Skip to main content
Log in

Petrological and geochemical variations of a turbidite-like metasedimentary sequence over the metatexite to diatexite transition within the Pampean Orogen, Argentina

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Large masses of turbidite systems have been metamorphosed in orogenic systems during Earth’s history. Under granulite-facies conditions, the transformation of turbidite sedimentary successions into metasedimentary sequences drives intracrustal differentiation by anatexis and melt–residuum separation. We report on a migmatite terrane developing from turbidite successions that were buried into the deep crust during the Neoproterozoic to Early Cambrian Pampean orogeny, in central Argentina. At the exposed middle crustal paleodepths, migmatites occur on the regional scale but lithological zones are characterized by (1) bedded migmatites, (2) metatexite, and (3) diatexite. Bedded migmatites are the low-temperature part of the migmatite terrane where the alternating metapelite and metagreywacke layers are traceable among migmatites of different protoliths. The temperature (> 790 °C) was sufficient high for melting the metapelite, but not for melting the metagreywacke. The majority of the migmatite terrane consists of stromatic metatexites in which the limit among different progenitors is either faint or erased by migmatization. Metatexite zone acts as melt transfer in the migmatite terrane. In the stromatic migmatites, the major oxide composition of leucosomes and tabular bodies of leucogranite resembles those of the glasses of experimental petrology. However, leucosomes and leucogranites are crystallized melts that have low Zr, Th and LREE contents and positive Eu anomalies resulting from accessory mineral retention in melting residues. The transformation of metatexite into diatexite is gradational over tens of metres, and related to an accumulated melt fraction that dismembers the stromatic fabric. The most abundant diatexite is mesocratic, and has little or lacks K-feldspar. A subordinate proportion of diatexites is leucocratic, contains K-feldspar phenocrysts, and shows igneous-like textures. Leucogranites and leucocratic diatexites are the potential carriers of an anatectic melt-rich component from granulite-facies migmatite sequences toward shallow crustal levels. Turbidite successions are fertile protoliths that undergo widespread melting under low granulite-facies temperature (< 850 °C), and the development of large diatexite massifs makes them suitable sources of granitic magmatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aceñolaza FG, Toselli AJ (1976) Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del Noroeste Argentino. Mem II Congr Latinoam Geol Actas 2:755–764

    Google Scholar 

  • Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25

    Article  Google Scholar 

  • Álvarez-Valero AM, Kriegsman LM (2007) Crustal thinning and mafic underplating beneath the Neogene Volcanic Province (Betic Cordillera, SE Spain): evidence from crustal xenoliths. Terra Nova 19:266–271

    Article  Google Scholar 

  • Álvarez-Valero AM, Waters DJ (2010) Partially melted xenoliths as insight into sub-volcanic processes: evidence from the Neogene magmatic event of the Betic Cordillera, SE Spain. J Petrol 51:973–991

    Article  Google Scholar 

  • Arzi A (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184

    Article  Google Scholar 

  • Barbero L, Villaseca C (1992) The Layos Granite, Hercynian Complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area. Earth Environ Sci Trans R Soc Edinb 83:127–138

    Google Scholar 

  • Barbey P, Macaudiere J, Nzenti JP (1990) High-pressure dehydration melting of metapelites: evidence from the migmatites of Yaounde (Cameroon). J Petrol 31:401–427

    Article  Google Scholar 

  • Bea F (1989) A method for modelling mass balance in partial melting and anatectic leucosome segregation. J Metamorph Geol 7:619–628

    Article  Google Scholar 

  • Bea F (1991) Geochemical modeling of low melt-fraction anatexis in a peraluminous system: the Pena Negra Complex (central Spain). Geochim Cosmochim Acta 55:1859–1874

    Article  Google Scholar 

  • Bea F (1996a) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Bea F (1996b) Controls on the trace element composition of crustal melts. GSA Spec Pap 315:33–41

    Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Brown M (2001) Orogeny, migmatites and leucogranites: a review. J Earth Syst Sci 110:313–336

    Article  Google Scholar 

  • Brown M (2013) Granite: From genesis to emplacement. GSA Bull 125:1079–1113

    Article  Google Scholar 

  • Carrington DP, Watt GR (1995) A geochemical and experimental study of the role of K-feldspar during water-undersaturated melting of metapelites. Chem Geol 122:59–76

    Article  Google Scholar 

  • Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279

    Article  Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138

    Article  Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306

    Article  Google Scholar 

  • Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contrib Mineral Petrol 88:354–371

    Article  Google Scholar 

  • Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. J Petrol 29:765–803

    Article  Google Scholar 

  • de Brito Neves BB, Campos Neto MDC, Fuck RA (1999) From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African cycle and orogenic collage. Episodes 22:155–166

    Google Scholar 

  • de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geotherm Res 167:320–335

    Article  Google Scholar 

  • Diener JF, White RW, Hudson TJ (2014) Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer. Lithos 200:212–225

    Article  Google Scholar 

  • Do Campo M, Nieto M (2003) Transmission electron microscopy study of the very low-grade metamorphic evolution in Neoproterozoic pelites of the Puncoviscana formation (Cordillera Oriental, NW Argentina). Clay Mineral 38:459–481

    Article  Google Scholar 

  • Do Campo M, Ribeiro Guevara S (2005) Provenance analysis and tectonic setting of late Neoproterozoic metasedimentary successions in NW Argentina. J S Am Earth Sci 19:143–153

    Article  Google Scholar 

  • Drobe M, López de Luchi ML, Steenken A, Wemmer K, Naumann R, Frei R, Siegesmund S (2011) Geodynamic evolution of the Eastern Sierras Pampeanas (central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data. Int J Earth Sci 100:631–657

    Article  Google Scholar 

  • Gardien V, Thompson AB, Grujic D, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J Geophys Res Solid Earth 100(B8):15581–15591

    Article  Google Scholar 

  • Glen RA, Percival IG, Quinn CD (2009) Ordovician continental margin terranes in the Lachlan Orogen, Australia: implications for tectonics in an accretionary orogen along the east Gondwana margin. Tectonics 28(6):TC6012

    Article  Google Scholar 

  • Gordillo CE (1984) Migmatitas cordieríticas de la Sierra de Córdoba, condiciones físicas de la migmatización. Academia Nacional de Ciencias de Córdoba Miscelánea 68:1–40

    Google Scholar 

  • Greenfield JE, Clarke GL, Bland M, Clark DJ (1996) In-situ migmatite and hybrid diatexite at Mt Stafford, central Australia. J Metamorph Geol 14:413–426

    Article  Google Scholar 

  • Guereschi AB, Martino RD (2008) Field and textural evidence of two migmatization events in the Sierras de Córdoba, Argentina. Gondwana Res 13:176–188

    Article  Google Scholar 

  • Guernina S, Sawyer EW (2003) Large-scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi Subprovince of Quebec. J Metamorph Geol 21:181–201

    Article  Google Scholar 

  • Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–43

    Article  Google Scholar 

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Res 58:820–829

    Google Scholar 

  • Holland TJB, Powell R (2003) Activity–compositions relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Holtz F, Johannes W (1991) Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kb and various H2O activities. J Petrol 32:935–958

    Article  Google Scholar 

  • Ježek P, Willner AP, Aceñolaza FG, Miller H (1985) The Puncoviscana trough—a large basin of Late Precambrian to Early Cambrian age on the Pacific edge of the Brazilian shield. Geol Rundsch 74:573–584

    Article  Google Scholar 

  • Johannes W, Gupta L (1982) Origin and evolution of migmatites. Contrib Mineral Petrol 79:114–123

    Article  Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin

    Book  Google Scholar 

  • Johnson TE, White RW, Powell R (2008) Partial melting of metagreywacke: a calculated mineral equilibria study. J Metamorph Geol 26:837–853

    Article  Google Scholar 

  • Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764

    Article  Google Scholar 

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212

    Article  Google Scholar 

  • Kisters AFM, Ward RA, Anthonissen CJ, Vietze ME (2009) Melt segregation and far-field melt transfer in the mid-crust. J Geol Soc Lond 166:905–918

    Article  Google Scholar 

  • Lira R, Millone HA, Kirschbaum AM, Moreno RS (1997) Calc-alkaline arc granitoid activity in the Sierra Norte-Ambargasta Ranges, central Argentina. J S Am Earth Sci 10:157–177

    Article  Google Scholar 

  • Martin D, Nokes R (1988) Crystal settling in a vigorously converting magma chamber. Nature 332:534

    Article  Google Scholar 

  • Martino RD, Guereschi (2014a) Las migmatitas de las sierras de Córdoba. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 67–94

  • Martino RD, Guereschi AB (2014b) La estructura neoproterozoica-paleozoica inferior del complejo metamórfico de las Sierras de Córdoba. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 95–128

  • Martino RD, Kraemer P, Escayola M, Giambastiani M, Arnosio M (1995) Transecta de las Sierras Pampeanas de Córdoba a los 32° S. Rev Asoc Geol Argent 50:60–77

    Google Scholar 

  • Martino RD, Guereschi AB, Sfragulla JA (2009) Petrology, structure and tectonic significance of the Tuclame banded schists in the Sierras Pampeanas of Córdoba and its relationship with the metamorphic basement of northwestern Argentina. J S Am Earth Sci 27:280–298

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2, Paper 2000GC000109

  • Milord I, Sawyer EW, Brown M (2001) Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: an example from St. Malo, France. J Petrol 42:487–505

    Article  Google Scholar 

  • Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146

    Article  Google Scholar 

  • Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196

    Article  Google Scholar 

  • Mutti E, Normark WR (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. Marine clastic sedimentology. Springer, Berlin, pp 1–38

    Google Scholar 

  • Omarini RH, Sureda RJ, Götze HJ, Seilacher A, Pflüger F (1999) Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes. Int J Earth Sci 88:76–97

    Article  Google Scholar 

  • Otamendi JE (2001) Cordierita en migmatitas del norte de la sierra de Comechingones, Córdoba: génesis e implicacias geológicas. Rev Asoc Geol Argent 56:341–343

    Google Scholar 

  • Otamendi JE, Patiño Douce AE (2001) Partial melting of aluminous metagreywackes in the northern Sierra de Comechingones, central Argentina. J Petrol 42:1751–1772

    Article  Google Scholar 

  • Otamendi JE, Patiño Douce AE, Demichelis AH (1999) Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Argentina. J Metamorph Geol 17:415–434

    Article  Google Scholar 

  • Otamendi JE, Castellarini PA, Fagiano MR, Demichelis AH, Tibaldi AM (2004) Cambrian to Devonian geologic evolution of the Sierra de Comechingones, Eastern Sierras Pampeanas, Argentina: evidence for the development and exhumation of continental crust on the proto-Pacific margin of Gondwana. Gondwana Res 7:1143–1155

    Article  Google Scholar 

  • Patiño Douce AE (1996) Effects of pressure and H2O content on the compositions of primary crustal melts. GSA Spec Pap 315:11–21

    Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710

    Article  Google Scholar 

  • Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218

    Article  Google Scholar 

  • Pickering KT, Clark JD, Smith RDA, Hiscott RN, Lucchi FR, Kenyon NH (1995) Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems. Atlas of deep water environments. Springer, Berlin, pp 1–10

    Chapter  Google Scholar 

  • Piñán-Llamas A, Simpson C (2006) Deformation of Gondwana margin turbidites during the Pampean orogeny, north-central Argentina. GSA Bull 118:1270–1279

    Article  Google Scholar 

  • Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26:155–179

    Article  Google Scholar 

  • Ramos VA, Martino RD, Otamendi JE, Escayola MP (2014) Evolución geotectónica de las Sierras Pampeanas Orientales. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 965–967

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana, Geological Society London, Spec Pub 142, pp 181–217

  • Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petrol 94:304–316

    Article  Google Scholar 

  • Redler C, White RW, Johnson TE (2013) Migmatites in the Ivrea Zone (NW Italy): constraints on partial melting and melt loss in metasedimentary rocks from Val Strona di Omegna. Lithos 175–176:40–53

    Article  Google Scholar 

  • Renner J, Evans B, Hirth G (2000) On the rheologically critical melt fraction. Earth Planet Sci Lett 181:585–594

    Article  Google Scholar 

  • Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28

    Article  Google Scholar 

  • Sawyer EW (1987) The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. J Petrol 28:445–473

    Article  Google Scholar 

  • Sawyer EW (1991) Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. J Petrol 32:701–738

    Article  Google Scholar 

  • Sawyer EW (1998) Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. J Petrol 39:1147–1167

    Article  Google Scholar 

  • Sawyer EW (2008) Atlas of migmatites. The Canadian Mineralogist, Special Pub 9. NRC Research Press, Ottawa

    Google Scholar 

  • Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234

    Article  Google Scholar 

  • Schwartz JJ, Gromet LP, Miro R (2008) Timing and duration of the calc-alkaline arc of the Pampean Orogeny: implications for the Late Neoproterozoic to Cambrian evolution of Western Gondwana. J Geol 116:39–61

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Siegesmund S, Steenken A, Martino RD, Wemmer K, López de Luchi MG, Frei R, Presnyakov S, Guereschi A (2010) Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). Int J Earth Sci 99:1199–1226

    Article  Google Scholar 

  • Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucogranite in plutons? J Petrol 42:789–823

    Article  Google Scholar 

  • Spicer EM, Stevens G, Buick IS (2004) The low-pressure partial-melting behaviour of natural boron-bearing metapelites from the Mt. Stafford area, central Australia. Contrib Mineral Petrol 148:160–179

    Article  Google Scholar 

  • Steenken A, López de Luchi ML, Dopico CM, Drobe M, Wemmer K, Siegesmund S (2011) The Neoproterozoic–early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview. Int J Earth Sci 100:465–488

    Article  Google Scholar 

  • Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300:200–220

    Article  Google Scholar 

  • Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Mineral Petrol 128:352–370

    Article  Google Scholar 

  • Vaughan AP, Pankhurst RJ (2008) Tectonic overview of the West Gondwana margin. Gondwana Res 13:150–162

    Article  Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276

    Article  Google Scholar 

  • Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:375–393

    Article  Google Scholar 

  • Vigneresse JL, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J Petrol 37:1579–1600

    Article  Google Scholar 

  • Villaseca C, Romera CM, de la Rosa J, Barbero L (2003) Residence and redistribution of REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major phases in peraluminous granulites of central Spain. Chem Geol 200:293–323

    Article  Google Scholar 

  • Ward R, Stevens G, Kisters A (2008) Fluid and deformation induced partial melting and melt volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia. Lithos 105:253–271

    Article  Google Scholar 

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. GSA Spec Pap 315:43–56

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watson EB, Vicenzi EP, Rapp RP (1989) Inclusion/host relations involving accessory minerals in high-grade metamorphic and anatectic rocks. Contrib Mineral Petrol 101:220–231

    Article  Google Scholar 

  • Watt GR, Harley SL (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib Mineral Petrol 114:550–566

    Article  Google Scholar 

  • White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55

    Article  Google Scholar 

  • White RW, Powell R, Clarke GL (2003) Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: migmatites from Mt Stafford, Central Australia. J Petrol 44:1937–1960

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Article  Google Scholar 

  • Wolf MB, London D (1994) Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochim Cosmochim Acta 58:4127–4145

    Article  Google Scholar 

  • Wolf MB, London D (1995) Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: Differential apatite, monazite, and xenotime solubilities during anatexis. Am Mineral 80:765–775

    Article  Google Scholar 

  • Yakymchuk C, Brown M (2014a) Consequences of open-system melting in tectonics. J Geol Soc Lond 171:21–40

    Article  Google Scholar 

  • Yakymchuk C, Brown M (2014b) Behaviour of zircon and monazite during crustal melting. J Geol Soc Lond 171:465–479

    Article  Google Scholar 

  • Zimmermann U (2005) Provenance studies of very low-to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. Geol Soc Lond Spec Publ 246:381–416

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge professors Roberto Martino and Alfons Berger for helpful and thoughtful reviews which improved the manuscript. This research is supported by FONCyT grant PICT00453/10 and PICT0958/14. Field work was partly funded by grants PIP 18/C485 of the Universidad Nacional de Río Cuarto, Argentina. We thank Prof. Jesús de la Rosa Díaz for measuring the trace element abundances using ICP-MS facilities at Universidad de Huelva, España.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan E. Otamendi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otamendi, J.E., Barzola, M.G., Tibaldi, A.M. et al. Petrological and geochemical variations of a turbidite-like metasedimentary sequence over the metatexite to diatexite transition within the Pampean Orogen, Argentina. Int J Earth Sci (Geol Rundsch) 108, 1361–1385 (2019). https://doi.org/10.1007/s00531-019-01711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01711-z

Keywords

Navigation