87Sr/86Sr applied to age discrimination of the Palaeozoic carbonates of the Ossa-Morena zone (SW Iberia Variscides)

Abstract

Four distinct Palaeozoic episodes of marine carbonate sedimentation are reported in the Ossa-Morena Zone (SW Iberian Variscides). Among them, the Cambrian and the Devonian episodes are those that are well represented in the Portuguese domains of the Ossa-Morena zone. In this zone, the strong Variscan deformation and metamorphic recrystallization obliterate the biostratigraphic contents of some carbonate local successions and their ages have been based on lithostratigraphic correlations. The 87Sr/86Sr values for the Ossa-Morena zone carbonate rocks allow to make an isotopic–lithostratigraphic correlation, based on the comparison between strontium ratios of marine carbonate rocks without chronological data and carbonate rocks with a good age control. Moreover, the established 87Sr/86Sr fingerprints of the marine carbonate episodes from Ossa-Morena zone should be simultaneously correlated with the worldwide seawater 87Sr/86Sr curve. Despite the interaction of the marine carbonate sedimentation with late secondary dolomitization processes or with high-temperature metamorphic/metasomatic fluids, which increases the primary 87Sr/86Sr ratios, this methodology allows to define two main distinct clusters of 87Sr/86Sr for the Ossa-Morena zone marine carbonates: a Devonian cluster with strontium ratios lower than 0,708000; and a Cambrian cluster ranging from 0.708777 to 0.708299 (0.708575 ± 0,000161), that can reach 0.709227–0.708866 (0.709087 ± 0,000118) if incipient late secondary dolomitization or high-temperature metamorphism/metasomatism operated. The obtained 87Sr/86Sr isotopic ratios corroborate the lithostratigraphic correlations between the carbonate rocks of Abrantes, Assumar, Estremoz, Viana-Alvito, Ficalho and Escoural successions with the Ovetian–Marianian limestones of Alter-do-Chão–Elvas Succession. Moreover, this methodology allows to establish the isotopic discrimination between the Upper Silurian–Devonian limestones of Ferrarias, Barrancos and Bencatel successions and the marbles of Estremoz Succession.

This is a preview of subscription content, log in to check access.

Fig. 1

(adapted from Oliveira et al. 1991; Robardet and Gutiérrez-Marco 2004)

Fig. 2

(adapted from Prokoph et al. 2008; Maloof et al. 2010; MacArthur et al. 2012)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ábalos B, Ibarguchi G, Eguiluz L (1991) Structural and metamorphic evolution of the Almaden de la Plata Core (Seville, Spain) in relation to syn-metamorphic shear between the Ossa-Morena and South Portuguese zones of the Iberian Variscan fold belt. Tectonophysics 191:365–387. https://doi.org/10.1016/0040-1951(91)90068-4

    Article  Google Scholar 

  2. Álvaro JJ, Bellido F, Gasquet D, Pereira MF, Quesada C, Sánchez-García T (2014) Diachronism in the late Neoproterozoic–Cambrian arc-rift transition of North Gondwana: a comparison of Morocco and the Iberian Ossa-Morena zone. J Afr Earth Sci 98:113–132. https://doi.org/10.1016/j.jafrearsci.2014.03.024

    Article  Google Scholar 

  3. Andrade AAS (1984) Sobre a Originalidade (ou talvez não) do Maciço de Beja no Sudoeste Peninsular. Memórias e Notícias 97:115–132

    Google Scholar 

  4. Araújo A, Piçarra J, Borrego J, Pedro J, Oliveira JT (2013) As regiões central e sul da Zona de Ossa-Morena. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol I. Escolar Editora, Lisbon, pp 509–549

    Google Scholar 

  5. Ausich WI, Kammer TW, Rhenberg EC, Wright DF (2015) Early phylogeny of crinoids within the pelmatozoan clade. Palaeontology 58:937–952. https://doi.org/10.1111/pala.12204

    Article  Google Scholar 

  6. Ayan T (1965) Chemical staining methods used in the identification of carbonate minerals. B Miner Res Expl 65:133–147

    Google Scholar 

  7. Azmy K, Veizer J, Wenzal B, Bassett M, Cooper P (1999) Silurian strontium isotope stratigraphy. Geol Soc Am Bull 111:475–483. https://doi.org/10.1130/0016-7606(1999)111%3C0475:SSIS%3E2.3.CO;2

    Article  Google Scholar 

  8. Boogard M (1972) Conodont faunas from Portugal and Southwestern Spain. Part 1: A Middle Devonian fauna from near Montemor-o-Novo. Scr Geol 13:1–11

    Google Scholar 

  9. Brasier MD, Shields GA, Kuleshov VN, Zhegallo EA (1996) Integrated chemo- and biostratigraphic calibration of early animal evolution: neoproterozoic-early Cambrian of southwest Mongolia. Geol Magn 133:445–485. https://doi.org/10.1017/S0016756800007603

    Article  Google Scholar 

  10. Bucher K, Grapes M (2011) Petrogenesis of metamorphic rocks, 8th edn. Springer, New York

    Google Scholar 

  11. Burke WH., Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519. https://doi.org/10.1130/0091-7613(1982)10%3C516:VOSSTP%3E2.0.CO;2

    Article  Google Scholar 

  12. Chichorro M (2006) Estrutura do Sudoeste da Zona de Ossa-Morena: Área de Santiago de Escoural—Cabrela (Zona de Cisalhamento de Montemor-o-Novo, Maciço de Évora). Ph.D. thesis (unpublished), Universidade de Évora, Portugal, p 502

  13. Chichorro M, Pereira MF, Diaz-Azpiroz M, Williams IS, Fernandez C, Pin C, Silva JB (2008) Cambrian ensialic rift-related magmatism in the Ossa-Morena zone (Évora-Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U–Th–Pb geochronology. Tectonophysics 461:91–113. https://doi.org/10.1016/j.tecto.2008.01.008

    Article  Google Scholar 

  14. Coelho A, Gonçalves F (1970) Rocha hiperalcalina de Estremoz. Bol Soc Geol Port XVII:181–185

    Google Scholar 

  15. Conde LN, Andrade AAS (1974) Sur la faune meso et/ou néodévonienne des calcaires du Monte das Cortes, Odivelas (Massif de Beja). Memórias e Notícias 78:141–146

    Google Scholar 

  16. Denison RE, Koepnick RB, Burke WH, Hetherington EA, Fletcher A (1997) Construction of the Silurian and Devonian seawater 87Sr/86Sr curve. Chem Geol 140:109–121. https://doi.org/10.1016/S0009-2541(97)00014-4

    Article  Google Scholar 

  17. Denison RE, Koepnick RB, Burke WH, Hetherington EA (1998) Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chem Geol 152:325–340. https://doi.org/10.1016/S0009-2541(98)00119-3

    Article  Google Scholar 

  18. Derry LA, Brasier MD, Corfield RM, Rozanov AY, Zhuravlev AY (1994) Sr and C isotope in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth Planet Sci Letters 128:671–681. https://doi.org/10.1016/0012-821X(94)90178-3

    Article  Google Scholar 

  19. Dias R, Ribeiro A, Romão J, Coke C, Moreira N (2016) A Review of the arcuate structures in the Iberian Variscides; constraints and genetical models. Tectonophysics 681:170–194. https://doi.org/10.1016/j.tecto.2016.04.011

    Article  Google Scholar 

  20. Gomes EMC, Fonseca PE (2006) Eventos metamórfico/metassomáticos tardi-variscos na região de Alvito (Alentejo, sul de Portugal). Cadernos Lab. Xeolóxico Laxe 31:67–85

    Google Scholar 

  21. Gonçalves F (1972) Geological Map of Portugal at 1:50 000, 36-B (Estremoz). Serviços Geológicos de Portugal, Lisbon

    Google Scholar 

  22. Gozalo R, Liñán E, Palacios T, Gámez-Vintaned JA, Mayoral E (2003) The Cambrian of the Iberian Peninsula: an overview. Geol Acta 1:103–112

    Google Scholar 

  23. Guensburg TE, Sprinkle J (2001) Earliest crinoids: new evidence for the origin of the dominant Paleozoic echinoderms. Geology 29(2):131–134. https://doi.org/10.1130/0091-7613(2001)029%3C0131:ECNEFT%3E2.0.CO;2

    Article  Google Scholar 

  24. Hubbard CR, Snyder RL (1988) RIR-measurement and use in quantitative XRD. Powder Differ 3(2):74–77. https://doi.org/10.1017/S0885715600013257

    Article  Google Scholar 

  25. Hubbard CR, Evans EH, Smith DK (1976) The reference intensity ratio, I/Ic, for computer simulated powder patterns. J Appl Cryst 9:169–174. https://doi.org/10.1107/S0021889876010807

    Article  Google Scholar 

  26. Julivert M, Fontbote JM, Ribeiro A, Conde LEN (1974) Memoria explicativa del mapa tectónico de la península Ibérica y baleares, escala 1:1 000 000. Inst Geol Min España pp 1–113

  27. Liao JC, Silvério G, Valenzuela Rios JJ, Machado G, Moreira N, Barreto P (2018) Hunting for Eifelian (Middle Devonian) Conodonts in the Pedreira da Engenharia Formation (Ossa-Morena zone, Portugal). In: 5th International Palaeontological Congress (abstract book). Paris

  28. Liñán E, Perejón A, Gozalo R, Moreno-Eiris E, Oliveira TJ (2004) The Cambrian system in Iberia. Cuadernos del Museo Geominero No 3, Instituto Geológico y Minero de España, Madrid, p 63

  29. LNEG (2010) Geological map of Portugal at 1:1 000 000, 3rd edn. Laboratório Nacional de Energia e Geologia, Lisbon

    Google Scholar 

  30. Lopes L (2007) O triângulo do mármore: estudo geológico. Monumentos 27:6–15

    Google Scholar 

  31. Lotze F (1945) Zur Gliderung der Varisziden in der Iberischen Meseta. Geotekt Forsch 6:78–92

    Google Scholar 

  32. Macdougall JD (1991) Radiogenic isotopes in seawater and sedimentary systems. Miner Assoc Can Short Course Handb 19:337–364

    Google Scholar 

  33. Machado G, Hladil J (2010) On the age and significance of the limestone localities included in the Toca da Moura volcano-sedimentary Complex: preliminary results. In: Santos A, Mayoral E, Melendez G, Silva CMD, Cachão M (eds) III Congresso Iberico de Paleontologia/XXVI Jornadas de la Sociedad Espanola de Paleontologia. Publicaciones del Seminario de Paleontologia de Zaragoza, vol 9, pp 153–156

  34. Machado G, Hladil J, Koptikova L, Fonseca P, Rocha FT, Galle A (2009) The Odivelas limestone: evidence for a middle Devonian reef system in western Ossa-Morena zone. Geol Carpath 60(2):121–137. https://doi.org/10.2478/v10096-009-0008-1

    Article  Google Scholar 

  35. Machado G, Hladil J, Koptikova L, Slavik L, Moreira N, Fonseca M, Fonseca P (2010) An Emsian-Eifelian carbonate-volcaniclastic sequence and the possible record of the basal choteč event in western Ossa-Morena zone, Portugal (Odivelas Limestone). Geol Belg 13:431–446

    Google Scholar 

  36. Machado G, Moreira N, Silvério G (2018) Devonian sedimentation in the SW boundary of the Ossa-Morena zone; state of art and paleogeography. Vulcânica II:177–178

    Google Scholar 

  37. Mackenzie FT, Morse JW (1992) Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta 56:3281–3295. https://doi.org/10.1016/0016-7037(92)90305-3

    Article  Google Scholar 

  38. Maia M, Vicente S, Mirão J, Nogueira P (2018) Raman Spectroscopy applied to the study of fluid inclusions associated with the Cu mineralizations of Mociços and Ferrarias. XIV Congresso de Geoquímica dos Países de Língua Portuguesa, XIX Semana da Geoquímica (abstract book), pp 351–354

  39. Maloof AC, Porter SM, Moore JL, Dudás FO, Bowring SA, Higgins JA, Fike DA, Eddy MP (2010) The earliest Cambrian record of animals and ocean geochemical change. GSA Bull 122(11–12):1731–1774. https://doi.org/10.1130/B30346.1

    Article  Google Scholar 

  40. Matos JX, Filipe A (coord.) (2013) Carta de Ocorrências Mineiras do Alentejo e Algarve, Escala 1:400 000. Laboratorio Nacional de Energia e Geologia, 1st edn (ISBN: 978-989-675-029-9)

  41. McArthur JM (1994) Recent trends in strontium isotope stratigraphy. Terra Nova 6:331–358. https://doi.org/10.1111/j.1365-3121.1994.tb00507.x

    Article  Google Scholar 

  42. McArthur JM, Howarth RJ, Shields GA (2012) Strontium Isotope Stratigraphy. In: Gradstein FM, Ogg JG, Schmotz MD, Ogg GM (eds), A geologic time scale 2012 (Chap. 7). Elsevier, Amsterdam, pp 127–144

  43. Moita P, Santos JF, Pereira MF (2009) Layered granitoids: interaction between continental crust recycling processes and mantle-derived magmatism. Examples from the Évora Massif (Ossa-Morena zone, southwest Iberia, Portugal). Lithos 111(3–4):125–141. https://doi.org/10.1016/j.lithos.2009.02.009

    Article  Google Scholar 

  44. Morbidelli P, Tucci P, Imperatori C, Polvorinos A, Preite Martinez M, Azzaro E, Hernandez MJ (2007) Roman quarries of the Iberian peninsula: “Anasol” and “Anasol”-type. Eur J Miner 19:125–135. https://doi.org/10.1127/0935-1221/2007/0019-0125

    Article  Google Scholar 

  45. Moreira N (2012) Caracterização estrutural da zona de cisalhamento Tomar-Badajoz-Córdova no sector de Abrantes. MsC thesis (unpublished). University of Évora, Portugal, p 225

  46. Moreira N (2017) Evolução Geodinâmica dos sectores setentrionais da Zona de Ossa-Morena no contexto do Varisco Ibérico. Ph.D. thesis (unpublished). Universidade de Évora, Portugal, p 433

  47. Moreira N, Machado G (2019) Devonian sedimentation in western ossa-morena zone and its geodynamic significance. In: Quesada C, Oliveira JT (eds) The Geology of Iberia: a geodynamic approach, The variscan cycle, regional geology review series, vol 2, Springer, Berlin (in press)  

  48. Moreira N, Machado G, Fonseca PE, Silva JC, Jorge RCGS, Mata J (2010) The Odivelas Palaeozoic volcano-sedimentary sequence: implications for the geology of the Ossa-Morena Southwestern border. Comun Geol 97:129–146

    Google Scholar 

  49. Moreira N, Araújo A, Pedro JC, Dias R (2014a) Evolução geodinâmica da Zona de Ossa-Morena no contexto do SW Ibérico durante o Ciclo Varisco. Comun Geol 101(I):275–278

    Google Scholar 

  50. Moreira N, Dias R, Pedro JC, Araújo A (2014b) Interferência de fases de deformação Varisca na estrutura de Torre de Cabedal; sector de Alter-do-Chão–Elvas na Zona de Ossa-Morena. Comun Geol 101(I):279–282

    Google Scholar 

  51. Moreira N, Pedro J, Romão J, Dias R, Araújo A, Ribeiro A (2015) The neoproterozoic-cambrian transition in Abrantes region (Central Portugal); litostratigraphic correlation with cambrian series of ossa-morena zone. Géologie de la France (Variscan 2015 special issue, Rennes) 2015(1):101–102

  52. Moreira N, Pedro J, Santos JF, Araújo A, Romão J, Dias R, Ribeiro A, Ribeiro S, Mirão J (2016) 87Sr/86Sr ratios discrimination applied to the main Paleozoic carbonate sedimentation in Ossa-Morena zone. In: IX Congreso Geológico de España (special volume). Geo-Temas 16(1):161–164

  53. Moreno F, Vegas R (1976) Tectónica de las séries ordovícias y siluricas en la región de Villanueva del Fresno. Estud Geol 32:47–52

    Google Scholar 

  54. Mountjoy EW, Qing H, McNutt (1992) Strontium isotopic composition of Devonian dolomites, Western Canada Sedimentary Basin: significance of sources of dolomitizing fluids. Appl Geochem 7:59–75. https://doi.org/10.1016/0883-2927(92)90015-U

    Article  Google Scholar 

  55. Nicholas CJ (1996) The Sr isotopic evolution of the oceans during the ‘Cambrian explosion’. J Geol Soc 153:243–254. https://doi.org/10.1144/gsjgs.153.2.0243

    Article  Google Scholar 

  56. Oliveira JT (1984) Transversal Barrancos-Ficalho. Cadernos do Lab Xeolóxico de Laxe 8:347–357

    Google Scholar 

  57. Oliveira JT, Oliveira V, Piçarra JM (1991) Traços gerais da evolução tectono-estratigráfica da Zona de Ossa Morena, em Portugal: síntese crítica do estado actual dos conhecimentos. Comun Serv Geol Port 77:3–26

    Google Scholar 

  58. Oliveira JT, Relvas J, Pereira Z, Munhá J, Matos J, Barriga F, Rosa C (2013) O Complexo Vulcano-Sedimentar de Toca da Moura-Cabrela (Zona de Ossa Morena): evolução tectono-estratigráfica e mineralizações associadas. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol I. Escolar Editora, Lisbon, pp 621–645

    Google Scholar 

  59. Passchier CW, Trouw RAJ (2005) Microtectonics. 2nd edn. Springer, New York

    Google Scholar 

  60. Pedro J, Araújo A, Fonseca P, Munhá J, Ribeiro A, Mateus A (2013) Cinturas ofiolíticas e metamorfismo de alta pressão no bordo SW da Zona de Ossa-Morena. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol I. Escolar Editora, Lisbon, pp 647–671

    Google Scholar 

  61. Perdigão JC, Oliveira JT, Ribeiro A (1982) Notícia explicativa da folha 44-B (Barrancos) da Carta Geológica de Portugal à escala 1:50.000. Serviços Geológicos de Portugal, Lisbon

    Google Scholar 

  62. Pereira Z, Oliveira JT (2003) Estudo palinostratigráfico do sinclinal da Estação de Cabrela. Implicações tectonostratigráficas. Cienc Terra UNL 5:118–119

    Google Scholar 

  63. Pereira MF, Silva JB (2001) The Northeast Alentejo Neoproterozoic-Lower Cambrian succession (Portugal): implications for regional correlations in the Ossa morena zone (Iberian Massif). Geogaceta 30:106–111

    Google Scholar 

  64. Pereira Z, Oliveira V, Oliveira JT (2006a) Palynostratigraphy of the Toca da Moura and Cabrela Complexes, Ossa Morena zone, Portugal. Geodynamic implications. Rev Palaeobot Palyno 139:227–240. https://doi.org/10.1016/j.revpalbo.2005.07.008

    Article  Google Scholar 

  65. Pereira MF, Medina J, Chichorro M, Linnemann U (2006b) Preliminary Rb-Sr and Sm-Nd isotope geochemistry on Ediacaran and Early Cambrian Sediments from the Ossa-Morena zone (Portugal). In: Mirão J, Balbino A (ed), VII Congresso Nacional de Geologia abstract book, vol. I. Estremoz, pp 213–215

  66. Pereira MF, Chichorro M, Williams IS, Silva JB, Fernández C, Díaz-Azpíroz M, Apraiz A, Castro A (2009) Variscan intra-orogenic extensional tectonics in the Ossa-Morena zone (Évora–Aracena–Lora del Río metamorphic belt, SW Iberian Massif): SHRIMP zircon U–Th–Pb geochronology. Geol Soc Spec Publ 327:215–237. https://doi.org/10.1144/SP327.11

    Article  Google Scholar 

  67. Pereira MF, Solá AR, Chichorro M, Lopes L, Gerdes A, Silva JB (2012) North-Gondwana assembly, break up and paleogeography: U–Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Res 22(3–4):866–881. https://doi.org/10.1016/j.gr.2012.02.010

    Article  Google Scholar 

  68. Piçarra JM (2000) Estudo estratigráfico do sector de Estremoz-Barrancos, Zona de Ossa Morena, Portugal. Vol. I—Litoestratigrafia do intervalo Câmbrico médio?-Devónico inferior, vol. II—Bioestratigrafia do intervalo Ordovícico-Devónico inferior. Ph.D. Thesis (unpublished), Évora University, Portugal

  69. Piçarra JM, Le Meen J (1994) Ocorrência de crinóides em mármores do Complexo Vulcano-Sedimentar Carbonatado de Estremoz: implicações estratigráficas. Comun do Inst Geol e Mineiro 80:15–25

    Google Scholar 

  70. Piçarra JM, Sarmiento G (2006) Problemas de posicionamento estratigráfico dos Calcários Paleozóicos da Zona de Ossa Morena (Portugal). In: Mirão J, Balbino A (eds) VII Congresso Nacional de Geologia abstract book, vol II. Estremoz, pp 657–660

  71. Piçarra JM, Sarmiento GN, Gutiérrez-Marco JC (2014) Geochronological vs Paleontological dating of the Estremoz Marbles (OMZ)—new data and reappraisal. Gondwana 15 conference abstract book. Madrid

  72. Prokoph A, Shields GA, Veizer J (2008) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133. https://doi.org/10.1016/j.earscirev.2007.12.003

    Article  Google Scholar 

  73. Ribeiro ML, Mata J, Piçarra JM (1992) Vulcanismo bimodal da região de Ficalho: características geoquímicas. Comun Serv Geol de Port 78(2):75–85

    Google Scholar 

  74. Robardet M, Gutiérrez-Marco JC (1990) Passive margin phase (Ordovician-Silurian-Devonian). In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 249–251

    Google Scholar 

  75. Robardet M, Gutiérrez-Marco JC (2004) The Ordovician, Silurian and Devonian sedimentary rocks of the Ossa-Morena zone (SW Iberian Peninsula, Spain). J Iber Geol 30:73–92

    Google Scholar 

  76. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Addison-Wesley Longman Ltd, Singapore

    Google Scholar 

  77. Sánchez-García T, Quesada C, Bellido F, Dunning GR, González de Tánago J (2008) Two-step magma flooding of the upper crust during rifting: the Early Palaeozoic of the Ossa Morena zone (SW Iberia). Tectonophysics 461:72–90. https://doi.org/10.1016/j.tecto.2008.03.006

    Article  Google Scholar 

  78. Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Res 17:392–407. https://doi.org/10.1016/j.gr.2009.10.005

    Article  Google Scholar 

  79. Santos JF, Andrade A, Munhá J (1990) Magmatismo orogénico varisco no limite meridional da Zona de Ossa-Morena. Comun Serv Geol Port 76:91–124

    Google Scholar 

  80. Santos JF, Mata J, Ribeiro S, Fernandes J, Silva J (2013) Sr and Nd isotope data for arc-related (meta) volcanics (SW Iberia), Goldschmidt Conference Abstracts, 2132. https://doi.org/10.1180/minmag.2013.077.5.19

  81. Sarmiento GN, Piçarra JM, Oliveira JT (2000) Conodontes do silúrico (superior?)-devónico nos “mármores de estremoz”, sector de estremoz-barrancos (zona de ossa morena, portugal). Implicações estratigráficas e estruturais a nível regional. I congresso Ibérico de paleontologia/VIII International meeting of IGCP 421 (abstract book), Évora, pp 284–285

  82. Sarmiento GN, Gutiérrez-Marco JC, Del Moral B (2008) Conodontos de la “Caliza de Pelmatozoos” (Ordovícico Superior), Norte de Sevilla, Zona de Ossa-Morena (España). Coloquios de Paleontol 58:73–99

    Google Scholar 

  83. Sarmiento GN, Gutiérrez-Marco JC, Rodríguez-Cañero R, Martín Algarra A, Navas-Parejo P (2011) A brief summary of Ordovician Conodont Faunas from the Iberian Peninsula. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the World. Cuadernos del Museo Geominero IGME, vol 14, pp 505–514

  84. Silva JC, Mata J, Moreira N, Fonseca PE, Jorge RCGS, Machado G (2011) Evidence for a lower devonian subduction zone in the south eastern boundary of the ossa-morena-zone. VIII congresso Ibérico de geoquímica (absctract book), Castelo Branco, Portugal, pp 295–299

  85. Taelman D, Elburg M, Smet I, Paepe P, Lopes L, Vanhaecke F, Vermeulen F (2013) Roman marble from Lusitania: petrographic and geochemical characterization. J Archaeol Sci 40:2227–2236. https://doi.org/10.1016/j.jas.2012.12.030

    Article  Google Scholar 

  86. Vegas R, Moreno R (1973) Sobre la tectónica del flanco meridional de la Antiforma de Burgillos (sur de la provincia de Badajoz). Estud Geol 29:513–517

    Google Scholar 

  87. Veizer J (1989) Strontium Isotopes in Seawater through Time. Ann Rev Earth Planet Sci 17:141–167. https://doi.org/10.1146/annurev.earth.17.1.141

    Article  Google Scholar 

  88. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88. https://doi.org/10.1016/S0009-2541(99)00081-9

    Article  Google Scholar 

  89. Vera JA (ed) (2004) Geología de España. SGE-IGME, Madrid, p 884

  90. Winter JD (2013) Principles of igneous and metamorphic petrology. 2nd edn. Pearson New International Edition, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

We are grateful to L. A. Eguíluz and an anonymous referee for their insightful suggestions that contribute to improve the quality of the final manuscript. The editorial work of W.C. Dullo should be also emphasized. N. Moreira acknowledges Gulbenkian Foundation for the financial support through the “Programa de Estímulo à Investigação 2011” and Fundação para a Ciência e a Tecnologia (FCT; Portuguese Science and Technology Foundation), through the PhD grant (SFRH/BD/80580/2011). N. Moreira, R. Dias, J. Pedro and A. Araujo acknowledge the funding provided by the Institute of Earth Sciences (ICT), under contract with FCT (UID/GEO/04683/2013) and to COMPETE POCI-01-0145-FEDER-007690. This work is a contribution to the project ALT20-03-0145-FEDER-000028, funded by Alentejo 2020 through the FEDER / FSE / FEEI. J. F. Santos and S. Ribeiro, received financial support from the GeoBioTec research unit, which is funded, by FCT, through project UID/GEO/04035/2013.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Moreira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreira, N., Pedro, J., Santos, J.F. et al. 87Sr/86Sr applied to age discrimination of the Palaeozoic carbonates of the Ossa-Morena zone (SW Iberia Variscides). Int J Earth Sci (Geol Rundsch) 108, 963–987 (2019). https://doi.org/10.1007/s00531-019-01688-9

Download citation

Keywords

  • Ossa-Morena zone
  • Carbonate sedimentation
  • Iberian variscides
  • 87Sr/86Sr ratio