Dating of anatase-forming diagenetic reactions in Rotliegend sandstones of the North German Basin

Abstract

Diagenetic conditions controlling authigenic formation of anatase and in situ LA-ICP-MS U–Pb isotope dating of this phase are studied in Upper Rotliegend II sandstones from two wells in NW-Germany. Anatase grew after breakdown of detrital Ti-phases (e.g. ilmenite) although local scale Ti transport and mobilization from detrital clay-hematite coats or condensed hydrocarbons cannot be ruled out. The anatase-forming reaction marks the change from a regime of reducing conditions imposed by first hydrocarbon generation to oxidizing conditions, probably caused by influx of a fluid from evaporitic Zechstein rocks. This change in fluid influx is interpreted as response to enhanced normal faulting and halokinesis during accelerated burial in Triassic times. Isotope data of U and Pb indicate incorporation of crustal common Pb from Mesozoic pore fluids but precisely mark diagenetic growth of anatase at 224.3 + 5.1/− 5.6 Ma in a Tera-Wasserburg plot. Locally, U–Pb isotope signatures are consistent with either additional incorporation of U and Pb from detrital precursor phases or with uptake of uranogenic Pb from hydrocarbons generated prior to 224 Ma. Anatase is shown to be a valuable authigenic phase suitable for U–Pb chronometry of diagenetic events, which appears to be unaffected by protracted burial and temperatures exceeding temperatures of crystallization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Arendt H, Hess JC, Wemmer K (1991) K/Ar-Altersdatierung an authigenen Illiten des Gasfeldes Thönse. Niedersächsische Akademie der Geowissenschaften - Veröffentlichungen 6:108–114 (in German)

    Google Scholar 

  2. Bachmann GH, Hoffmann N (1997) Development of the Rotliegend basin in Northern Germany. Geol Jahrb D 103:9–31

    Google Scholar 

  3. Bracciali L, Parrish RR, Horstwood MSA, Condon DJ, Najman Y (2013) U–Pb LA-(MC)-ICP-MS dating of rutile: new reference materials and applications to sedimentary provenance. Chem Geol 347:82–101

    Article  Google Scholar 

  4. Burisch M, Walter BF, Gerdes A, Lanz M, Markl G (2018) Late stage anhydrite–gypsum–siderite–dolomite–calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany. Geochim Cosmochim Acta 223:259–278

    Article  Google Scholar 

  5. Clauer N, Zwingmann H, Chaudhuri S (1996) Isotopic (K-Ar and oxygen) constraints on the extent and importance of the Liassic hydrothermal activity in Western Europe. Clay Miner 31:301–318

    Article  Google Scholar 

  6. Clauer N, Rousset D, Srodon J (2004) Modeled shale and sandstone burial diagenesis based on the K–Ar systematics of illite-type fundamental particles. Clays Clay Miner 52:576–588

    Article  Google Scholar 

  7. Coogan LA, Parrish RR, Roberts NMW (2016) Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating. Geology 44:147–150

    Article  Google Scholar 

  8. Finlay AJ, Selby D, Osborne MJ (2011) Re–Os geochronology and fingerprinting of United Kingdom Atlantic margin oil; temporal implications for regional petroleum systems. Geology 39:475–478

    Article  Google Scholar 

  9. Finlay AJ, Selby D, Merrick E (2012) Rhenium–osmium isotope geochronology—dating the finer aspect of petroleum systems. Scand Oil-Gas Mag 3(4):18–20

    Google Scholar 

  10. Fischer C, Dunkl I, von Eynatten H, Wijbrans JR, Gaupp R (2012) Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geol Mag 149:827–840

    Article  Google Scholar 

  11. Fuchs S, Schumann D, Williams-Jones AE, Vali H (2015) The growth and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chem Geol 393–394:55–66

    Article  Google Scholar 

  12. Gast R, Gundlach T (2006) Permian strike slip and extensional tectonics in Lower Saxony, Germany. Z dt Ges Geowiss 157:41–56

    Google Scholar 

  13. Gaupp R, Matter A, Platt J, Ramseyer K, Walzebuck J (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) Gas Reservoirs, Northwest Germany. Am Assoc Petrol Geol Bull 77:1111–1128

    Google Scholar 

  14. Gaupp R, Solms M, Baunack C, Pudlo D, Oncken O, Krawczyk C, Tanner D, Litke R, Schwarzer D, Trappe H, Schubarth-Engelschal J, Samiee R (2005) Tight gas reservoirs—natural gas for the future, Introduction. In: Gaupp R (ed) DGMK Research Report 593-8 Paleo oil- and gasfields in the Rotliegend of the North German Basin: Effects upon hydrocarbon reservoir quality. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V, Hamburg, pp 01–06

    Google Scholar 

  15. Gerdes A, Zeh A (2006) Combined U-Pb and Hf isotope LA-(MC) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  16. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration - new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Limpopo Belt. Chem Geol 261:230–243

    Article  Google Scholar 

  17. Glaser M (2001) Genese der Erdgaslagerstätten der südlichen deutschen Nordsee. Dissertation University of Hamburg, Germany

  18. Glennie KW (1990) Introduction to the petroleum geology of the North Sea. Blackwell Scientific Publications, Oxford

    Google Scholar 

  19. Glennie KW (2001) Exploration activities in the Netherlands and North-West Europe since Groningen. Geologie en Mijnbouw/Neth J Geosci 80:33–52

    Google Scholar 

  20. Godeau N, Deschamps P, Guihou A, Leonide P, Tendil A, Gerdes A, Hamelin B, Girard J-P (2018) U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: case of the Urgonian Limestone, France. Geology 46:247–250

    Article  Google Scholar 

  21. Harlavan Y, Sandler A (2010) Steps toward dating early diagenetic K-feldspar by the 40Ar–39Ar method. Sediment Geol 229:254–267

    Article  Google Scholar 

  22. Harris M, Coggon RM, Teagle DAH, Roberts NMW, Parrish RR (2014) Laser ablation MC-ICP-MS U/Pb geochronology of ocean basement calcium carbonate veins. American Geophysical Union 2014 fall meeting

  23. Hartmann B (1997) Mobilität von Seltenen-Erd-Elementen und deren Fixierung in Karbonatphasen am Beispiel von Rotliegend-Sandsteinen des Norddeutschen Beckens. Dissertation University of Mainz, Germany (in German)

  24. Hasner K (2004) Untersuchungen an Hämatit-Tonmineralkrusten in Rotliegendsandsteinen des Norddeutschen Beckens. Diploma-Thesis, Friedrich-Schiller-University Jena, Germany (in German)

  25. Havenith VMJ (2012) Diageneseevolution von Ober-Rotliegend II Sandsteinen eines Tight-Gas Feldes in Ostfriesland (NW Deutschland). Dissertation RWTH-Aachen University (in German)

  26. Ixer RA, Turner P, Waugh B (1979) Authigenic iron and titanium oxides in Triassic red beds: (St. Bees Sandstone), Cumbria, Northern England. Geol J 14:179–192

    Article  Google Scholar 

  27. Janousek V, Gerdes A (2003) Timing the magmatic activity within the Central Bohemian Pluton, Czech Republik: conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48:70–71

    Google Scholar 

  28. Karnin W-D, Gast R, Bärle C, Clever B, Kühn M, Sommer J (2006) Play types, structural history and distribution of Middle Buntsandstein gas fields in NW Germany: observations and their genetic interpretation. Z dt Ges Geowissensch 157:121–134

    Google Scholar 

  29. Kooijman E, Mezger K, Berndt J (2010) Constraints on the U–Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth Planet Sci Lett 293:321–330

    Article  Google Scholar 

  30. Lander R, Bloch S, Mehta S, Atkinson CD (1991) Burial diagenesis of paleosols in the giant Yacheng gas field, People’s Republic of China: bearing on illite reaction pathways. J Sediment Petrol 61:256–268

    Google Scholar 

  31. Lanson B, Beaufort D, Berger G, Baradat J, Lacharpagne J-C (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late-stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, offshore of The Netherlands. J Sediment Res 66:501–518

    Google Scholar 

  32. Lee M (1996) Diagenesis of the Rotliegend sandstones of Southern Ostfriesland, Germany. Unpublished report, Dallas

  33. Lerz H (1968) Über eine hydrothermale Paragenese von Anatas, Brookit und Rutil vom Dorfer Keesfleck. Prägraten/Osttirol N Jb Miner Mh 11:414–420

    Google Scholar 

  34. Li Q, Parrish RR, Horstwood MSA, McArthur JM (2014) U–Pb dating of cements in Mesozoic ammonites. Chem Geol 376:76–83

    Article  Google Scholar 

  35. Liewig N, Clauer N (2000) K-Ar dating of varied microtextural illite in Permian gas reservoirs, northern Germany. Clay Miner 35:271–281

    Article  Google Scholar 

  36. Littke R, Brauckmann FJ, Radke M, Schaefer RG (1996) Solid bitumen in Rotliegend gas reservoirs in northern Germany: implications for their thermal and filling history. Zbl Geol Paläon Part I 11(12):1275–1291

    Google Scholar 

  37. Littke R, Bayer U, Gajewski D (2005) Dynamics of sedimentary basins: the example of the Central European Basin system. Int J Earth Sci 94:779–781

    Article  Google Scholar 

  38. Ludwig KR (1998) On the treatment of concordant uranium-lead ages. Geochim Cosmochim Acta 62:665–676

    Article  Google Scholar 

  39. Ludwig KR (2001) ISOPLOT/Ex, version 2.49: a geochronological toolkit for Microsoft Excel, vol 1a. Berkeley Geochronology Center, Special Publication

  40. Mader D (1980) Authigener Rutil im Buntsandstein der Westeifel. N Jb Miner Mh 3:97–108

    Google Scholar 

  41. Mangenot X, Gerdes A, Marta G, Bonifacie M, Rouchon V (2016) In situ U–Pb dating of carbonate by LA-ICP-(SC)-MS: context, results and perspectives. Sciencesconf.org:rst2016-caen:114888

  42. Mangenot X, Gasparrini M, Gerdes A, Bonifacie M, Rouchon V (2018) An emerging thermo-chronometer for carbonate-bearing rocks: ∆47/(U–Pb). Geology 46:1067–1070

    Article  Google Scholar 

  43. Mark DF, Parnell J, Kelley SP, Lee M, Sherlock SC, Carr A (2005) Dating of multistage fluid flow in sandstones. Science 309:2048–2050

    Article  Google Scholar 

  44. Mark DF, Kelley SP, Lee MR, Parnell J, Sherlock SC, Brown DJ (2008) Ar–Ar dating of authigenic K-feldspar: quantitative modelling of radiogenic argon-loss through subgrain boundary networks. Geochim Cosmochim Acta 72:2695–2710

    Article  Google Scholar 

  45. Mark DF, Parnell J, Kelley SP, Lee MR, Sherlock SC (2010) 40Ar/39Ar dating of oil generation and migration at complex continental margins. Geology 38:75–78

    Article  Google Scholar 

  46. Meier A (2012) Experimentelle Untersuchungen zu Reaktionen von Erdölverbindungen (n-Alkanen) mit Hämatit-Kutanen in klastischen Erdölspeichergesteinen. Dissertation Friedrich-Schiller-Universität Jena (in German)

  47. Meinhold G (2010) Rutile and its applications in earth sciences. Earth Sci Rev 102:1–28

    Article  Google Scholar 

  48. Mezger K, Hanson GN, Bohlen SR (1989) High-precision U–Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth Planet Sci Lett 96:106–118

    Article  Google Scholar 

  49. Millonig LJ, Gerdes A, Groat LA (2013) The effect of amphibolite facies metamorphism on the U–Th–Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks. Chem Geol 353:199–209

    Article  Google Scholar 

  50. Morad S (1988) Diagenesis of titaniferous minerals in Jurassic sandstones from the Norwegian Sea. Sediment Geol 57:17–40

    Article  Google Scholar 

  51. Morad S, Aldahan AA (1986) Alteration of detrital Fe–Ti oxides in sedimentary rocks. Geol Soc Am Bull 97:567–578

    Article  Google Scholar 

  52. Morad S, Aldahan AA (1987) Diagenetic “replacement” of feldspars by titanium oxides in sandstones. Sediment Geol 51:147–153

    Article  Google Scholar 

  53. Morad S, Ketzer JM, De Ros LF (2000) Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47:95–120

    Article  Google Scholar 

  54. Neunzert GH, Gaupp R, Littke R (1996) Absenkungs- und Temperaturgeschichte paläozoischer und mesozoischer Formationen im Nordwestdeutschen Becken. Z dt Geol Ges 147:183–208 (in German)

    Google Scholar 

  55. Parnell J (1994) Hydrocarbons and other fluids: paragenesis, interactions and exploration potential inferred from petrographic studies. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication No. 78, pp 275–291

  56. Parnell J (1998) Introduction: Approaches to dating and duration of fluid flow and fluid-rock interaction. In: Parnell J (ed) Dating and duration of fluid flow and fluid-rock interaction. Geological Society London Special Publication 144, pp 1–8

  57. Parnell J (2004) Titanium mobilization by hydrocarbon fluids related to sill intrusion in a sedimentary sequence, Scotland. Ore Geol Rev 24:155–167

    Article  Google Scholar 

  58. Parnell J, Swainbank I (1990) Pb–Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales. Geology 18:1028–1030

    Article  Google Scholar 

  59. Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123–146

    Article  Google Scholar 

  60. Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone, 2nd edn. Springer, New York, p 553

    Google Scholar 

  61. Platt JD (1993) Controls on clay mineral distribution and chemistry in the Early Permian Rotliegend of Germany. Clay Miner 28:393–416

    Article  Google Scholar 

  62. Platt JD (1994) Geochemical evolution of pore waters in the Rotliegend (Early Permian) of northern Germany. Mar Pet Geol 11:66–78

    Article  Google Scholar 

  63. Roberts NMW, Walker RJ (2016) U–Pb geochronology of calcite-mineralized faults; absolute timing of rift-related fault events on the Northeast Atlantic margin. Geology 44:531–534

    Article  Google Scholar 

  64. Rooney AD, Selby D, Lewan MD, Lillis PG, Houzay J-P (2012) Evaluating Re–Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments. Geochim Cosmochim Acta 77:275–291

    Article  Google Scholar 

  65. Sakurai K, Mizusawa M (2010) X-ray diffraction imaging of anatase and rutile. Anal Chem 82:3519–3522

    Article  Google Scholar 

  66. Sandler A, Harlavan Y (2006) Early diagenetic illitization of illite–smectite in Cretaceous sediments (Israel): evidence from K–Ar dating. Clay Miner 41:637–658

    Article  Google Scholar 

  67. Schmitt AK, Zack T (2012) High-sensitivity U–Pb rutile dating by secondary ion mass spectrometry (SIMS) with an O2 + primary beam. Chem Geol 332–333:65–73

    Article  Google Scholar 

  68. Schmidt Mumm A, Wolfgramm M (2004) Fluid systems and mineralization in the north German and polish basin. Geofluids 4:315–328

    Article  Google Scholar 

  69. Schöner (2006) Comparison of Rotliegend sandstone diagenesis from the northern and southern margin of the North German Basin, and implications for the importance of organic maturation and migration. Dissertation Friedrich-Schiller-University Jena, Germany

  70. Schwarzer D, Littke R (2007) Petroleum generation and migration in the ‘Tight Gas’ area of the German Rotliegend natural gas play: a basin modelling study. Pet Geosci 13:37–62

    Article  Google Scholar 

  71. Seewald JS (2003) Organic–inorganic interactions in petroleum-producing sedimentary basins. Nature 426:327–333

    Article  Google Scholar 

  72. Selby D, Creaser RA (2005) Direct radiometric dating of hydrocarbon deposits using rhenium–osmium isotopes. Science 308:1293–1295

    Article  Google Scholar 

  73. Smith SJ, Stevens R, Liu S, Li G, Navrotsky A, Boerio-Goates J, Woodfield BF (2009) Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am Min 94:236–243

    Article  Google Scholar 

  74. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  75. Stollhofen H, Bachmann GH, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D (2008) Upper Rotliegend to Early Cretaceous basin development. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins; the Central European Basin system. Springer, Berlin, pp 181–210

    Google Scholar 

  76. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J (Nat Sci) 42:357–361

    Google Scholar 

  77. Timmermann H, Stedra V, Gerdes A, Noble SR, Parrish RP, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Marianske Lazne Complex, Czech Republic. J Petrol 45:1311–1338

    Article  Google Scholar 

  78. Triebold S, Luvizotto GL, Tolosana-Delgado R, Zack T, von Eynatten H (2011) Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks. Contrib Min Pet 161:581–596

    Article  Google Scholar 

  79. Uffmann AK, Littke R (2011) 3D petroleum systems modelling of the North German Basin. First Break 29:49–63

    Article  Google Scholar 

  80. Vackiner AA (2012) Sedimentary facies reconstruction and kinematic restoration of an Upper Permian tight gas field, north-western Germany. Dissertation RWTH-Aachen University

  81. Vackiner AA, Antrett P, Stollhofen H, Back S, Kukla PA, Bärle C (2011) Syndepositional tectonic controls and palaeo-topography of a Permian tight gas reservoir in NW Germany. J Pet Geol 34:411–428

    Article  Google Scholar 

  82. Vackiner AA, Antrett P, Strozyk F, Back S, Kukla P, Stollhofen H (2013) Salt kinematics and regional tectonics across a Permian gas field: a case study from East Frisia, NW Germany. Int J Earth Sci 102:1701–1716

    Article  Google Scholar 

  83. Van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Pet Geol 17:43–59

    Article  Google Scholar 

  84. Vry JK, Baker JA (2006) LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochim Cosmochim Acta 70:1807–1820

    Article  Google Scholar 

  85. Waldmann S (2011) Geological and mineralogical investigation of Rotliegend gas reservoirs in the Netherlands and their potential for CO2 storage. Dissertation Friedrich-Schiller-University Jena

  86. Warsitzka M, Kley J, Jähne-Klingberg F, Kukowski N (2017) Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes. Int J Earth Sci 106:131–155

    Article  Google Scholar 

  87. Weibel R (1998) Diagenesis in oxidising and locally reducing conditions—an example from the Triassic Skagerrak Formation, Denmark. Sediment Geol 121:259–276

    Article  Google Scholar 

  88. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Min 95:185–187

    Article  Google Scholar 

  89. Worden RH, Morad S (2003) Clay minerals in sandstones: controls on formation distribution and evolution. Int Assoc Sedimentol Spec Publ 34:3–41

    Google Scholar 

  90. Yau YC, Peacor DR, Essene EJ (1987) Authigenic anatase and titanite in shales from the Salton Sea Geothermal Field, California. N Jb Min Mh 10:441–452

    Google Scholar 

  91. Yijie Z, Jian C, Wenxuan H (2010) Timing of petroleum accumulation and the division of reservoir-forming assemblages, Junggar Basin, NW China. Petrol Explor Dev 37:257–262

    Article  Google Scholar 

  92. Zanoni G, Segvic B, Moscariello A (2016) Clay mineral diagenesis in Cretaceous clastic reservoirs from West African passive margins (the South Gabon basin) and its impact on regional geology and basin evolution history. Appl Clay Sci 134:186–209

    Article  Google Scholar 

  93. Ziegler PA (1978) North-Western Europe: tectonics and basin development. Geologie en Mijnbouw 57:589–626

    Google Scholar 

  94. Ziegler K (2006) Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Miner 41:355–393

    Article  Google Scholar 

  95. Zwingmann H, Clauer N, Gaupp R (1998) Timing of fluid flow in a sandstone reservoir of the north German Rotliegend (Permian) by K-Ar dating of related hydrothermal illite. In: Parnell J (ed) Dating and duration of fluid flow and fluid-rock interaction, vol 144. Geological Society, London, Special Publications, pp 91–106

    Google Scholar 

  96. Zwingmann H, Clauer N, Gaupp R (1999) Structure-related geochemical (REE) and isotopic (K–Ar, Rb–Sr, δ18O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany). Geochim Cosmochim Acta 63:2805–2823

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a late result of Wintershall and RWTH Aachen University Tight Gas Initiative. We thank Wintershall Holding GmbH for supporting this project as well as for providing samples and data. The valuable help of Thomas Derichs and Roman Klinghardt during preparation of thin sections and performance of electron microprobe analyses is gratefully acknowledged. The manuscript was improved by helpful reviews by R. Gaupp and A. Willner.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Sindern.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sindern, S., Havenith, V., Gerdes, A. et al. Dating of anatase-forming diagenetic reactions in Rotliegend sandstones of the North German Basin. Int J Earth Sci (Geol Rundsch) 108, 1275–1292 (2019). https://doi.org/10.1007/s00531-019-01705-x

Download citation

Keywords

  • U–Pb dating
  • Anatase
  • Diagenesis
  • Sandstone
  • Rotliegend
  • North-West German Basin