The rise of the Brunovistulicum: age, geological, petrological and geochemical character of the Neoproterozoic magmatic rocks of the Central Basic Belt of the Brno Massif

Abstract

The Brno Massif is the largest exposed part of the Brunovistulicum (eastern Bohemian Massif) representing Precambrian basement incorporated into the Central European Variscan Belt. Two well-known Cadomian granodiorite complexes of magmatic-arc origin are separated by N–S-trending belt of mafic rocks previously compared to ophiolite. This so-called Central Basic Belt is formed by a slightly metamorphosed volcanic part (Metabasite Zone) in the east and dominantly plutonic Diorite Zone in the west. Our new geological, geochemical and isotopic data including U–Pb zircon dating reveal two distinct Precambrian magmatic events within the Central Basic Belt preceding the Cadomian arc. The geochemical signatures of the dominant late Tonian (c. 730 Ma) tholeiitic basalts (\(\varepsilon_{\text{Nd}}^{725}\) = + 7.8 to + 6.7) in the Metabasite Zone suggest a direct derivation from a mantle source in an extensional setting. Also, the associated sporadic rhyolitic lavas and tuffs are primitive, showing a short mean crustal residence (\(\varepsilon_{\text{Nd}}^{ 7 2 5}\) = + 6.0 and + 5.7; \(T_{\text{DM}}^{\text{Nd}}\).2stg ~ 0.9 Ga). By contrast, the Cryogenian (c. 650 Ma) magmatism of the Diorite Zone clearly demonstrates features of a magmatic-arc origin. Rather primitive whole-rock geochemistry and radiogenic Nd isotopic signature (\(\varepsilon_{\text{Nd}}^{ 6 5 5}\) values typically falling between + 7 and + 6) show that this arc was either intraoceanic, or developed on recently accreted, immature mafic crust. Based on all the available data, three successive tectono-magmatic stages have been identified in the Brno Massif in the Neoproterozoic times (c. 730–600 Ma), as products of a single long-lived, multi-stage subduction system spanning nearly full Neoproterozoic supercontinent cycle from the break-up of Rodinia to the assembly of Pannotia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Albert R, Arenas R, Gerdes A, Sánchez Martínez S, Marko L (2015) Provenance of the HP–HT subducted margin in the Variscan belt (Cabo Ortegal Complex, NW Iberian Massif). J Metamorph Geol 33:959–979

    Google Scholar 

  2. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Google Scholar 

  3. Babuška V, Plomerová J (2013) Boundaries of mantle-lithosphere domains in the Bohemian Massif as extinct exhumation channels for high-pressure rocks. Gondwana Res 23:937–987

    Google Scholar 

  4. Bandrés A, Eguíluz L, Pin C, Paquette JL, Ordóñez B, Le Fèvre B, Ortega LA, Gil Ibarguchi JI (2004) The northern Ossa-Morena Cadomian batholith (Iberian Massif): magmatic arc origin and early evolution. Int J Earth Sci 93:860–885

    Google Scholar 

  5. Beard JS (1995) Experimental, geological, and geochemical constraints on the origins of low-K silicic magmas in oceanic arcs. J Geophys Res Solid Earth 100:15593–15600

    Google Scholar 

  6. Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401

    Google Scholar 

  7. Belka Z, Ahrendt H, Franke W, Wemmer K (2000) The Baltica–Gondwana suture in central Europe: evidence from K–Ar ages of detrital muscovites and biogeographical data. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Fold Belt. Geological Society, Special Publications 179, London, pp 87–102

  8. Bogdanova SV, Pisarevsky SA, Li ZX (2009) Assembly and breakup of Rodinia (some results of IGCP project 440). Stratigr Geol Correl 17:259–274

    Google Scholar 

  9. Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Google Scholar 

  10. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  11. Buriánek D (2010) Metamorfní vývoj metadioritové subzóny v brněnském batolitu. Acta Mus Moraviae Sci Geol 95:131–150

    Google Scholar 

  12. Buriánek D, Bubík M, Kryštofová E, Tomanová Petrová P, Vít J (2013) Základní geologická mapa České republiky 1: 25 000 s vysvětlivkami, odkrytá geologická mapa 24-342 Brno—jih. Ministerstvo životního prostředí ČR, Česká geologická služba, Brno

    Google Scholar 

  13. Cabanis B, Lecolle M (1989) Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. C R Acad Sci Paris Ser II 309:2023–2029

    Google Scholar 

  14. Caby R, Andreopoulos-Renaud U, Pin C (1989) Late Proterozoic arc–continent and continent–continent collision in the Pan-African Trans-Saharan Belt of Mali. Can J Earth Sci 26:1136–1146

    Google Scholar 

  15. Čapek M (2009) Mafické a ultrabazické plutonické horniny mezi Bosonohami a Komínem. Unpublished MSci Thesis, Masaryk University, Brno, pp 1–53

  16. Casas JM, Navidad M, Castiňeiras P, Liesa M, Aguilar C, Carreras J, Hofmann M, Gärtner A, Linnemann U (2015) The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry. Int J Earth Sci (Geol Rundsch) 104:909–925

    Google Scholar 

  17. Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. In: Cawood PA, Kröner A (eds) Earth accretionary systems in space and time. Geological Society, Special Publications 318, London, pp 1–36

  18. Cawood PA, Strachan RA, Pisarevsky SA, Gladkochub DP, Murphy JB (2016) Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth Planet Sci Lett 449:118–126

    Google Scholar 

  19. Chayes F (1971) Ratio correlation: a manual for students of petrology and geochemistry. University of Chicago Press, Chicago, pp 1–99

    Google Scholar 

  20. Clemens JD (2012) Granitic magmatism, from source to emplacement: a personal view. Appl Earth Sci 121:107–136

    Google Scholar 

  21. Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204

    Google Scholar 

  22. Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108

    Google Scholar 

  23. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen & Unwin, London, pp 1–450

    Google Scholar 

  24. Dalziel IWD (1997) Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol Soc Am Bull 109:16–42

    Google Scholar 

  25. Davidson J, Turner S, Plank T (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54:525–537

    Google Scholar 

  26. Debon F, Le Fort P (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth Sci 73:135–149

    Google Scholar 

  27. Debon F, Le Fort P (1988) A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bull Minéral 111:493–510

    Google Scholar 

  28. Deering CD, Bachmann O (2010) Trace element indicators of crystal accumulation in silicic igneous rocks. Earth Planet Sci Lett 297:324–331

    Google Scholar 

  29. Dodson MH (1982) On ‘spurious’ correlations in Rb–Sr isochron diagrams. Lithos 15:215–219

    Google Scholar 

  30. Dörr W, Zulauf G, Gerdes A, Lahaye Y, Kowalczyk G (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U–Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponnesus). Precambr Res 258:83–108

    Google Scholar 

  31. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates using stoichiometric criteria. Mineral Mag 51:431–435

    Google Scholar 

  32. Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: Bruno Vistulicum. Rozpr Čs Akad Věd ř mat přír Věd 90:3–85

    Google Scholar 

  33. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134

    Google Scholar 

  34. Ernst RE, Wingate MTD, Buchan KL, Li ZX (2008) Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambr Res 160:159–178

    Google Scholar 

  35. Esty WW, Banfield JD (2003) The box-percentile plot. J Stat Softw 8:1–14

    Google Scholar 

  36. Evans DAD (2009) The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient orogens and modern analogues. Geological Society, Special Publications 327, London, pp 371–404

  37. Finger F, Frasl G, Dudek A, Jelínek E, Thöni M (1995) Igneous activity (Cadomian plutonism in the Moravo-Silesian basement). In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 495–507

    Google Scholar 

  38. Finger F, Hanžl P, Pin C, von Quadt A, Steyrer HP (2000a) The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, Special Publications 179, London, pp 103–112

  39. Finger F, Tichomirowa M, Pin C, Hanžl P (2000b) Relics of early-Panafrican metabasite–metarhyolite formation in the Brno Massif, Moravia, Czech Republic. Int J Earth Sci (Geol Rundsch) 89:328–335

    Google Scholar 

  40. Floyd P, Winchester J (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chem Geol 21:291–306

    Google Scholar 

  41. Friedl G, Finger F, McNaughton NJ, Fletcher IR (2000) Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology 28:1035–1038

    Google Scholar 

  42. Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U/Pb zircon ages. Int J Earth Sci (Geol Rundsch) 93:802–823

    Google Scholar 

  43. Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (the southeastern Bohemian Massif, Czech Republic–Austria). Tectonics 15:1389–1413

    Google Scholar 

  44. Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106

    Google Scholar 

  45. Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT–LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc London 157:577–587

    Google Scholar 

  46. Gerdes A, Montero P, Bea F, Fershtater G, Borodina N, Osipova T, Shardakova G (2002) Peraluminous granites frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholiths of the eastern Urals. Int J Earth Sci (Geol Rundsch) 91:3–19

    Google Scholar 

  47. Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236

    Google Scholar 

  48. Guy A, Edel JB, Schulmann K, Tomek Č, Lexa O (2011) A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos 124:144–157

    Google Scholar 

  49. Hanžl P, Hrdličková K (2011) Výskyt mikrogranitu s granofyrickou strukturou na hranici dioritové a metabazitové zóny brněnského masivu východně od Jinačovic. Geol výzk Mor Slez 18:128–133

    Google Scholar 

  50. Hanžl P, Melichar R (1997) The Brno Massif: a section through the active continental margin of a composed terrane? Krystalinikum 23:33–58

    Google Scholar 

  51. Hanžl P, Přichystal A, Melichar R (1995) The Brno Massif: volcanites of the northern part of the Metabasite Zone. Acta Univ Palack Olom Geol 34:75–82

    Google Scholar 

  52. Hanžl P, Melichar P, Leichmann J (eds) (1999) Field excursion on Brno Massif. Excursion guide. In: 4th Meeting of the Czech Tectonic Studies Group, Blansko-Češkovice, April 15–18, 1999, pp 80–95

  53. Hanžl P, Čech S, Čtyroká J, Čurda J, Gilíková H, Hradecká L, Hubatka F, Janoušek V, Kašpárek M, Manová M, Maštera L, Otava J, Tomanová Petrová P, Šalanský K, Šrámek J, Vít J, Hrdličková K (2007a) Základní geologická mapa České republiky 1: 25 000 s vysvětlivkami, list 24–322 Blansko. Česká geologická služba, Praha, pp 1–70

    Google Scholar 

  54. Hanžl P, Janoušek V, Žáček V, Wilimský D, Aichler J, Erban V, Pudilová M, Chlupáčová M, Buriánková K, Mixa P, Pecina V (2007b) Magmatic history of granite-derived mylonites from the southern Desná Unit (Silesicum, Czech Republic). Mineral Petrol 89:45–75

    Google Scholar 

  55. Hanžl P, Baldík V, Bubík M, Buriánek D, Hrdličková K, Kociánová L, Krejčí O, Krejčí Z, Pecka T, Tomanová Petrová P, Vít J (2011) Základní geologická mapa České republiky 1:25,000. List 24-324 Brno-sever. Česká geologická služba, Brno

    Google Scholar 

  56. Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48:2341–2357

    Google Scholar 

  57. Henriques SBA, Neiva AMR, Tajčmanová L, Dunning GR (2017) Cadomian magmatism and metamorphism at the Ossa Morena/Central Iberian Zone boundary, Iberian Massif, Central Portugal: geochemistry and P-T constraints of the Sardoal Complex. Lithos 268–271:131–148

    Google Scholar 

  58. Hladil J (1991) Čelechovické vápence v deformačních strukturách na v. okraji boskovické brázdy. Zpr geol Výzk v Roce 1990:55

    Google Scholar 

  59. Hladil J, Melichar R, Otava J, Galle A, Krs M, Man O, Pruner P, Čejchan P, Orel P (1999) The Devonian in the easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. Abh Geol B A 54:27–47

    Google Scholar 

  60. Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252:1409–1412

    Google Scholar 

  61. Hönig S, Leichmann J, Novák M (2010) Unidirectional solidification textures and garnet layering in Y-enriched garnet-bearing aplite–pegmatites in the Cadomian Brno Batholith, Czech Republic. J Geosci 55:113–129

    Google Scholar 

  62. Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA–ICP–MS U–(Th–)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geost Geoanal Res 40:311–332

    Google Scholar 

  63. Hrouda F, Janák F, Štelcl J (1970) Studium tektoniky v brněnském masívu na základě magnetických výzkumů. Věst Ústř úst geol 48:36–39

    Google Scholar 

  64. Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Google Scholar 

  65. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  66. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Google Scholar 

  67. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Google Scholar 

  68. Janoušek V, Finger F, Roberts M, Frýda J, Pin C, Dolejš D (2004) Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. In: Ishihara S, Stephens WE, Harley SL, Arima M, Nakajima T (eds) Fifth Hutton symposium on the origin of granites and related rocks. Geological Society of America Special Papers 389, pp 141–159

  69. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259

    Google Scholar 

  70. Janoušek V, Aichler J, Hanžl P, Gerdes A, Erban V, Pecina V, Žáček V, Pudilová M, Hrdličková K, Mixa P, Žáčková E (2014) Constraining genesis and geotectonic setting of metavolcanic complexes: a multidisciplinary study of the Devonian Vrbno Group (Hrubý Jeseník Mts., Czech Republic). Int J Earth Sci (Geol Rundsch) 103:455–483

    Google Scholar 

  71. Janoušek V, Moyen JF, Martin H, Erban V, Farrow C (2016) Geochemical modelling of igneous processes—principles and recipes in R language. Bringing the power of R to a geochemical community. Springer, Berlin, pp 1–346

    Google Scholar 

  72. Janoušek V, Jiang YD, Buriánek D, Schulmann K, Hanžl P, Soejono I, Kröner A, Altanbaatar B, Erban V, Lexa O, Ganchuluun T, Košler J (2018) Cambrian-Ordovician magmatism of the Ikh-Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south-central Mongolia). Gondwana Res 54:122–149

    Google Scholar 

  73. Jelínek E, Dudek A (1993) Geochemistry of the subsurface Precambrian plutonic rocks from the Brunovistulian Complex in the Bohemian Massif, Czechoslovakia. Precambr Res 62:103–125

    Google Scholar 

  74. Jensen LS (1976) A new cation plot for classifying subalkalic volcanic rocks. Ontario Geol Surv Miscell Pap 66:1–22

    Google Scholar 

  75. Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin, pp 1–335

    Google Scholar 

  76. Johansson A (2014) From Rodinia to Gondwana with the ‘SAMBA’ mode—a distant view from Baltica towards Amazonia and beyond. Precambr Res 244:226–235

    Google Scholar 

  77. Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232

    Google Scholar 

  78. Kalvoda J, Melichar R, Leichmann J, Bábek O (2002) Late Proterozoic-Paleozoic tectonostratigraphic development and paleogeography of Brunovistulian Terrane and comparison with other terranes at the SE margins of Baltica-Laurussia. J Czech Geol Soc 47:3–4

    Google Scholar 

  79. Kalvoda J, Bábek O, Fatka O, Leichmann J, Melichar R, Nehyba S, Špaček P (2008) Brunovistulian Terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. Int J Earth Sci (Geol Rundsch) 97:497–518

    Google Scholar 

  80. Kettner R (1949) Geologická stavba severní části Moravského krasu. Rozpr Čes Akad Věd Umění Tř II 59:1–29

    Google Scholar 

  81. Konopásek J, Janoušek V, Oyhantçabal P (2018) Did the circum-Rodinia subduction trigger the Neoproterozoic rifting along the Congo-Kalahari Craton margin? Int J Earth Sci (Geol Rundsch) 107:1859–1894

    Google Scholar 

  82. Kröner A, Štípská P, Schulmann K, Jaeckel P (2000) Chronological constrains on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Fold Belt. Geological Society Special Publications 179, London, pp 175–197

  83. Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE, Rytsk E (2014) Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res 25:103–125

    Google Scholar 

  84. Kröner A, Kovach V, Alexeiev D, Wang KL, Wong J, Degtyarev K, Kozakov I (2017) No excessive crustal growth in the Central Asian Orogenic Belt: further evidence from field relationships and isotopic data. Gondwana Res 50:135–166

    Google Scholar 

  85. Kuznetsov NB, Soboleva AA, Udoratina OV, Hertseva MV, Andreichev VL (2007) Pre-Ordovician tectonic evolution and volcano-plutonic associations of the Timanides and northern Pre-Uralides, northeast part of the East European Craton. Gondwana Res 12:305–323

    Google Scholar 

  86. Kylander-Clark ARC, Hacker BR, Cottle JM (2013) Laser-ablation split-stream ICP petrochronology. Chem Geol 345:99–112

    Google Scholar 

  87. Laurent O, Martin H, Moyen JF, Doucelance R (2014) The diversity and evolution of late-Archean granitoids: evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga. Lithos 205:208–235

    Google Scholar 

  88. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Google Scholar 

  89. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith JC, Stephenson NCN, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral Mag 61:295–321

    Google Scholar 

  90. Leichmann J (1996) Geologie und Petrologie des Brünner Massivs. Unpublished PhD. thesis, Universität Salzburg, Salzburg, pp 1–118

  91. Leichmann J, Höck V (2008) The Brno Batholith: an insight into the magmatic and metamorphic evolution of the Cadomian Brunovistulian Unit, eastern margin of the Bohemian Massif. J Geosci 53:281–305

    Google Scholar 

  92. Leichmann J, Hönig S, Kalvoda J (2013) New evidence of Caledonian magmatism within the Brunovistulicum, eastern margin if Bohemian Massif. SDGG 82:73

    Google Scholar 

  93. Li ZX, Zhong S (2009) Supercontinent–superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Phys Earth Planet Inter 176:143–156

    Google Scholar 

  94. Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambr Res 160:179–210

    Google Scholar 

  95. Li ZX, Evans DAD, Murphy JB (eds) (2016) Supercontinent cycles through Earth history. Geological Society, Special Publications 424, London, pp 1–297

  96. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    Google Scholar 

  97. Likhanov II, Santosh M (2017) Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia Supercontinent. Precambr Res 300:315–331

    Google Scholar 

  98. Ludwig KR (2003) Isoplot/Ex version 3.00. A geochronological toolkit for Microsoft Excel, User’s Manual. Berkeley Geochronology Center Special Publications 4, Berkeley, pp 1–70

    Google Scholar 

  99. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Google Scholar 

  100. Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. J Petrol 28:921–953

    Google Scholar 

  101. Maruyama S (2006) Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc 6:91–120

    Google Scholar 

  102. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170

    Google Scholar 

  103. Mazur S, Kröner A, Szczepański J, Turniak K, Hanžl P, Melichar R, Rodionov NV, Paderin I, Sergeev SA (2010) Single zircon U–Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geol Mag 147:508–526

    Google Scholar 

  104. Mazur S, Mikolajczak M, Krzywiec P, Malinowski M, Buffenmyer V, Lewandowski M (2015) Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics 34:2465–2477

    Google Scholar 

  105. Melichar P, Špaček J (1995) Nový nález fluoritu u Rakšic jjz. od Brna a význam fluoritové mineralizace pro tektoniku brněnského masivu. Geol výzk Mor Slez 1994:98–100

    Google Scholar 

  106. Merdith AS, Collins AS, Williams SE, Pisarevsky S, Foden JD, Archibald DB, Blades ML, Alessio BL, Armistead S, Plavsa D, Clark C, Müller RD (2017) A full-plate global reconstruction of the Neoproterozoic. Gondwana Res 50:84–134

    Google Scholar 

  107. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56:207–218

    Google Scholar 

  108. Moczydlowska M (1997) Proterozoic and Cambrian successions in Upper Silesia: an Avalonian terrane in southern Poland. Geol Mag 134:679–689

    Google Scholar 

  109. Morimoto N (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Google Scholar 

  110. Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic-Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia-Gondwana connections. Int J Earth Sci (Geol Rundsch) 93:659–682

    Google Scholar 

  111. Murphy JB, Nance RD, Keppie JD, Dostal J (2018) Role of Avalonia in the development of tectonic paradigms. In: Wilson RW, Houseman GA, McCaffrey KJW, Doré AG, Butter SJH (eds) Fifty years of the Wilson cycle concept in plate tectonics. Geological Society, Special Publications 470, London. https://doi.org/10.1144/SP470.12

  112. Nance RD, Murphy JB, Strachan RA, D’Lemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambr Res 53:41–78

    Google Scholar 

  113. Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondwana Res 25:4–29

    Google Scholar 

  114. Nawrocki J, Źylińska A, Buła Z, Grabowski J, Krzywiec P, Poprawa P (2004) Early Cambrian location and affinities of the Brunovistulian Terrane (Central Europe) in the light of palaeomagnetic data. J Geol Soc London 161:513–522

    Google Scholar 

  115. Oriolo S, Oyhantçabal P, Wemmer K, Siegesmund S (2017) Contemporaneous assembly of Western Gondwana and final Rodinia break-up: implications for the supercontinent cycle. Geosci Front 8:1431–1445

    Google Scholar 

  116. Patiño Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738

    Google Scholar 

  117. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11:Q0AA06

    Google Scholar 

  118. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518

    Google Scholar 

  119. Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes 12, St. John’s, pp 79–113

    Google Scholar 

  120. Pearce JA (2003) Supra-subduction zone ophiolites: the search for modern analogues. In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geological thought. Geological Society of America Special Papers 373, pp 269–293

  121. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  122. Pearce JA (2014) Immobile element fingerprinting of ophiolites. Elements 10:101–108

    Google Scholar 

  123. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Ann Rev Earth Planet Sci 23:251–285

    Google Scholar 

  124. Pearce JA, Robinson PT (2010) The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res 18:60–81

    Google Scholar 

  125. Pearce JA, Stern RJ (2006) Origin of back-arc basin magmas: trace element and isotope perspectives. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions. Geophysical Monograph Series 166. American Geophysical Union, Washington, DC, pp 63–86

    Google Scholar 

  126. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  127. Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6:Q07006

    Google Scholar 

  128. Pease V, Dovzhikova E, Beliakova L, Gee DG (2004) Late Neoproterozoic granitoid magmatism in the basement to the Pechora Basin, NW Russia: geochemical constraints indicate westward subduction beneath NE Baltica. In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of Eastern Baltica. Geological Society of London Memoirs 30, pp 75–85

  129. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Google Scholar 

  130. Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41

    Google Scholar 

  131. Pin C, Carme F (1987) A Sm–Nd isotopic study of 500 Ma old oceanic crust in the Variscan belt of Western Europe: the Chamrousse ophiolite complex, Western Alps (France). Contrib Mineral Petrol 96:406–413

    Google Scholar 

  132. Pin C, Binon M, Belin JM, Barbarin B, Clemens JD (1990) Origin of microgranular enclaves in granitoids—equivocal Sr–Nd evidence from Hercynian rocks in the Massif Central (France). J Geophys Res 95:17821–17828

    Google Scholar 

  133. Pin C, Liñán E, Pascual E, Donaire T, Valenzuela A (2002) Late Neoproterozoic crustal growth in the European Variscides: Nd isotope and geochemical evidence from the Sierra de Córdoba Andesites (Ossa-Morena Zone, Southern Spain). Tectonophysics 352:133–151

    Google Scholar 

  134. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931

    Google Scholar 

  135. Rez J, Melichar R, Kalvoda J (2011) Polyphase deformation of the Variscan accretionary wedge: an example from the southern part of the Moravian Karst (Bohemian Massif, Czech Republic). In: Poblet J, Lisle RJ (eds) Kinematic evolution and structural styles of fold-and-thrust belts. Geological Society, Special Publications 349, London, pp 223–235

  136. Richard P, Shimizu N, Allègre CJ (1976) 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278

    Google Scholar 

  137. Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828

    Google Scholar 

  138. Rogers JJW, Santosh M (2003) Supercontinents in Earth history. Gondwana Res 6:357–368

    Google Scholar 

  139. Romano SS, Dörr W, Zulauf G (2004) Cambrian granitoids in pre-Alpine basement of Crete (Greece): evidence from U–Pb dating of zircon. Int J Earth Sci (Geol Rundsch) 93:844–859

    Google Scholar 

  140. Roupec P (1994) Analýza napěťového pole ze střižných zón se stylolity na lokalitě Babí lom u Brna. Věst Čes geol úst 69:69–72

    Google Scholar 

  141. Rubio-Ordóňez A, Gutiérrez-Alonso G, Valverde-Vaquero P, Cuesta A, Gallastegui G, Gerdes A, Cárdenes V (2015) Arc-related Ediacaran magmatism along the northern margin of Gondwana: geochronology and isotopic geochemistry from northern Iberia. Gondwana Res 27:216–227

    Google Scholar 

  142. Samson SD, D’Lemos RS, Blichert-Toft J, Vervoort J (2003) U-Pb geochronology and Hf–Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian Orogen: new evidence for a unique juvenile terrane. Earth Planet Sci Lett 208:165–180

    Google Scholar 

  143. Samson SD, Inglis JD, D’Lemos RS, Admou H, Blichert-Toft J, Hefferan K (2004) Geochronological, geochemical, and Nd–Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, Anti-Atlas Orogen, Morocco. Precambrian Res 135:133–140

    Google Scholar 

  144. Santosh M, Maruyama S, Komiya T, Yamamoto S (2010) Orogens in the evolving Earth: from surface continents to ‘lost continents’ at the core–mantle boundary. In: Kusky TM, Zhai MG, Xiao W (eds) The evolving continents: understanding processes of continental growth. Geological Society, Special Publications 338, London, pp 77–116

    Google Scholar 

  145. Saunders AD, Norry MJ, Tarney J (1991) Fluid influence on the trace element compositions of subduction zone magmas. In: Tarney J, Pickering KT, Knipe RJ, Dewey JF (eds) The behaviour and influence of fluids in subduction zones. The Royal Society, London, pp 151–166

    Google Scholar 

  146. Scarrow JH, Pease V, Fleutelot C, Dushin V (2001) The late Neoproterozoic Enganepe ophiolite, Polar Urals, Russia: an extension of the Cadomian arc? Precambr Res 110:255–275

    Google Scholar 

  147. Schandl ES, Gorton MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ Geol 97:629–642

    Google Scholar 

  148. Schellart WP, Freeman J, Stegman DR, Moresi L, May D (2007) Evolution and diversity of subduction zones controlled by slab width. Nature 446:308–311

    Google Scholar 

  149. Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowicz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92

    Google Scholar 

  150. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341:266–286

    Google Scholar 

  151. Scotese CR (2009) Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. In: Craig J, Thurow J, Thusu B, Whitham A, Abutarruma Y (eds) Global Neoproterozoic petroleum systems: the emerging potential in North Africa. The Geological Society London Special Publications 326, London, pp 67–83

  152. Shafaii Moghadam H, Khademi M, Hu Z, Stern RJ, Santos JF, Wu YB (2015) Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam–Biarjmand metamorphic complex (Iran): magmatism along the northern active margin of Gondwana. Gondwana Res 27:439–452

    Google Scholar 

  153. Shand SJ (1943) Eruptive rocks. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. Wiley, New York, pp 1–444

    Google Scholar 

  154. Sharples W, Jadamec MA, Moresi LN, Capitanio FA (2014) Overriding plate controls on subduction evolution. J Geophys Res Solid Earth 119:6684–6704

    Google Scholar 

  155. Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Google Scholar 

  156. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Google Scholar 

  157. Soejono I, Žáčková E, Janoušek V, Machek M, Košler J (2010) Vestige of an Early Cambrian incipient oceanic crust incorporated in the Variscan Orogen: Letovice Complex, Bohemian Massif. J Geol Soc London 167:1113–1130

    Google Scholar 

  158. Soejono I, Janoušek V, Žáčková E, Sláma J, Konopásek J, Machek M, Hanžl P (2017) Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U–Pb zircon and Sr–Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif. Int J Earth Sci (Geol Rundsch) 106:2109–2129

    Google Scholar 

  159. Štelcl J, Weiss J (1986) Brněnský Masív. Universita J.E. Purkyně, Brno, pp 1–255

    Google Scholar 

  160. Stern RJ, Bloomer SH, Martinez F, Yamazaki T, Harrison TM (1996) The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: a first report. Island Arc 5:354–372

    Google Scholar 

  161. Stern RJ, Reagan M, Ishizuka O, Ohara Y, Whattam S (2012) To understand subduction initiation, study forearc crust: to understand forearc crust, study ophiolites. Lithosphere 4:469–483

    Google Scholar 

  162. Suess FE (1912) Die moravische Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes. Denkschr Österr Akad Wiss Mat Naturwiss Kl 88:541–631

    Google Scholar 

  163. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in the ocean basins. Geological Society of London Special Publications 42, London, pp 313–345

  164. Svojtka M, Breiter K, Ďurišová J, Ackerman L, Veselovský F, Šmerda J (2017) Geochemie a zirkonové U–Pb stáří derflického granodioritu z dyjského masivu. Zpr geol výzk 50:17–24

    Google Scholar 

  165. Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Frontiers in Earth sciences. Blackwell, Cambridge, pp 1–211

    Google Scholar 

  166. Taylor B, Martinez F (2003) Back-arc basin basalt systematics. Earth Planet Sci Lett 210:481–497

    Google Scholar 

  167. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Google Scholar 

  168. Timmerman MJ, Krmíček L, Kuboušková S, Sláma J, Sobel E (2018) LA–ICP–MS U–Pb zircon dating of plutonic and metavolcanic rocks of Slavkov Terrane and Central Basic Belt, Brunovistulian microcontinent—preliminary results. In: Kuboušková S, Krmíček L (eds) Proceedings of the Brunovistulicum 2018 conference. Masaryk University, Brno, pp 4–15

  169. Triantafyllou A, Berger J, Baele JM, Diot H, Ennih N, Plissart G, Monnier C, Watlet A, Bruguier O, Spagna P, Vandycke S (2016) The Tachakoucht–Iriri–Tourtit arc complex (Moroccan Anti-Atlas): Neoproterozoic records of polyphased subduction-accretion dynamics during the Pan-African Orogeny. J Geodyn 96:81–103

    Google Scholar 

  170. Triantafyllou A, Berger J, Baele JM, Bruguier O, Diot H, Ennih N, Monnier C, Plissart G, Vandycke S, Watlet A (2018) Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex (Anti-Atlas, Morocco). Precambr Res 304:39–63

    Google Scholar 

  171. Tunheng A, Hirata T (2004) Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. J Anal At Spectrom 19:932–934

    Google Scholar 

  172. Ulmer P, Kaegi R, Müntener O (2018) Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J Petrol 59:11–58

    Google Scholar 

  173. Unrug R, Haranczyk C, Chocyk-Jaminska M (1999) Easternmost Avalonian and Armorican-Cadomian terranes of Central Europe and Caledonian-Variscan evolution of the polydeformed Kraków mobile belt: geological constraints. Tectonophysics 302:133–157

    Google Scholar 

  174. Ustaömer PA, Ustaömer T, Collins AS, Robertson AHF (2009) Cadomian (Ediacaran–Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: magmatism along the developing northern margin of Gondwana. Tectonophysics 473:99–112

    Google Scholar 

  175. van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísař Z, Povondra P, Vrána S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73:89–108

    Google Scholar 

  176. Vavrdová M (2004) The Brunovistulicum: assumptions and data. Z Dtsch geol Gesell 155:1–9

    Google Scholar 

  177. von Raumer J, Stampfli G, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci (Geol Rundsch) 91:35–52

    Google Scholar 

  178. Walker JA (1981) Petrogenesis of lavas from cinder cone fields behind the volcanic front of Central America. J Geol 89:721–739

    Google Scholar 

  179. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Google Scholar 

  180. Whattam SA, Stern RJ (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib Mineral Petrol 162:1031–1045

    Google Scholar 

  181. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Google Scholar 

  182. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Google Scholar 

  183. Winchester JA (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360:5–21

    Google Scholar 

  184. Winchester J, Floyd P (1976) Geochemical magma type discrimination; application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Lett 28:459–469

    Google Scholar 

  185. Winchester J, Pharaoh T, Verniers J (2002) Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society, Special Publications 201, London, pp 1–18

  186. Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30

    Google Scholar 

  187. Yilmaz Sahin S, Aysal N, Güngör Y, Peytcheva I, Neubauer F (2014) Geochemistry and U–Pb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: implications for the geodynamic evolution of Cadomian Orogeny. Gondwana Res 26:755–771

    Google Scholar 

  188. Young GM (1995) Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents? Geology 23:153–156

    Google Scholar 

  189. Zapletal K (1922) Vyvřelina brněnská. Příroda 15:193–200

    Google Scholar 

  190. Źelażniewicz A, Buła Z, Fanning M, Seghedi A, Źaba J (2009) More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geol Q 53:93–124

    Google Scholar 

  191. Zhong S, Zhang N, Li ZX, Roberts JH (2007) Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet Sci Lett 261:551–564

    Google Scholar 

Download references

Acknowledgements

The presented data were collected in the frame of the Czech Geological Survey (CGS) mapping campaign (internal project No. 390003) and were processed thanks to the CGS internal project No. 321090 and institutional support RVO 67985831 to MS. We are indebted to F. Finger (University Salzburg) for invaluable discussions and permission to use his unpublished Nd isotopic data. We thank F. Veselovský and M. Štrba (CGS) for careful zircon separation and P. Gadas (Masaryk University Brno) for help with electron microprobe analyses. Comments of S. Mazur and anonymous reviewer were very helpful to improve the final version of paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavel Hanžl.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanžl, P., Janoušek, V., Soejono, I. et al. The rise of the Brunovistulicum: age, geological, petrological and geochemical character of the Neoproterozoic magmatic rocks of the Central Basic Belt of the Brno Massif. Int J Earth Sci (Geol Rundsch) 108, 1165–1199 (2019). https://doi.org/10.1007/s00531-019-01700-2

Download citation

Keywords

  • Neoproterozoic magmatic arc
  • Geochemistry
  • U–Pb zircon dating
  • Brno Massif
  • Rodinia
  • Pannotia