Sediment grain size does matter: implications of spatiotemporal variations in detrital zircon provenance for early Paleozoic peri-Gondwana reconstructions

Abstract

A comprehensive understanding of the relationship between the Sino-Korean Craton (SKC) and the Gondwana supercontinent is crucial for accurate reconstruction of the tectonic evolution and early Paleozoic paleogeography of East Asia. To explore the link between the SKC and peri-Gondwana, we provide new detrital zircon U–Pb age data from litho- and bio-stratigraphically constrained lower Cambrian to Lower Ordovician sandstone deposits from the eastern margin of the SKC (Taebaeksan Basin). Results indicate that the two distinct age spectra of detrital zircon resulted from provenance change combined with a strong function of sediment grain size within host siliciclastic rocks of the Taebaek Group. The age spectra from coarse-grained sandstones display Paleoproterozoic (1.9 Ga) and Neoarchean (~ 2.5 Ga) peaks, indicating that the sediments were supplied from the basement rocks of the SKC. Conversely, age spectra from fine-grained siliciclastics contain late Mesoproterozoic (~ 1.0 Ga) and Neoproterozoic (~ 0.6 Ga) peaks, with or without a Paleoproterozoic signal, consistent with a Gondwanan sediment origin. These different age populations have been documented in multiple Cambrian and Ordovician sequences of the SKC and are consistently well correlated with sediment grain size. Coarse-grained sediments, sourced primarily from local basement rocks, were deposited in coastal, nearshore, and shelf environments, whereas fine-grained sediments were derived from more distal sources (i.e., the Gondwana mainland and/or the Gyeonggi Marginal Belt) and deposited in inner to outer shelf settings. Therefore, the repeated occurrence of sediment with two distinct provenances in the Cambrian–Ordovician siliciclastics of the SKC is likely a result of provenance shift integrated with changing depositional environments in an epeiric platform. This yielded variations in sediment grain size and source rock provenance, with and/or without a tectonic activity. Consequently, our results indicate that the SKC was adjacent to Gondwana during the early Paleozoic.

This is a preview of subscription content, log in to check access.

Fig. 1

(modified from Li et al. 2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Bryant DL, Ayers JC, Gao S, Miller CF, Zhang H (2004) Geochemical, age, and isotopic constraints on the location of the Sino–Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geol Soc Am Bull 116:698–717

    Article  Google Scholar 

  2. Burrett C, Khin Z, Meffre S, Lai CK, Khositanont S, Chaodumrong P, Udchachon M, Ekins S, Halpin J (2014) The configuration of Greater Gondwana—evidence from LA ICPMS, U–Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Res 26:31–51

    Article  Google Scholar 

  3. Bussient D, Gombojav N, Winkler W, von Quadt A (2011) The Mongol–Okhotsk Belt in Mongolia—an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons. Tectonophyisc 510:132–150

    Article  Google Scholar 

  4. Cawood PA, Nemchin AA (2000) Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sediment Geol 134:209–234

    Article  Google Scholar 

  5. Cawood PA, Johnson MRW, Nemchin AA (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth Planet Sci Lett 255:70–84

    Article  Google Scholar 

  6. Cawood PA, Wang Y, Xu Y, Zhao G (2013) Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere? Geology 41:903–906

    Article  Google Scholar 

  7. Cho M, Cheong WC (2016) Comment on “Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin, South Korea: implications for the Gondwana linkage of the Sino-Korea (North China) block during the Neoproterzoic–early Cambrian” by Lee et al. [Palaeogeography, Palaeoclimatology, Palaeoecology 441 (2016) 770–786]. Palaeogeogr Palaeoclimatol Palaeoecol 459:606–609

    Article  Google Scholar 

  8. Cho D-L, Lee SR, Koh HJ, Park J-B, Amstrong R, Choi DK (2014) Late Ordovician volcanism in Korea constrains the timing for breakup of Sino-Korean Craton from Gondwana. J Asian Earth Sci 96:279–286

    Article  Google Scholar 

  9. Cho M, Kim T, Yang S-Y, Yi K (2017a) Paleoproterozoic to Triassic crustal evolution of the Gyeonggi Massif, Korea: tectonic correlation with the North China craton. In: Law RD, Thigpen JR, Merschat AJ, Stowell H (eds) Linkages and feedbacks in orogenic systems, vol 213. Memoir of Geological Society of America, London, pp 165–197

    Google Scholar 

  10. Cho M, Lee Y, Kim T, Cheong W, Kim Y, Lee SR (2017b) Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: an overview. Geosci J 21:845–865

    Article  Google Scholar 

  11. Choi DK (2018) Evolution of the Taebaeksan Basin, Korea: I, early Paleozoic sedimentation in an epeiric sea and break-up of the Sino-Korean Craton from Gondwana. Island Arc. https://doi.org/10.1111/iar.12275

    Google Scholar 

  12. Choi DK, Chough SK (2005) The Cambrian–Ordovician stratigraphy of the Taebaeksan Basin, Korea: a review. Geosci J 9:187–214

    Article  Google Scholar 

  13. Choi T, Lee YI, Orihashi Y, Yi H-I (2013) The provenance of the southeastern Yellow Sea sediments constrained by detrital zircon U–Pb age. Mar Geol 337:182–194

    Article  Google Scholar 

  14. Chough SK (2013) Geology and sedimentology of Korean Peninsula. Elsevier Insights, Elsevier, Oxford

    Google Scholar 

  15. Cocks LRM, Torsvik TH (2013) The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth Sci Rev 117:40–79

    Article  Google Scholar 

  16. Darby BJ, Gehrels G (2006) Detrital zircon reference for the North China block. J Asian Earth Sci 26:637–648

    Article  Google Scholar 

  17. Dickinson WR, Beard LS, Brakenridge GR, Erjavec JR, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235

    Article  Google Scholar 

  18. Dickinson WR, Lawton TF, Pecha M, Davis SJ, Gehrels GE, Young RA (2012) Provenance of the Paleogene Colton Formation (Uinta Basin) and Cretaceous–Paleogene provenance evolution in the Utah foreland: evidence from U–Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere 8:854–880

    Article  Google Scholar 

  19. Dong Y, Liu X, Neubauer F, Zhang G, Tao N, Zhang Y, Zhang X, Li W (2013) Timing of Paleozoic amalgamation between the North China and South China Blocks: evidence from detrital zircon U–Pb ages. Tectonophysics 586:173–191

    Article  Google Scholar 

  20. Duan L, Meng Q-R, Wu G-L, Ma S-X, Li Lin (2012) Detrital zircon evidence for the linkage of the South China block with Gondwanaland in early Palaeozoic time. Geol Mag 149:1124–1131

    Article  Google Scholar 

  21. Evans DAD (2009) The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient orogens and modern analogues. Geological Society of London, Special Publications no. 327, London, pp 371–404

    Google Scholar 

  22. Fei AW (2001) Study of Trace Fossil Assemblage and Paleoenvironment of Middle Ordovician Lashizhong Formation, Ordos Basin. Geol J China Univ 7:278–287 (in Chinese with English abstract)

    Google Scholar 

  23. Flowerdew MJ, Millar IL, Curtis ML, Vaughan APM, Horstwood MSA, Whitehouse MJ, Fanning CM (2007) Combined U–Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth–Whitmore Mountains block, Antarctica. Geol Soc Am Bull 119:275–288

    Article  Google Scholar 

  24. Gehrels GE (2014) Detrital zircon U–Pb geochronology applied to tectonics. Annu Rev Earth Planet Sci 42:127–149

    Article  Google Scholar 

  25. Hacker BR, Ratschbacher L, Webb LE, Ireland TR, Walker D, Dong S (1998) U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet. Sci Lett 161:215–230

    Article  Google Scholar 

  26. Hacker BR, Wallis SR, Ratschbacher L, Grove M, Gehrels G (2006) High temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics. https://doi.org/10.1029/2005TC001937

    Google Scholar 

  27. Hu B, Zhai MG, Peng P, Liu F, Diwu CR, Wang HZ, Zhang HD (2013) Late Paleoproterozoic to Neoproterozoic geological events of the North China Craton: evidences from LA-ICP-MS U–Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing. Acta Petrol Sin 29:2508–2536 (in Chinese with English abstract)

    Google Scholar 

  28. Ingersoll RV, Grove M, Jacobson CE, Kimbrough DL, Hoyt JF (2013) Detrital zircons indicate no drainage link between southern California rivers and the Colorado Plateau from mid-Cretaceous through Pliocene. Geology 41:311–314

    Article  Google Scholar 

  29. Jang Y, Kwon S, Song Y, Kim SW, Kwon YK, Yi K (2018) Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U–Pb detrital zircon and K–Ar illite geochronologies. J Asian Earth Sci 157:198–217

    Article  Google Scholar 

  30. Johnsson MJ (1993) The system controlling the composition of clastic sediments. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geological Society of America Special Paper 284, Geological Society of America, Boulder, pp 1–20

    Google Scholar 

  31. Kim Y, Lee YI (2004) Diagenesis of shallow marine sandstones, the Lower Ordovician Dongjeom Formation, Korea: response to relative sea-level changes. J Asian Earth Sci 23:235–245

    Article  Google Scholar 

  32. Kim HS, Ree J-H (2016) Comment on “Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin, South Korea: implications for the Gondwana linkage of the Sino-Korean (North China) block during the Neoproterozoic-Early Cambrian” by Lee, Y.I., Choi, T., Lim, H.S., & Orihashi, Y. [Palaeogeogr Palaeoclimatol Palaeoecol 441 (2016) 770–786]. Palaeogeogr Palaeoclimatol Palaeoecol 459:610–612

    Article  Google Scholar 

  33. Kim N, Cheong C-S, Park K-H, Kim J, Song Y-S (2012) Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U–Pb zircon geochronology and geochemistry. Gondwana Res 21:865–875

    Article  Google Scholar 

  34. Kim HS, Hwang M-K, Ree J-H, Yi K (2013) Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian: insights from U–Pb dating of detrital zircon. Earth Planet Sci Lett 368:204–218

    Article  Google Scholar 

  35. Kim SW, Park S-I, Jang Y, Kwon S, Kim SJ, Santosh M (2017) Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: implications for the tectonic history of East Asia. Gondwana Res 50:195–215

    Article  Google Scholar 

  36. Kwon YK, Chough SK, Choi DK, Lee DJ (2006) Sequence stratigraphy of the Taebaek Group (Cambrian–Ordovician), mideast Korea. Sediment Geol 192:19–55

    Article  Google Scholar 

  37. Lawrence RL, Cox R, Mapes RW, Coleman DS (2011) Hydrodynamic fractionation of zircon age populations. Geol Soc Am Bull 123:295–305

    Article  Google Scholar 

  38. Lee S-B, Choi DK (2011) Dikelocephalid Trilobites from the Eosaukia Fauna (Upper Furongian) of the Taebaek Group, Korea. J Paleontol 85:279–297

    Article  Google Scholar 

  39. Lee YI, Choi T, Lim HS, Orihashi Y (2012) Detrital zircon U-Pb ages of the Jangsan Formation in the northeastern Okcheon belt, Korea and its implications for material source, provenance, and tectonic setting. Sediment Geol 282:256–267

    Article  Google Scholar 

  40. Lee YI, Choi T, Lim HS, Orihashi Y (2016) Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin, South Korea: implications for the Gondwana linkage of the Sino-Korean (North China) block during the Neoproterozoic–early Cambrian. Palaeogeogr Palaeoclimatol Palaeoecol 441:770–786

    Article  Google Scholar 

  41. Li ZX, Powell CM (2001) An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Sci Rev 53:237–277

    Article  Google Scholar 

  42. Li S, Zhao S, Liu X, Ca H, Yu S, Li X, Somerville I, Yu S, Suo Y (2017) Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2017.01.011

    Google Scholar 

  43. McKenzie NR, Hughes NC, Myrow PM, Choi DK, Park TY (2011) Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology 39:591–594

    Article  Google Scholar 

  44. Meng X, Ge M, Tucker ME (1997) Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sediment Geol 114:189–222

    Article  Google Scholar 

  45. Metcalfe I (2006) Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Res 9:24–46

    Article  Google Scholar 

  46. Niemi NA (2013) Detrital zircon age distributions as a discriminator of tectonic versus fluvial transport: an example from the Death Valley, USA, extended terrane. Geosphere 9:126–137

    Article  Google Scholar 

  47. Park T-Y, Choi DK (2012) Middle Furongian (Late Cambrian) Shumardiids from the Sesong Formation, Taebaek Group, Korea. J Paleontol 86:51–59

    Article  Google Scholar 

  48. Park T-Y, Kihm J-H, Choi DK (2013) Late Middle Cambrian (Cambrian Series 3) Trilobite Faunas from the Lowermost Part of the Sesong Formation, Korea and Their Correlation with North China. J Paleontol 87:991–1003

    Article  Google Scholar 

  49. Potter PE, Maynard JB, Depetris PJ (2005) Mud and mudstones. Springer-Verlag, Berlin, 297 pp

    Google Scholar 

  50. Ratschbacher L, Franz L, Enkelmann E, Jonckheere R, Pörschke A, Hacker BR, Dong S, Zhang Y (2006) The Sino–Korean–Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra)high-pressure rocks along the Tongbai–Xinxian–Dabie. In: Hacker BR, McClelland WC, Liou JG (eds) Ultrahigh-pressure metamorphism: deep continental subduction, vol 403. Special Paper Geological Society of America, Boulder, pp 45–75

    Google Scholar 

  51. Ree J-H, Kwon S-H, Park Y (2001) Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: implications for the timing of strike-slip shearing and thrusting. Tectonics 20:850–867

    Article  Google Scholar 

  52. Scotese CR (2009) Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. In: Craig J, Thurow J, Thusu B, Whiteham A, Abutarruma Y (eds) Global neoproterozoic petroleum systems: the emerging potential in North Africa, vol 326. Geological Society of London, Special Publications, London, pp 67–83

    Google Scholar 

  53. Shaw J, Gutierrez-Alonso G, Johnston ST, Galan DP (2014) Provenance variability along the Early Ordovician north Gondwana margin: paleogeographic and tectonic implications of U–Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Geol Soc Am Bull 126:702–719

    Article  Google Scholar 

  54. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSW, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  55. Squire R, Campbell I, Allen C, Wilson C (2006) Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet Sci Lett 250:116–133

    Article  Google Scholar 

  56. Veevers JJ (2004) Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev 68:1–132

    Article  Google Scholar 

  57. Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Frontiers 9:1479–1493

    Article  Google Scholar 

  58. Wang RC, Xu SJ, Fang Z, Shieg YN, Li HM, Li DM, Wan JL, Wu WP (2004) Protolith age and exhumation history of metagranites from the Dabie UHP metamorphic belt in east-central China: a multi-chronological study. Geochem J 38:345–362

    Article  Google Scholar 

  59. Wang Y, Zhang F, Fan W, Zhang G, Chen S, Cawood PA, Zhang A (2010) Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics 29:TC6020

    Article  Google Scholar 

  60. Wang Z, Zhou H, Wang X, Zheng M, Santosh M, Jing X, Zhang J, Zhang Y (2016) Detrital zircon fingerprints link western North China Craton with East Gondwana during Ordovician. Gondwana Res 40:58–76

    Article  Google Scholar 

  61. Weislogel AL, Graham SA, Chang EZ, Wooden JL, Gehrels GE (2010) Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: record of collisional tectonics, erosional exhumation, and sediment production. Geol Soc Am Bull 122:2041–2062

    Article  Google Scholar 

  62. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Article  Google Scholar 

  63. Xia X, Sun M, Zhao G, Wu F, Xie L (2009) U–Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications. Geol Mag 146:701–716

    Article  Google Scholar 

  64. Xu XY, Xia LQ, Xia ZC (2005) Volcanism and mineralization in the North Qilian Orogenic Belt, Northwestern China. In: Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin

    Google Scholar 

  65. Yang JH, Peng P, Jong CS, Park U, Mun JG, Kin CH, Ku HC (2016) Comparison on ages of detrital zircons from the Paleoproterozoic to Lower Paleozoic sedimentary rocks in the Pyongnam Basin, Korea. Acta Petrologica Sinica 32:3155–3179 (in Chinese with English abstract)

    Google Scholar 

  66. Zhai M-G, Santosh M (2011) The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Res 20:6–25

    Article  Google Scholar 

  67. Zhao G, Sun M, Wilde SA, Sanzhong L (2005) Zircon Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136:177–202

    Article  Google Scholar 

  68. Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ, Cheng H (2008) Detrital zircon U–Pb dating of low-grade metamorphic rocks in the Sulu UHP belt: evidence for overthrusting of the North China Craton onto the South China Craton during continental subduction. J Geol Soc Lond 165:423–433

    Article  Google Scholar 

  69. Zhu D-C, Zhao Z-D, Niu Y, Dilek Y, Wang Q, Ji W-H, Dong G-C, Sui Q-L, Liu Y-S, Yuan H-L, Mo X-X (2012) Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc in the Australia proto-Tethyan margin. Chem Geol 328:290–308

    Article  Google Scholar 

  70. Zimmermann U, Andersen T, Madland MV, Larsen IS (2015) The role of U–Pb ages of detrital zircons in sedimentology–an alarming case study for the impact of sampling for provenance interpretation. Sediment Geol 320:38–50

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Science and ICT 2017R1D1A1B04028521 to H. S. Kim, 2018R1A2A2A05018469 to S.-J. Choh, and 2018R1A4A1059956 to J.-H. Lee. We thank to J. M. Lee, H. J, Lee, and S. Cho of Korea University for their assistance in zircon analysis. We thank Prof. M Cho and Dr. Albrecht von Quadt for helpful and constructive suggestions that improved the manuscript significantly.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyeong Soo Kim.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Choh, S., Lee, J. et al. Sediment grain size does matter: implications of spatiotemporal variations in detrital zircon provenance for early Paleozoic peri-Gondwana reconstructions. Int J Earth Sci (Geol Rundsch) 108, 1509–1526 (2019). https://doi.org/10.1007/s00531-019-01717-7

Download citation

Keywords

  • Sino-Korean Craton
  • Gondwana
  • Detrital zircon
  • Provenance
  • Paleogeography