Abstract
Large masses of turbidite systems have been metamorphosed in orogenic systems during Earth’s history. Under granulite-facies conditions, the transformation of turbidite sedimentary successions into metasedimentary sequences drives intracrustal differentiation by anatexis and melt–residuum separation. We report on a migmatite terrane developing from turbidite successions that were buried into the deep crust during the Neoproterozoic to Early Cambrian Pampean orogeny, in central Argentina. At the exposed middle crustal paleodepths, migmatites occur on the regional scale but lithological zones are characterized by (1) bedded migmatites, (2) metatexite, and (3) diatexite. Bedded migmatites are the low-temperature part of the migmatite terrane where the alternating metapelite and metagreywacke layers are traceable among migmatites of different protoliths. The temperature (> 790 °C) was sufficient high for melting the metapelite, but not for melting the metagreywacke. The majority of the migmatite terrane consists of stromatic metatexites in which the limit among different progenitors is either faint or erased by migmatization. Metatexite zone acts as melt transfer in the migmatite terrane. In the stromatic migmatites, the major oxide composition of leucosomes and tabular bodies of leucogranite resembles those of the glasses of experimental petrology. However, leucosomes and leucogranites are crystallized melts that have low Zr, Th and LREE contents and positive Eu anomalies resulting from accessory mineral retention in melting residues. The transformation of metatexite into diatexite is gradational over tens of metres, and related to an accumulated melt fraction that dismembers the stromatic fabric. The most abundant diatexite is mesocratic, and has little or lacks K-feldspar. A subordinate proportion of diatexites is leucocratic, contains K-feldspar phenocrysts, and shows igneous-like textures. Leucogranites and leucocratic diatexites are the potential carriers of an anatectic melt-rich component from granulite-facies migmatite sequences toward shallow crustal levels. Turbidite successions are fertile protoliths that undergo widespread melting under low granulite-facies temperature (< 850 °C), and the development of large diatexite massifs makes them suitable sources of granitic magmatism.
Similar content being viewed by others
References
Aceñolaza FG, Toselli AJ (1976) Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del Noroeste Argentino. Mem II Congr Latinoam Geol Actas 2:755–764
Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25
Álvarez-Valero AM, Kriegsman LM (2007) Crustal thinning and mafic underplating beneath the Neogene Volcanic Province (Betic Cordillera, SE Spain): evidence from crustal xenoliths. Terra Nova 19:266–271
Álvarez-Valero AM, Waters DJ (2010) Partially melted xenoliths as insight into sub-volcanic processes: evidence from the Neogene magmatic event of the Betic Cordillera, SE Spain. J Petrol 51:973–991
Arzi A (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184
Barbero L, Villaseca C (1992) The Layos Granite, Hercynian Complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area. Earth Environ Sci Trans R Soc Edinb 83:127–138
Barbey P, Macaudiere J, Nzenti JP (1990) High-pressure dehydration melting of metapelites: evidence from the migmatites of Yaounde (Cameroon). J Petrol 31:401–427
Bea F (1989) A method for modelling mass balance in partial melting and anatectic leucosome segregation. J Metamorph Geol 7:619–628
Bea F (1991) Geochemical modeling of low melt-fraction anatexis in a peraluminous system: the Pena Negra Complex (central Spain). Geochim Cosmochim Acta 55:1859–1874
Bea F (1996a) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552
Bea F (1996b) Controls on the trace element composition of crustal melts. GSA Spec Pap 315:33–41
Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334
Brown M (2001) Orogeny, migmatites and leucogranites: a review. J Earth Syst Sci 110:313–336
Brown M (2013) Granite: From genesis to emplacement. GSA Bull 125:1079–1113
Carrington DP, Watt GR (1995) A geochemical and experimental study of the role of K-feldspar during water-undersaturated melting of metapelites. Chem Geol 122:59–76
Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279
Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138
Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306
Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contrib Mineral Petrol 88:354–371
Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. J Petrol 29:765–803
de Brito Neves BB, Campos Neto MDC, Fuck RA (1999) From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African cycle and orogenic collage. Episodes 22:155–166
de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geotherm Res 167:320–335
Diener JF, White RW, Hudson TJ (2014) Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer. Lithos 200:212–225
Do Campo M, Nieto M (2003) Transmission electron microscopy study of the very low-grade metamorphic evolution in Neoproterozoic pelites of the Puncoviscana formation (Cordillera Oriental, NW Argentina). Clay Mineral 38:459–481
Do Campo M, Ribeiro Guevara S (2005) Provenance analysis and tectonic setting of late Neoproterozoic metasedimentary successions in NW Argentina. J S Am Earth Sci 19:143–153
Drobe M, López de Luchi ML, Steenken A, Wemmer K, Naumann R, Frei R, Siegesmund S (2011) Geodynamic evolution of the Eastern Sierras Pampeanas (central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data. Int J Earth Sci 100:631–657
Gardien V, Thompson AB, Grujic D, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J Geophys Res Solid Earth 100(B8):15581–15591
Glen RA, Percival IG, Quinn CD (2009) Ordovician continental margin terranes in the Lachlan Orogen, Australia: implications for tectonics in an accretionary orogen along the east Gondwana margin. Tectonics 28(6):TC6012
Gordillo CE (1984) Migmatitas cordieríticas de la Sierra de Córdoba, condiciones físicas de la migmatización. Academia Nacional de Ciencias de Córdoba Miscelánea 68:1–40
Greenfield JE, Clarke GL, Bland M, Clark DJ (1996) In-situ migmatite and hybrid diatexite at Mt Stafford, central Australia. J Metamorph Geol 14:413–426
Guereschi AB, Martino RD (2008) Field and textural evidence of two migmatization events in the Sierras de Córdoba, Argentina. Gondwana Res 13:176–188
Guernina S, Sawyer EW (2003) Large-scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi Subprovince of Quebec. J Metamorph Geol 21:181–201
Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–43
Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Res 58:820–829
Holland TJB, Powell R (2003) Activity–compositions relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501
Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383
Holtz F, Johannes W (1991) Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kb and various H2O activities. J Petrol 32:935–958
Ježek P, Willner AP, Aceñolaza FG, Miller H (1985) The Puncoviscana trough—a large basin of Late Precambrian to Early Cambrian age on the Pacific edge of the Brazilian shield. Geol Rundsch 74:573–584
Johannes W, Gupta L (1982) Origin and evolution of migmatites. Contrib Mineral Petrol 79:114–123
Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin
Johnson TE, White RW, Powell R (2008) Partial melting of metagreywacke: a calculated mineral equilibria study. J Metamorph Geol 26:837–853
Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764
Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212
Kisters AFM, Ward RA, Anthonissen CJ, Vietze ME (2009) Melt segregation and far-field melt transfer in the mid-crust. J Geol Soc Lond 166:905–918
Lira R, Millone HA, Kirschbaum AM, Moreno RS (1997) Calc-alkaline arc granitoid activity in the Sierra Norte-Ambargasta Ranges, central Argentina. J S Am Earth Sci 10:157–177
Martin D, Nokes R (1988) Crystal settling in a vigorously converting magma chamber. Nature 332:534
Martino RD, Guereschi (2014a) Las migmatitas de las sierras de Córdoba. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 67–94
Martino RD, Guereschi AB (2014b) La estructura neoproterozoica-paleozoica inferior del complejo metamórfico de las Sierras de Córdoba. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 95–128
Martino RD, Kraemer P, Escayola M, Giambastiani M, Arnosio M (1995) Transecta de las Sierras Pampeanas de Córdoba a los 32° S. Rev Asoc Geol Argent 50:60–77
Martino RD, Guereschi AB, Sfragulla JA (2009) Petrology, structure and tectonic significance of the Tuclame banded schists in the Sierras Pampeanas of Córdoba and its relationship with the metamorphic basement of northwestern Argentina. J S Am Earth Sci 27:280–298
McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2, Paper 2000GC000109
Milord I, Sawyer EW, Brown M (2001) Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: an example from St. Malo, France. J Petrol 42:487–505
Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146
Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196
Mutti E, Normark WR (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. Marine clastic sedimentology. Springer, Berlin, pp 1–38
Omarini RH, Sureda RJ, Götze HJ, Seilacher A, Pflüger F (1999) Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes. Int J Earth Sci 88:76–97
Otamendi JE (2001) Cordierita en migmatitas del norte de la sierra de Comechingones, Córdoba: génesis e implicacias geológicas. Rev Asoc Geol Argent 56:341–343
Otamendi JE, Patiño Douce AE (2001) Partial melting of aluminous metagreywackes in the northern Sierra de Comechingones, central Argentina. J Petrol 42:1751–1772
Otamendi JE, Patiño Douce AE, Demichelis AH (1999) Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Argentina. J Metamorph Geol 17:415–434
Otamendi JE, Castellarini PA, Fagiano MR, Demichelis AH, Tibaldi AM (2004) Cambrian to Devonian geologic evolution of the Sierra de Comechingones, Eastern Sierras Pampeanas, Argentina: evidence for the development and exhumation of continental crust on the proto-Pacific margin of Gondwana. Gondwana Res 7:1143–1155
Patiño Douce AE (1996) Effects of pressure and H2O content on the compositions of primary crustal melts. GSA Spec Pap 315:11–21
Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710
Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218
Pickering KT, Clark JD, Smith RDA, Hiscott RN, Lucchi FR, Kenyon NH (1995) Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems. Atlas of deep water environments. Springer, Berlin, pp 1–10
Piñán-Llamas A, Simpson C (2006) Deformation of Gondwana margin turbidites during the Pampean orogeny, north-central Argentina. GSA Bull 118:1270–1279
Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26:155–179
Ramos VA, Martino RD, Otamendi JE, Escayola MP (2014) Evolución geotectónica de las Sierras Pampeanas Orientales. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 965–967
Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana, Geological Society London, Spec Pub 142, pp 181–217
Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petrol 94:304–316
Redler C, White RW, Johnson TE (2013) Migmatites in the Ivrea Zone (NW Italy): constraints on partial melting and melt loss in metasedimentary rocks from Val Strona di Omegna. Lithos 175–176:40–53
Renner J, Evans B, Hirth G (2000) On the rheologically critical melt fraction. Earth Planet Sci Lett 181:585–594
Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28
Sawyer EW (1987) The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. J Petrol 28:445–473
Sawyer EW (1991) Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. J Petrol 32:701–738
Sawyer EW (1998) Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. J Petrol 39:1147–1167
Sawyer EW (2008) Atlas of migmatites. The Canadian Mineralogist, Special Pub 9. NRC Research Press, Ottawa
Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234
Schwartz JJ, Gromet LP, Miro R (2008) Timing and duration of the calc-alkaline arc of the Pampean Orogeny: implications for the Late Neoproterozoic to Cambrian evolution of Western Gondwana. J Geol 116:39–61
Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243
Siegesmund S, Steenken A, Martino RD, Wemmer K, López de Luchi MG, Frei R, Presnyakov S, Guereschi A (2010) Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). Int J Earth Sci 99:1199–1226
Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucogranite in plutons? J Petrol 42:789–823
Spicer EM, Stevens G, Buick IS (2004) The low-pressure partial-melting behaviour of natural boron-bearing metapelites from the Mt. Stafford area, central Australia. Contrib Mineral Petrol 148:160–179
Steenken A, López de Luchi ML, Dopico CM, Drobe M, Wemmer K, Siegesmund S (2011) The Neoproterozoic–early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview. Int J Earth Sci 100:465–488
Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300:200–220
Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Mineral Petrol 128:352–370
Vaughan AP, Pankhurst RJ (2008) Tectonic overview of the West Gondwana margin. Gondwana Res 13:150–162
Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276
Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:375–393
Vigneresse JL, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J Petrol 37:1579–1600
Villaseca C, Romera CM, de la Rosa J, Barbero L (2003) Residence and redistribution of REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major phases in peraluminous granulites of central Spain. Chem Geol 200:293–323
Ward R, Stevens G, Kisters A (2008) Fluid and deformation induced partial melting and melt volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia. Lithos 105:253–271
Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. GSA Spec Pap 315:43–56
Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304
Watson EB, Vicenzi EP, Rapp RP (1989) Inclusion/host relations involving accessory minerals in high-grade metamorphic and anatectic rocks. Contrib Mineral Petrol 101:220–231
Watt GR, Harley SL (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib Mineral Petrol 114:550–566
White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55
White RW, Powell R, Clarke GL (2003) Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: migmatites from Mt Stafford, Central Australia. J Petrol 44:1937–1960
White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527
White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286
Wolf MB, London D (1994) Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochim Cosmochim Acta 58:4127–4145
Wolf MB, London D (1995) Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: Differential apatite, monazite, and xenotime solubilities during anatexis. Am Mineral 80:765–775
Yakymchuk C, Brown M (2014a) Consequences of open-system melting in tectonics. J Geol Soc Lond 171:21–40
Yakymchuk C, Brown M (2014b) Behaviour of zircon and monazite during crustal melting. J Geol Soc Lond 171:465–479
Zimmermann U (2005) Provenance studies of very low-to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. Geol Soc Lond Spec Publ 246:381–416
Acknowledgements
We acknowledge professors Roberto Martino and Alfons Berger for helpful and thoughtful reviews which improved the manuscript. This research is supported by FONCyT grant PICT00453/10 and PICT0958/14. Field work was partly funded by grants PIP 18/C485 of the Universidad Nacional de Río Cuarto, Argentina. We thank Prof. Jesús de la Rosa Díaz for measuring the trace element abundances using ICP-MS facilities at Universidad de Huelva, España.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Otamendi, J.E., Barzola, M.G., Tibaldi, A.M. et al. Petrological and geochemical variations of a turbidite-like metasedimentary sequence over the metatexite to diatexite transition within the Pampean Orogen, Argentina. Int J Earth Sci (Geol Rundsch) 108, 1361–1385 (2019). https://doi.org/10.1007/s00531-019-01711-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-019-01711-z