Skip to main content
Log in

First U–Pb LA-ICP-MS zircon ages assessed from a volcano-sedimentary complex of the mid-European Variscides (Pennsylvanian, Flöha Basin, SE Germany)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Nine radiometric ages constrained by U–Pb isotopes from magmatic zircon grains are provided for different volcanic rocks from the Flöha Basin and its surroundings. For most of them, this is the first reliable data to correlate with the International Chronostratigraphic Chart. Measurements were obtained with LA-ICP-MS and revealed middle Pennsylvanian ages (311–308 Ma) allowing first consistent correlation to other Variscan volcano-sedimentary basins of the Saxo-Thuringian and Teplá Barrandian zones. The Obermühlbach Volcano, formerly considered to be early Permian in age, is shown to be of middle Pennsylvanian age. In contrast, the dykes from Metzdorf village and Oederan have shown to be not Pennsylvanian, but rather of early Permian age. Biostratigraphic data obtained from the Flöha Formation macroflora coincide with the new isotopic evidence which encompasses a likely time span from the middle to late Bolsovian (Westphalian C) up to the Bolsovian–Asturian boundary. The results not only yield a modified picture of the Flöha Formation and their intercalated pyroclastics. As new insights challenge previous geological mapping they contribute to the understanding of the complex volcano-tectonic processes in the type area of the Saxo-Thuringian zone of the European Variscides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. An overview about sample locations including geographic coordinates is given by Online Resource Table 1.

  2. The yet unpublished geochemical data shows a 113.2 ppm Zr content and, therefore, the lack of sufficient zircon grains in this volcanite remains to be fully understood.

  3. It must be strictly distinguish between the concordia age with the corresponding standard deviation of the mean and the single zircon age with the corresponding sample standard deviation. Only the concordia age, calculated using several single zircon ages, is of geological significance. Single zircon ages perhaps can play an important role as a “fingerprint” for volcanic/subvolcanic rocks.

References

  • Andreas D (2014) Der Thüringer Wald im Zeitraum der Stefan-Unterperm-Entwicklung - ein Abschnitt der Zentraleuropäischen N-S-Riftzone innerhalb des Mitteleuropäischen Großschollenscharniers. Freiberger Forschungshefte C 547:1–181

    Google Scholar 

  • Benek R (1991) Aspekte einer Volumenbilanz paläovulkanischer Förderprodukte - Beispiel Teplice-Rhyolith (Ostdeutschland). Z geol Wiss 19:379–389

    Google Scholar 

  • Benek R (1995) Late Variscan calderas/volcanotectonic depressions in eastern Germany. Terra Nostra 7(95):16–19

    Google Scholar 

  • Cisneros JC, Marsicano C, Anglieczyk KD, Smith RMH, Richter M, Fröbisch J, Kammerer CF, Sadleir RW (2015) New Permian fauna from tropical Gondwana. Nature. https://doi.org/10.1038/ncomms9676

    Google Scholar 

  • Cleal CJ, van Waveren IM (2012) A reappraisal of the Carboniferous macrofloras of the Zonguldak—Amasra Coal Basin, north-western Turkey. Geologica Croatica 65(3):283–297

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, vol 53, pp 469–500

  • Davydov VI, Korn D, Schmitz MD (2012) The carboniferous period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 603–651

    Chapter  Google Scholar 

  • Faupl P (2000) Historische geologie. Facultas, Wien, pp 1–277

    Google Scholar 

  • Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) (2012) The Geologic Time Scale 2012, vol 2. Elsevier, Amsterdam, pp 1–1144

  • Gäbert C, Sauer A, Siegert TH, Rothpletz A (1907) Erläuterungen zur geologischen Spezialkarte des Königreichs Sachsen. Section Augustusburg-Flöha. Blatt 97, 2. Aufl., W. Engelmann, Leipzig, 1–99

    Google Scholar 

  • Gaitzsch BG, Rößler R, Schneider JW, Schretzenmayr S (1998) Neue Ergebnisse zur Verbreitung potentieller Muttergesteine im Karbon der variscischen Vorsenke in Nordostdeutschland. Geol Jb A 149:25–58

    Google Scholar 

  • Gehmlich M, Linnemann U, Tichomirowa M, Gaitzsch B, Kroner U, Bombach K (2000) Geochronologie oberdevonischer bis unterkarbonischer Magmatite der Thüringischen und Bayerischen Faziesreihe sowie variszischer Deckenkomplexe und der Frühmolasse von Borna-Hainichen (Saxothuringisches Terrane). Z geol Wiss 151:337–363

    Google Scholar 

  • Geinitz HB (1854) Darstellung der Flora des Hainichen-Ebersdorfer und des Flöhaer Kohlenbassins im Vergleich zu der Flora des Zwickauer Steinkohlengebietes. Gekrönte Preisschrift der Fürstl. Jablonowskischen Gesellschaft, pp 1–80

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibrium of zircon in aqueous fluids and melts. Elements 3(1):43–50

    Article  Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  • Gerdes A, Zeh A (2009) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  • Geršlová E, Goldbach M, Geršl M, Skupien P (2016) Heat flow evolution, subsidence and erosion in Upper Silesian Coal Basin, Czech Republic. Int J Coal Geol 154–155:30–42

    Article  Google Scholar 

  • Gothan W (1932) Die Altersstellung des Karbons von Flöha i. Sa. im Karbonprofil aufgrund der Flora. Abh sächs geol Landesamt 12:15–19

    Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Pet 84:66–72

    Article  Google Scholar 

  • Hess JC, Lippolt HJ, Holub VM, Pešek J (1985) Isotopic ages of two Westphalian C tuffs a contribution to the Upper Carboniferous time scale. Terra Cognita 5:236–237

    Google Scholar 

  • Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous–Permian volcanic evolution in Central Europe U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci (Geol Rundschau) 102:73–99

    Article  Google Scholar 

  • Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U–Th–Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40:311–332

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, vol 53, pp 1–25

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jentsch F (1981a) Zur Minerogenie glasiger Subsequenzvulkanite im sächsischen Raum. Freiberger Forschungshefte C 361:1–67

    Google Scholar 

  • Jentsch F (1981b) Der Quarzporphyr von Mühlbach—ein geologisches Naturdenkmal. Veröff Mus Naturk Chemnitz 11:3–13

    Google Scholar 

  • Jentsch F (1996) Zur Problematik der Rhyolithoide im Flöhaer Raum. Veröff Mus Naturk Chemnitz 19:85–96

    Google Scholar 

  • Klemd R (2010) Early Variscan allochthonous domains: the Münchberg Complex, Frankenberg, Wildenfels, and Gjóry Sowie. In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart, pp 221–232

    Google Scholar 

  • Kotas A (1995) Structural evolution of the Upper Silesian Coal Basin (Poland). In: Essobedo IL, Granados LF, Meléndez B, Pignatelli R, Rey R, Wagner RH (eds) CR 10. Congr Int Strat Geol Carbonif. Inst Geol Him España 3, Madrid, pp 459–469

    Google Scholar 

  • Kroner U, Hahn T (2004) Sedimentation, Deformation und Metamorphose im Saxothuringikum während der variszischen Orogenese: Die komplexe Entwicklung von Nord-Gondwana während kontinentaler Subduktion und schiefer Kollision. In: Linnemann U (ed) Das Saxothuringikum. Abriss der präkambrischen und paläozoischen Geologie von Sachsen und Thüringen. Geologica Saxonica 48/49:137–150

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329

    Article  Google Scholar 

  • Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone—heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. Geol Soc Am Spec Pap 423:153–172

    Google Scholar 

  • Linnemann U, Romer RL (eds) (2010) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian Orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian Zone, NE Bohemian massif, Germany). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan Collision. Geological Society of America Special Papers, vol 423, pp 61–96

  • Linnemann U, Drost K, Gerdes A, Jeffries T, Romer RL (2008) The Bohemian Massif (Chap. 3. The Cadomian Orogeny). In: McCann T (ed) The geology of Central Europe. The Geological Society of London, London, pp 121–147

    Google Scholar 

  • Linnemann U, Romer RL, Gerdes A, Jeffries TE, Drost K, Ulrich J (2010a) The Cadomian Orogeny in the Saxo-Thuringian Zone. In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart, pp 33–58

    Google Scholar 

  • Linnemann U, Hofmann M, Romer RL, Gerdes A (2010b) Transitional stages between the Cadomian and Variscan Orogenies: Basin development and tectonomagmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart, pp 59–98

    Google Scholar 

  • Löcse F, Rößler R (2018) Zur geologisch-paläontologischen Forschungsgeschichte des Flöha-Beckens. Ein Mosaikstein zur historischen Entwicklung der Geowissenschaften in Sachsen. Geohistorische Blätter 29:1–24

    Google Scholar 

  • Löcse F, Meyer J, Klein R, Linnemann U, Weber J, Rößler R (2013) Neue Florenfunde in einem Vulkanit des Oberkarbons von Flöha—Querschnitt durch eine ignimbritische Abkühlungseinheit. Veröff Mus Naturk Chemnitz 36:85–142

    Google Scholar 

  • Löcse F, Linnemann U, Schneider G, Annacker V, Zierold T, Rößler R (2015) 200 Jahre Tubicaulis solenites (Sprengel) Cotta. Sammlungsgeschichte, Paläobotanik & Geologie eines oberkarbonischen Baumfarn-Unikats aus dem Schweddey-Ignimbrit vom Gückelsberg bei Flöha. Veröff Mus Naturk Chemnitz 38:5–46

    Google Scholar 

  • Löcse F, Zierold T, Rößler R (2017) Provenance and collection history of Tubicaulis solenites (Sprengel) Cotta. A unique fossil tree fern and its 200-year journey through the international museum landscape. J Hist Coll 30(2):241–251

    Google Scholar 

  • Ludwig KR (2001) User’s manual for Isoplot/Ex rev. 2.49, vol 1a. Berkeley Geochronology Center Special Publications, Berkeley, pp 1–56

    Google Scholar 

  • Luthardt L, Rößler R, Schneider JW (2016) Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz-Sedimentological, geochemical and palaeobotanical evidence. Palaeogeogr Palaeoclimatol Palaeoecol 441(4):627–652

    Article  Google Scholar 

  • Luthardt L, Hofmann M, Linnemann U, Gerdes A, Marko L, Rößler R (2018) A new U–Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest. Int J Earth Sci (Geol Rundsch). (https://doi.org/10.1007/s00531-018-1608-8)

    Google Scholar 

  • Martínek K, Pešek J, Opluštil S (2017) Significant hiatuses in the terrestrial Late Variscan Central and Western Bohemian basins (Late Pennsylvanian–Early Cisuralian) and their possible tectonic and climatic links. Geol Carpath 68(3):269–281

    Article  Google Scholar 

  • McCann T (ed) (2008) The geology of Central Europe. Volume 1: Precambrian and Palaeozoic. Geological Society of London, London, pp 1–748

    Google Scholar 

  • Nasdala L, Götze J, Pidgeon RT, Kempe U, Seifert T (1998) Constraining a SHRIMP U–Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites. Contrib Mineral Petrol 132:300–306

    Article  Google Scholar 

  • Naumann CF (1838) Erläuterungen zur Section XV der geognostische Charte des Königreiches Sachsen und der angrenzenden Länderabtheilungen 2:1–494

  • Naumann CF (1864) Geognostische Beschreibung des Kohlenbassins von Flöha. W. Engelmann, Leipzig, 1–71

    Google Scholar 

  • Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale. Elsevier, Amsterdam, pp 1–234

    Book  Google Scholar 

  • Opluštil S (1997) Coal-bearing depositions and palaeogeography of the Middle Westphalian in the Central Bohemia. 48. Berg- und Hüttenmännischer Tag, TU Bergakad. Freiberg, Kolloquium 1, abstracts, pp 31–32

  • Opluštil S, Pešek J (1998) Stratigraphy, palaeoclimatology and palaeogeography of the Late Palaeozoic continental deposits in the Czech Republic. Geodiversitas 20(4):597–620

    Google Scholar 

  • Opluštil S, Pšenička J, Libertín M, Bashforth AR, Šimúnek Z, Drábková J, Dašková J (2009) A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic. Rev Palaeobot Palynol 155:234–347

    Article  Google Scholar 

  • Opluštil S, Pšenička J, Bek J, Wang J, Feng Z, Libertín M, Šimúnek Z, Bureš J, Drábková J (2014) T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: a case study from the Middle Pennsylvanian of the Czech Republic. Bull Geosci 89(4):773–818

    Article  Google Scholar 

  • Opluštil S, Lojka R, Rosenau NA, Strnad L, Sýkorová I (2015) Middle Moscovian climate of eastern equatorial Pangea recorded in paleosols and fluvial architecture. Palaeogeogr Palaeoclimatol Palaeoecol 440:328–352. https://doi.org/10.1016/j.palaeo.2015.09.009

    Article  Google Scholar 

  • Opluštil S, Schmitz M, Cleal CJ, Martínek K (2016a) A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the geological time scale based on new U–Pb ages. Earth Sci Rev 154:301–335

    Article  Google Scholar 

  • Opluštil S, Schmitz M, Káchlik V, Štamberg S (2016b) Re-assessment of lithostratigraphy, biostratigraphy and volcanic activity of the Late Paleozoic Intra-Sudetic, Krkonoše-Piedmont and Mnichovo Hradištĕ basins (Czech Republic) based on new U–Pb CA-ID-TIMS ages. Bull Geosci 91(2):399–432

    Article  Google Scholar 

  • Paech HJ (1989) Geological characterization of the ancient Variscan molasses of the Sub-Erzgebirge Basin. Z Geol Wiss Berlin 17(9):908–919

    Google Scholar 

  • Pointon MA, Chew DM, Ovtcharova M, Sevastopulo GD, Crowley QG (2012) New high-precision U–Pb dates from western European Carboniferous tuffs; implications for time scale calibration, the periodicity of late Carboniferous cycles and stratigraphical correlation. J Geol Soc 169:713–721

    Article  Google Scholar 

  • Pešek J (2004) Late Palaeozoic limnic basins and coal deposits of the Czech Republic. Folia Musei rerum naturalium Bohemiae Occidentalis. Geologica 1:1–188

  • Pšenička J, Opluštil S (2011) Fossil flora from the Újezd u Svatého Kříže Coalfield (Bolsovian, Pennsylvanian), Radnice Basin, Czech Republic. Folia 45(1–2):61–93

    Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Pet 73:207–220

    Article  Google Scholar 

  • Rank G, Pälchen W (1989) Zur Geochemie der sauren postvariszischen Vulkanite im Raum Flöha—Karl-Marx-Stadt. Z geol Wiss 17(12):1087–1097

    Google Scholar 

  • Romer R, Hahne K (2010) Baltica meets Gondwana—the isotope geochemical record. In: Linnemann U, Romer R (eds) Pre-mesozoic geology of Saxo-Thuringia: from the Cadomian Active Margin to the Variscan Orogen, Schweizerbart, pp 363–370

  • Rößler R, Barthel M (1998) Rotliegend taphocoenoses preservation favoured by rhyolitic explosive volcanism. Freiberger Forsch-H C474:59–101

    Google Scholar 

  • Rößler R, Zierold T, Feng Z, Kretzschmar R, Merbitz M, Annacker V, Schneider JW (2012) A snapshot of an Early Permian ecosystem preserved by explosive volcanism: new results from the petrified forest of Chemnitz, Germany. Palaois 27:814–834

    Article  Google Scholar 

  • Rothpletz A, Siegert Th, Danzig E (1909) Erläuterungen zur geologischen Spezialkarte des Königreichs Sachsen. Sektion Frankenberg-Hainichen. Blatt 78, 2. Aufl., W. Engelmann, pp 1–121

  • Sagawe A, Gärtner A, Hofmann M, Linnemann U (2013) U–Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif. Geologica Saxonica 59:205–224

    Google Scholar 

  • Schneider JW, Rößler R, Gaitzsch BG (1995) Time lines of the Late Variscan volcanism—a holostratigraphic synthesis. Zbl Geol Paläont Teil I 1994(5/6):477–490

    Google Scholar 

  • Schneider JW, Rößler R, Hoth K, Wolf P, Lobin M, Gaitzsch BG, Walter H, Koch E-A (2005a) Vorerzgebirgs-Senke und Erzgebirge. Cour Forsch-Inst Senckenberg 254:447–460

    Google Scholar 

  • Schneider JW, Hoth K, Gaitzsch BG, Berger H-J, Steinborn H, Walter H, Zeidler MK (2005b) Carboniferous stratigraphy and development of the Erzgebirge Basin, East Germany. Z dt Ges Geowiss 156(3):431–466

    Google Scholar 

  • Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Lützner H, Kowakzyk G (eds) Stratigraphie von Deutschland. X. Rotliegend. Teil I: Innervariscische Becken. Schriftenr Dt Ges Geowiss, vol 61, pp 530–588

  • Schneider JW, Werneburg R, Rößler R, Voigt S, Scholze F (2015) Example for the description of basins in the CPT nonmarine-marine correlation chart Thuringian Forest Basin, East Germany. Permophiles 61:29–35

    Google Scholar 

  • Schoene B (2014) U–Th–Pb geochronology. Reference module in Earth systems and environmental sciences. Treatise on Geochemistry, vol 4, 2nd edn. Elsevier, Amsterdam, pp 341–378

    Google Scholar 

  • Schwab M (1970) Tektonik, Sedimentation und Vulkanismus im Permosiles Mitteleuropas. Ber dt Ges geol Wiss A. Geol Paläont 15(1):29–45

    Google Scholar 

  • Sebastian U (1995) Die Strukturentwicklung des spätorogenen Erzgebirgsaufstiegs in der Flöhazone—Ein weiterer Beitrag zur postkollisionalen Extension am Nordrand der Böhmischen Masse. Freiberger Forschungshefte C 461:1–114

    Google Scholar 

  • Sircombe KN (2004) AGE DISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubret MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Wagner RH (1984) Megafloral Zones of the Carboniferous. Compte Rendu 9e Congrès International de Stratigraphie et Géologie du Carbonifère. Washington Champaign Urbana 1979 2:109–134

    Google Scholar 

  • Wagner RH, Álvarez-Vázquez C (2010) The Carboniferous floras of the Iberian Peninsula: a synthesis with geological connotations. Rev Palaeobot Palynol 162:239–324

    Article  Google Scholar 

  • Waters CN, Condon DJ (2012) Nature and timing of Late Mississippian to Mid-Pennsylvanian glacio-eustatic sea-level changes of the Pennine Basin, UK. J Geol Soc Lond 169:37–51

    Article  Google Scholar 

  • Wolf P, Hoth K, Kampe A, Rößler R, Schneider JW (2008) Karbon—Oberkarbon. In: Walter H, Pälchen W (eds) Geologie von Sachsen. Geologischer Bau und Entwicklungsgeschichte. E. Schweizerbart’sche Verlagsbuchhandlung Stuttgart, Stuttgart, pp 203–223

    Google Scholar 

Download references

Acknowledgements

We would like to thank J.W. Schneider for many useful discussions and for sharing his rich experience concerning the late Paleozoic tectonomagmatic, palaeogeographic, climatic and biotic processes in the Variscan orogenic belt. This research was funded by the Deutsche Forschungsgemeinschaft (DFG Grants RO 1273/3-1 RO 1273/4-1 to RR) and additionally supported by the Museum für Naturkunde Chemnitz and the Senckenberg Naturhistorische Sammlungen Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Löcse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2080 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löcse, F., Linnemann, U., Schneider, G. et al. First U–Pb LA-ICP-MS zircon ages assessed from a volcano-sedimentary complex of the mid-European Variscides (Pennsylvanian, Flöha Basin, SE Germany). Int J Earth Sci (Geol Rundsch) 108, 713–733 (2019). https://doi.org/10.1007/s00531-019-01684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01684-z

Keywords

Navigation