Role of transverse structures in paleoseismicity and drainage rearrangement in rift systems: the case of the Valdecebro fault zone (Teruel graben, eastern Spain)

Abstract

The E–W trending, nearly pure extensional Valdecebro fault zone is a transverse structure at the central sector of the N–S Teruel graben. It was activated by the Late Ruscinian (Early Pliocene, ca. 3.7 Ma), giving rise to structural rearrangement of the graben margin. Until the Late Pleistocene, it has accommodated a net slip ca. 205 m, with slip rate of 0.055 mm/a. Paleoseismicity has been analysed in a 29-m-long, 5-m-deep trench excavated through a fault branch that offsets a Pleistocene pediment surface. The paleoseismic succession includes a minimum of 6–7 events occurred since ca. 142 ka BP, although a model with 12 events could be more realistic. The following paleoseismic parameters have been inferred, assuming a minimum of 6 and a maximum of 12 events: average coseismic slip = 58–117 cm; recurrence period = 8.4–28.4 ka; potential moment magnitude Mw = 5.8–5.9. The recorded displacement since ca. 142 ka BP totalizes 7.0 m, with slip rate of 0.05–0.07 mm/a. Slip on the transverse Valdecebro fault zone has critically contributed to bulk deformation under a prevailing ‘multidirectional’ extensional regime. Drainage patterns have been rearranged, recurrently switching between westward and southward directions as a consequence of diverse slip episodes at the Valdecebro fault zone (E–W) and the neighbouring La Hita (N–S) and Concud (NW–SE) faults. The ultimate westward drainage of the Valdecebro depression incised and dismantled a southward-sloping Pleistocene pediment sourced at the Valdecebro mountain front, representing a capture by the Alfambra river occurred between 124 and 22 ka BP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alcalá L, Alonso-Zarza AM, Álvarez MA, Azanza B, Calvo JP, Cañaveras JC, van Dam JA, Garcés M, Krijgsman W, van der Meulen AJ, Morales J, Peláez P, Pérez-González A, Sánchez S, Sancho R, Sanz E (2000) El registro sedimentario y faunístico de las cuencas de Calatayud-Daroca y Teruel. Evolución paleoambiental y paleoclimática durante el Neógeno. Rev Soc Geol España 13:323–343

    Google Scholar 

  2. Alfaro P, Delgado J, Sanz de Galdeano C, Galindo-Zaldívar J, García-Tortosa FJ, López-Garrido AC, López-Casado C, Marín C, Gil A, Borque MJ (2008) The Baza Fault: a major active extensional fault in the Central Betic Cordillera (South Spain). Int J Earth Sci 97:1353–1365

    Article  Google Scholar 

  3. Arlegui LE, Simón JL, Lisle RJ, Orife T (2005) Late Pliocene–Pleistocene stress field in the Teruel and Jiloca grabens (eastern Spain): contribution of a new method of stress inversion. J Struct Geol 27:693–705

    Article  Google Scholar 

  4. Bai T, Maerten L, Gross MR, Aydin A (2002) Orthogonal cross joints: do they imply a regional stress rotation? J Struct Geol 24:77–88

    Article  Google Scholar 

  5. Bauer PW, Kelson KI (2004) Rift extension and fault slip rates in the southern San Luis Basin, New Mexico. In: Brister B, Bauer PW, Read AS, Lueth VW (eds) Geology of the Taos Region New Mexico, Geological Society 55th Annual Fall Field Conference Guidebook, pp 172–180

  6. Burbank DW, Anderson RS (2012) Tectonic geomorphology. Wiley, Oxford

    Google Scholar 

  7. Caputo R (1995) Evolution of orthogonal sets of coeval extension joints. Terra Nova 7:479–490

    Article  Google Scholar 

  8. Caputo R (2005) Stress variability and brittle tectonic structures. Earth Sci Rev 70:103–127

    Article  Google Scholar 

  9. Durcan JA, King GE, Duller GAT (2015) DRAC: dose rate and age calculator for trapped charge dating. Quat Geochronol 28:54–61

    Article  Google Scholar 

  10. Ezquerro L (2017) El sector norte de la cuenca neógena de Teruel: tectónica, clima y sedimentación. PhD Thesis, Universidad de Zaragoza

  11. Ezquerro L, Luzón A, Navarro M, Liesa CL, Simón JL (2014) Climatic vs. tectonic signal in the Neogene extensional Teruel basin (NE Spain), based on stable isotope (δ18O) and megasequential evolution. Terra Nova 26:337–346

    Article  Google Scholar 

  12. Ezquerro L, Moretti M, Liesa CL, Luzón A, Simón JL (2015) Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic record of a fault. Tectonophysics 655:191–205

    Article  Google Scholar 

  13. Ezquerro L, Moretti M, Liesa CL, Luzón A, Pueyo EL, Simón JL (2016) Controls on space-time distribution of soft-sediment deformation structures: approaching the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain). Sed Geol 344:91–111

    Article  Google Scholar 

  14. Friedrich AM, Wernicke BP, Niemi NA, Bennett RA, Davis JL (2003) Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J Geophys Res Solid Earth 108(B4):2199. https://doi.org/10.1029/2001JB000682

    Article  Google Scholar 

  15. Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM (1999) Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part 1, experimental design and statistical models. Archaeometry 41:339–364

    Article  Google Scholar 

  16. García-Tortosa FJ, Sanz de Galdeano C, Sánchez-Gómez M, Alfaro P (2008) Geomorphologic evidence of the active Baza Fault (Betic Cordillera, South Spain). Geomorphology 97:374–391

    Article  Google Scholar 

  17. Godoy A, Ramírez JI, Olivé A, Moissenet E, Aznar JM, Aragonés E, Aguilar MJ, Ramírez del Pozo J, Leal MC, Jerez-Mir L, Adrover R, Goy A, Comas MJ, Alberdi MT, Giner J, Gutiérrez-Elorza M, Portero JM, Gabaldón V (1983) Mapa Geológico Nacional 1:50.000, Hoja 567 (Teruel). IGME, Madrid

    Google Scholar 

  18. Granier T (1985) Origin, damping, and pattern of development of faults in granite. Tectonics 4:721–737

    Article  Google Scholar 

  19. Guérin G, Mercier N, Adamiec G (2011) Dose-rate conversion factors: update. Ancient TL 29(1):5–8

    Google Scholar 

  20. Gutiérrez M, Peña JL (1976) Glacis y terrazas en el curso medio del río Alfambra (provincia de Teruel). Bol Geol Min 87:561–570

    Google Scholar 

  21. Gutiérrez F, Gutiérrez M, Gracia FJ, McCalpin JP, Lucha P, Guerrero J (2008) Plio-Quaternary extensional seismotectonics and drainage network development in the central sector of the Iberian Range (NE Spain). Geomorphology 102:21–42

    Article  Google Scholar 

  22. Hack JT (1973) Stream profile analysis and stream-gradient index. US Geol Surv J Res 1:421–429

    Google Scholar 

  23. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  24. Herraiz M, De Vicente G, Lindo-Ñaupari R, Giner J, Simón JL, González-Casado JM, Vadillo O, Rodríguez-Pascua MA, Cicuéndez JI, Casas A, Cabañas L, Rincón P, Cortés AL, Ramírez M, Lucini M (2000) The recent (upper Miocene to Quaternary) and present tectonic stress distributions in the Iberian Peninsula. Tectonics 19:762–786

    Article  Google Scholar 

  25. IGN (2017) Servicio de Información Sísmica del Instituto Geográfico Nacional. http://www.ign.es/ign/es/IGN/SisCatalogo.jsp. Accessed Dec 2017

  26. Kattenhorn SA, Aydin A, Pollard DD (2000) Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields. J Struct Geol 22:1–23

    Article  Google Scholar 

  27. Keller EA, Rockwell TK (1984) Tectonic geomorphology, quaternary chronology and paleoseismicity. In: Costa JE, Fleisher PJ (eds) Development and applications of geomorphology. Springer, Berlin, pp 203–239

    Google Scholar 

  28. Lafuente P (2011) Tectónica activa y paleosismicidad de la falla de Concud (Cordillera Ibérica central). PhD Thesis, Universidad de Zaragoza

  29. Lafuente P, Arlegui LE, Liesa CL, Simón JL (2011a) Paleoseismological analysis of an intraplate extensional structure: the Concud fault (Iberian Chain, Spain). Int J Earth Sci 100:1713–1732

    Article  Google Scholar 

  30. Lafuente P, Arlegui LE, Casado I, Ezquerro L, Liesa CL, Pueyo Ó, Simón JL (2011b) Geometría y cinemática de la zona de relevo entre las fallas neógeno-cuaternarias de Concud y Teruel (Cordillera Ibérica). Rev Soc Geol España 24:117–132

    Google Scholar 

  31. Lafuente P, Arlegui LE, Liesa CL, Pueyo Ó, Simón JL (2014) Spatial and temporal variation of paleoseismic activity at an intraplate, historically quiescent structure: the Concud fault (Iberian Chain, Spain). Tectonophysics 632:167–187

    Article  Google Scholar 

  32. McCalpin JP (1996) Paleoseismology. Academic Press, New York

    Google Scholar 

  33. Medialdea A, Thomsen KJ, Murray AS, Benito G (2014) Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quat Geochronol 22:11–24

    Article  Google Scholar 

  34. Meghraoui M, Camelbeeck T, Vanneste K, Brondeel M, Jongmans D (2000) Active faulting and paleoseismology along the Bree fault, lower Rhine graben, Belgium. J Geophys Res Solid Earth 105(B6):13809–13841

    Article  Google Scholar 

  35. Moissenet E (1993) L’age et les déformations des terrases alluviales du Fossé de Teruel. El Cuaternario de España y Portugal. IGME-AEQUA, Madrid, pp 267–279

    Google Scholar 

  36. Mouslopoulou V, Walsh JJ, Nicol A (2009) Fault displacement rates on a range of timescales. Earth Planet Sci Lett 278:186–197

    Article  Google Scholar 

  37. Murray AS, Wintle AG (2003) The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat Meas 37:377–381

    Article  Google Scholar 

  38. Pavlides S, Caputo R (2004) Magnitude versus faults´ surface parameters: quantitative relationships from the Aegean Region. Tectonophysics 380:159–188

    Article  Google Scholar 

  39. Peña JL (1981) Las acumulaciones cuaternarias de la confluencia de los ríos Alfambra y Guadalaviar, en las cercanías de Teruel. Actas VII Coloquio de Geografía, Pamplona, pp 255–259

    Google Scholar 

  40. Peña JL, Gutiérrez M, Ibáñez M, Lozano MV, Rodríguez J, Sánchez M, Simón JL, Soriano MA, Yetano LM (1984) Geomorfología de la provincia de Teruel. Instituto de Estudios Turolenses, Teruel

    Google Scholar 

  41. Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and ESR: large depths and long-term time variations. Radiat Meas 23:497–500

    Article  Google Scholar 

  42. Roca E, Guimerà J (1992) The Neogene structure of the eastern Iberian margin: structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics 203:203–218

    Article  Google Scholar 

  43. Sánchez Fabre M (1989) Estudio geomorfológico de la Depresión de Alfambra-Teruel-Landete y sus rebordes montañosos. PhD Thesis, Universidad de Zaragoza

  44. Sanz de Galdeano C, Peláez JA, López-Casado C (2003) Seismic potential of the main active faults in the Granada Basin (Southern Spain). Pure Appl Geophys 160:1537–1556

    Article  Google Scholar 

  45. Simón JL (1982) Compresión y distensión alpinas en la Cadena Ibérica Oriental. PhD Thesis, Universidad de Zaragoza (publ. Instituto de Estudios Turolenses, Teruel, 1984)

  46. Simón JL (1983) Tectónica y neotectónica del sistema de fosas de Teruel. Teruel 69:21–97

    Google Scholar 

  47. Simón JL (1989) Late Cenozoic stress field and fracturing in the Iberian Chain and Ebro Basin (Spain). J Struct Geol 11:285–294

    Article  Google Scholar 

  48. Simón JL, Serón FJ, Casas AM (1988) Stress deflection and fracture development in a multidirectional extension regime. Mathematical and experimental approach with field examples. Ann Tecton 2:21–32

    Google Scholar 

  49. Simón JL, Arlegui LE, Liesa CL (2008) Stress partitioning: a practical concept for analysing boundary conditions of brittle deformation. Geodin Acta 53:1057–1065

    Google Scholar 

  50. Simón JL, Arlegui LE, Ezquerro L, Lafuente P, Liesa CL, Luzón A (2016) Enhaced paleoseismic succession at the Concud Fault (Iberian Chain, Spain): new insights for seismic hazard assessment. Nat Hazards 80:1967–1993

    Article  Google Scholar 

  51. Simón JL, Arlegui LE, Ezquerro L, Lafuente P, Liesa CL, Luzón A (2017) Assessing interaction of active extensional faults from structural and paleoseismological analysis: the Teruel and Concud faults (eastern Spain). J Struct Geol 103:100–119

    Article  Google Scholar 

  52. Stirling M, Rhoades D, Berryman K (2002) Comparison of earthquake scaling relations derived from data of the instrumental and preinstrumental era. Bull Seismol Soc Am 92:812–830

    Article  Google Scholar 

  53. Thomsen KJ, Murray AS, Bøtter-Jensen L, Kinahan J (2007) Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiat Meas 42:370–379

    Article  Google Scholar 

  54. Villamor P, Berryman KR (1999) La tasa de desplazamiento de una falla como aproximación de primer orden en las estimaciones de peligrosidad sísmica. I Congreso Nacional de Ingeniería Sismica, Asociación Española de Ingeniería Sísmica, Abstracts 1

  55. Walsh JJ, Watterson J (1989) Displacement gradients on fault surfaces. J Struct Geol 11:307–316

    Article  Google Scholar 

  56. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

Download references

Acknowledgements

The research has been financed by project CGL2012-35662 of Spanish Ministerio de Economía y Competitividad-FEDER, as well as by the Aragón regional government and the PO FEDER Aragón 2014-2020 (Geotransfer research group). We thank the Unit of Radioisotopes at the University of Seville for the OSL dating. We also thank Marta Ansón and Nausica Russo for helping us during field work and processing of trench photographs, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José L. Simón.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simón, J.L., Ezquerro, L., Arlegui, L.E. et al. Role of transverse structures in paleoseismicity and drainage rearrangement in rift systems: the case of the Valdecebro fault zone (Teruel graben, eastern Spain). Int J Earth Sci (Geol Rundsch) 108, 1429–1449 (2019). https://doi.org/10.1007/s00531-019-01707-9

Download citation

Keywords

  • Active fault
  • Paleoearthquake
  • Biaxial extension
  • OSL dating
  • Drainage capture