggestive comments. This is the contribution of IGCP 646 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvestre Ganno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndime, E.N., Ganno, S. & Nzenti, J.P. Geochemistry and Pb–Pb geochronology of the Neoarchean Nkout West metamorphosed banded iron formation, southern Cameroon. Int J Earth Sci (Geol Rundsch) 108, 1551–1570 (2019). https://doi.org/10.1007/s00531-019-01719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01719-5

Keywords

Navigation