U–Pb ages of magmatic and detrital zircon of the Döhlen Basin: geological history of a Permian strike-slip basin in the Elbe Zone (Germany)

Abstract

The post-orogenic evolution of Variscan Central Europe is characterized by the formation of numerous basins. The early Permian Döhlen Basin is located in the Elbe Zone (Germany) and is bordered by metamorphic rocks of the Erzgebirge and numerous Variscan magmatic complexes. The NW–SE-oriented basin is evidence for a major rearrangement of stress fields during the post-Variscan reactivation of fault zones in Central Europe. Eleven samples of magmatic rocks and sediments have been analyzed with respect to their U–Th–Pb isotope ratios and geochemical composition. Of three magmatic samples (two tuffs, one trachyandesite), we analyzed 170 zircon grains. The Unkersdorf Tuff of the Unkersdorf Formation gave an age of 294 ± 3 Ma (Upper Asselian to Sakmarian), whereas a trachyandesite of the same formation was dated at 293 ± 5 Ma (Lower Artinskian to Lower Asselian). The Wachtelberg Ignimbrite (Upper Bannewitz Formation) showed an age of 286 ± 4 Ma (Artinskian to Lower Kungurian). As the first study, we also analyzed 984 detrital zircon grains of nine Late Paleozoic Central European sandstone and conglomerate samples of the Niederhäslich Formation and the Bannewitz Formation with respect to their U–Pb age composition. All sediments but two yielded two distinct age groups between 295 and 340 Ma and 530–750 Ma, as well as a minor amount of Precambrian zircon ages. Geochemical data points to an active margin setting with developing strike-slip basins. The data suggests a c. 10 Ma lasting basin formation during the second culmination of volcano-tectonic activity with basic to intermediate melts. The second youngest formation (Niederhäslich Formation) consists predominantly of pre-Permian basement material, which implies only minor volcanic activity and erosion from adjacent basement blocks. On the contrary, the uppermost and youngest Bannewitz Formation features strong evidence for volcanic activity in the neighboring area of the basin. The present study strongly suggests a rapid basin development and further shows how the evolution of the Döhlen Basin is proof for several post-Variscan tectonic reactivation phases in Sakmarian and Lower Kungurian of Central Europe. Finally, our results exemplarily show how basin evolution may be characterized by radiometric data of detrital zircon grains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ahrendt H, Clauer N, Hunziker J, Weber K (1983) Migration of folding and metamorphism in the Rheinische Schiefergebirge deduced from K-Ar and Rb-Sr age determinations. In: Martin H, Eder F (eds) Intracontinental fold belts. Springer, Berlin, Heidelberg, New York, pp 323–338

    Google Scholar 

  2. Alexosky W, Leonhardt D (1994) Geologische Übersichtskarte des Freistaates Sachsen 1:400.000. Karte ohne quartäre Bildungen. Sächsisches Landesamt für Umwelt und Geologie. Bereich Boden und Geologie, Dresden

  3. Armstrong RA (2001) SHRIMP U–Pb zircon dating of the chlorite gneiss near Grumbach, west Dresden. Report A01-350b, Australian National University Canberra, p 4

  4. Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: results of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320

    Article  Google Scholar 

  5. Awdankiewicz M, Breitkreuz C, Ehling B (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen-Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, Special Publications, London, pp 51–66

    Google Scholar 

  6. Bayer U et al (2002) The southern margin of the East European Craton: new results from seismic sounding and potential fields between the North Sea and Poland. Tectonophysics 360:301–314. https://doi.org/10.1016/S0040-1951(02)00359-1

    Article  Google Scholar 

  7. Beck R (1892) Sektion Kreischa-Hänichen. - Erläuterungen zur Geologischen Spezialkarte des Königreiches Sachsen, Nr. 82, Blatt Kreischa. K. Finanz-Ministerium, Leipzig, p 108

  8. Benek R (1980) Geologisch-strukturelle Untersuchungen im Tharandter Vulkanitkomplex (Südteil der DDR). Z deutsh Geol Wiss 8:627–643

    Google Scholar 

  9. Benek R, Kramer W, McCann T, Scheck M, Negendank JFW, Korich D, Huebscher HD, Bayer U (1996) Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics 266:379–404

    Article  Google Scholar 

  10. Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91(6):611–627

    Article  Google Scholar 

  11. Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  12. Białek D, Kryza R, Oberc-Dziedzic T, Pin C (2014) Cambrian Zawidów granodiorites in the Cadomian Lusatian Massif (Central European Variscides): what do the SHRIMP zirconages mean? J Geosci 59:313–326

    Google Scholar 

  13. Borkowska M, Hameurt J, Vidal P (1980) Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geol Pol 30:121–145

    Google Scholar 

  14. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57. https://doi.org/10.1016/j.epsl.2008.06.010

    Article  Google Scholar 

  15. Breitkreuz C, Kennedy A (1999) Magmatic flare-up at the Carboniferous/Permian boundary in the NE German Basin revealed by SHRIMP zircon ages. Tectonophysics 302:307–326. https://doi.org/10.1016/S0040-1951(98)00293-5

    Article  Google Scholar 

  16. Breitkreuz C et al (2007) Far Eastern Avalonia: its chronostratigraphic structure revealed by SHRIMP zircon ages from Upper Carboniferous to Lower Permian volcanic rocks (drill cores from Germany, Poland, and Denmark). Geol Soc Am Spec Pap 423:173–190

    Google Scholar 

  17. Breitkreuz C, Renno AD, Schneider JW, Stanek K (2009) Late Paleozoic volcano sedimentary evolution of the Elbe Zone and the eastern Erzgebirge. Exkursionsf Veröff Deutsch Ges Geowiss 241:219–230

    Google Scholar 

  18. Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini J-C (2007) Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat Geosci 1:64. https://doi.org/10.1038/ngeo.2007.51

    Article  Google Scholar 

  19. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin

    Google Scholar 

  20. Förster H, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer R (eds) Pre-Mesozoic Geology of Saxo-Thuringia: from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 287–308

    Google Scholar 

  21. Franke W (2000) The mid-European segment of the Variscides: tectonometamorphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes—quantification and Modelling in the Variscan Belt of Central Europe, vol 179. Geological Society, Special Publications, London, pp 35–61

    Google Scholar 

  22. Franke W, Żelaźniewicz A (2002) Structure and evolution of the Bohemian Arc. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of central Europe, vol 201. Geological Society, Special Publications, London, pp 279–293. https://doi.org/10.1144/GSL.SP.2002.201.01.13

    Google Scholar 

  23. Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270

    Article  Google Scholar 

  24. Gao S, Wedepohl KH (1995) The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources. Earth Planet Sci Lett 133:81–94. https://doi.org/10.1016/0012-821X(95)00077-P

    Article  Google Scholar 

  25. Gehmlich M (2003) Die Cadomiden und Varisziden des Saxothuringischen Terranes–Geochronologie magmatischer Ereignisse. Freib Forsch C500:1–129

    Google Scholar 

  26. Gehmlich M, Linnemann U, Tichomirowa M, Lützner H, Bombach K (1997) Die Bestimmung des Sedimentationsalters cadomischer Krustenfragmente im Saxothuringikum durch die Einzelzirkon–Evaporatisationsmethode. Terra Nostra 5:46–49

    Google Scholar 

  27. Geißler M, Breitkreuz C, Kiersnowski H (2008) Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati. Int J Earth Sci 97:973–989

    Article  Google Scholar 

  28. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  29. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration: new insights from combined U–Pb and Lu–Hf in situ LA-ICPMS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243

    Article  Google Scholar 

  30. Gradstein FM, Ogg JG, Hilgen FJ (2012) On the geologic time scale. Newsl Stratigr 45:171–188

    Article  Google Scholar 

  31. Hausse R (1892) Profile durch das Steinkohlenbecken des Plauen'schen Grundes (das Döhlener Becken) bei Dresden. K. Finanz-Ministerium, Leipzig, p 116

  32. Heeremans M, Faleide J, Larsen BT (2004) Late Carboniferous Permian of NW Europe: an introduction to a new regional map. Geol Soc Lond Spec Publ 223:75–88

    Article  Google Scholar 

  33. Hoffmann U (2000) Pyroklastite und Silicite im Rotliegend des Döhlen-Becken Stratigraphie, Genese und Paläontologie. Diploma thesis, TU BA Freiberg

  34. Hoffmann U, Schneider JW (2005) Jungpaläozoikum der Döhlener Senke. In: Alexowsky W, Hoffmann U, Horna F, Kurze M, Schneider J, Tröger KA (eds) Geologische Karte des Freistaates Sachsen 1:25000, Erläuterungen zu Blatt 4947 Wilsdruff. Sächsisches Landesamt für Umwelt und Geologie (LfUG), Freiberg, pp 25–57

    Google Scholar 

  35. Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous—Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102(1):73–99

    Article  Google Scholar 

  36. Hofmann M, Linnemann U, Gerdes A, Ullrich B, Schauer M (2009) Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LASF-ICP-MS U–Pb zircon data. Geol Soc Spec Publ 327:197–214

    Article  Google Scholar 

  37. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62. https://doi.org/10.2113/0530027

    Article  Google Scholar 

  38. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  39. Katzung G (1995) Prä-Zechstein in Zntral- und Ostbrandenburg. Berl Geowiss Abh A 168:5–21

    Google Scholar 

  40. Knape H (1963a) Tektonischer Bau und Strukturgenese im nordwestlichen Vorland des Flechtinger Höhenzuges: Teil II: regionale Entwicklung und struktureller Bau. Geologie 12:637–673

    Google Scholar 

  41. Knape H (1963b) Tektonischer Bau und Strukturgenese im nordwestlichen Vorland des Flechtinger Höhenzuges; Teil I: stratigraphischer Überblick und Lagerungsverhältnisse. Geologie 1:509–536

    Google Scholar 

  42. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. G. A. Kaufmann’s Buchhandlung, Dresden

    Google Scholar 

  43. Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone—Heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geological Society of America Special Paper 423, pp 153–172. https://doi.org/10.1130/2007.2423(06)

  44. Kroner U, Romer RL, Linnemann U (2010) The Saxo-Thuringian Zone of the Variscan Orogen as part of Pangea. In: Linnemann U, Romer R (eds) Pre-Mesozoic geology of Saxo-Thuringia: from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 3–16

    Google Scholar 

  45. Kröner A, Hegner E, Hammer J, Haase G, Bielicki KH, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83:357–376

    Article  Google Scholar 

  46. Kryza R, Pin C (1997) Cambrian/Ordovician magmatism in the Polish Sudetes: no evidence for subduction-related setting. EUG 9 Meeting, Strasbourg, p 144

    Google Scholar 

  47. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford

    Google Scholar 

  48. Linnemann U (1994) Geologischer Bau und Strukturentwicklung der südlichen Elbe zone. Abhandlungen des Staatlichen Museums für Mineralogie Geologie zu Dresden 40:7–36

    Google Scholar 

  49. Linnemann U (2003a) Die Struktureinheiten des Saxothuringikums. In: Linnemann U (ed) Das Saxothuringikum, vol 48/49. Geologica Saxonica, Dresden, pp 19–28

    Google Scholar 

  50. Linnemann U (2003b) Sedimentation und geotektonischer Rahmen der Beckenentwicklung im Saxothuringikum (Neoproterozoikum—Unterkarbon). In: Linnemann U (ed) Das Saxothuringikum. Geologica Saxonica, vol 48/49. Dresden, pp 71–110

    Google Scholar 

  51. Linnemann U, Romer RL (2002) The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd–Sr–Pb isotopic characterisation of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64

    Article  Google Scholar 

  52. Linnemann U, Schauer M (1999) Die Entstehung der Elbezone vor dem Hintergrund der cadomischen und variszischen Geschichte des Saxothuringischen Terranes—Konsequenzen aus einer abgedeckten geologischen Karte. Zeitschrift für Geologische Wissenschaften 27(5/6):529–561

    Google Scholar 

  53. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geological Society of America Special Paper 423, pp 61–96

  54. Linnemann U, Romer RL et al (2008a) The Precambrian. In: McCann T (ed) The Geology of Central Europe. Geological Society, London, publications 21–102

    Google Scholar 

  55. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008b) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43

    Article  Google Scholar 

  56. Linnemann U, Ouzegane K, Drareni A, Hofmann M, Becker S, Gärtner A, Sagawe A (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions — A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb–LA-ICP-MS detrital zircon ages. Lithos 123:188–203

    Article  Google Scholar 

  57. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany. Precambr Res 244:236–278

    Article  Google Scholar 

  58. Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. Geol Soc Lond Spec Publ 234:75–124

    Article  Google Scholar 

  59. Lorenz V, Nicholls IA (1984) Plate and intraplate processes of Hercynian Europe during the late Paleozoic. Tectonophysics 107:25–56

    Article  Google Scholar 

  60. Ludwig KR (2001) User manual for Isoplot/ex rev. 2.49. Berkeley Geochronology Center Special Publications 1a, pp 1–56

  61. Luthardt L, Hofmann M, Linnemann U, Gerdes A, Marko L, Rößler R (2018) A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest. Int J Earth Sci 107:2465–2489

    Article  Google Scholar 

  62. Mattern F (1996) The Elbe zone at Dresden-a Late Paleozoic pull-apart intruded shear zone. Z deutsch Geol Ges 147:57–80

    Google Scholar 

  63. Mattern F (2001) Permo-Silesian movements between Baltica and Western Europe: tectonics and “basin families”. Terra Nova 13:368–375

    Article  Google Scholar 

  64. Nakamura N (1974) Determination of REE, BA, FE, Mg, Na and K in carbonaceous and ordinary chrondrites. Geochim Cosmochim Acta 38:757–775

    Article  Google Scholar 

  65. Nance RD, Murphy JB (1996) Basement isotopic signatures and Neoproterozoic paleogeography of Avalonian-Cadomian and related terranes in the Circum-North Atlantic. In: Nance RD, Thompson MD (eds) Avalonian and related peri-Gondwanan terranes of the Circum-North Atlantic. Geological Society of America Special Paper 304, pp 333–346. https://doi.org/10.1130/0-8137-2304-3.333

  66. Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31

    Article  Google Scholar 

  67. Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D’lemos R, Pisarevsky SA (2008) Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. In: Ennih N, Liégeois J-P (eds) The boundaries of the West African craton, vol 297. Geological Society, Special Publications, London, pp 345–383

    Google Scholar 

  68. Nance RD, Gutierrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2012) A brief history of the Rheic Ocean. Geosci Front 3:125–135

    Article  Google Scholar 

  69. Nasdala L, Wenzel Th, Pidgeon RT, Kronz A (1999) Internal structures and dating of complex zircons from Meissen Massif monzonites, Saxony. Chem Geol 156:331–341

    Article  Google Scholar 

  70. Naumann CF, Cotta VB (1845) Geognostische Beschreibung des Königreiches Sachsen, Erläuterungen zu Section X. Geognostische Skizze der Umgebung von Dresden und Meißen. Arnoldische Buchhandlung, Dresden

    Google Scholar 

  71. Neumann E (1961) Die Geröllführung der Konglomerathorizonte des Rotliegenden im SE-Teil des Döhlener Beckens. Diploma thesis, TU BA Freiberg

  72. Neumann ER, Wilson M, Heeremans M, Spencer EA, Obst K, Timmerman MJ, Kirstein L (2004) Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. Geol Soc Spec Publ 223:11–40

    Article  Google Scholar 

  73. Oberc-Dziedzic T, Kryza R, Pin C, Mochnacka K, Larionov A (2009) The Orthogneiss and Schist Complex of the Karkonosze–Izera Massif (Sudetes, SW Poland): U–Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geol Sudet 41:3–24

    Google Scholar 

  74. Obst K, Katzung G, Hammer J (1999) Dating of the Late Autunian basic magmatism in the Thuringian Forest. N Jb Geol Palaeont Mh 1999:1–10

    Google Scholar 

  75. Pietzsch K (1956) Die Elbtalzone. Berichte der Geologischen Gesellschaft der Deutschen Demokratischen Republik 1:117–135

    Google Scholar 

  76. Pietzsch K (1963) Geologie von Sachsen. VEB Deutscher Verlag der Geowissenschaften, Berlin

    Google Scholar 

  77. Pin C, Marini F (1993) Early Ordovician continental break up in Variscan Europe: Nd–Sr isotope and trace element evidence from bimodal igneous associations of the southern Massif Central. France Lithos 29:177–196

    Article  Google Scholar 

  78. Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhauserová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm-Nd isotope and geochemical data. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from avalonian-cadomian active margin to alleghenian-variscan collision. Geological Society of America Special Paper 423, pp 209–229

  79. Reichel W (1966) Stratigraphie, Paläogeographie und Tektonik des Döhlener Beckens bei Dresden. Dissertation, TU BA Freiberg

  80. Reichel W (1970) Stratigraphie, Paläogeographie und Tektonik des Döhlener Beckens bei Dresden. Abhandlungen des Staatlichen Museum für Mineralogie Geologie zu Dresden 17:1–133

    Google Scholar 

  81. Reichel W (1985) Schichtstörungen im unterprmischen Döhlener Becken bei Dresden. Ein Beitrag zur lithofaziellen und tektonischen Entwicklung eines intramontanen vulkanotektonischen Beckens. Hallesches Jahrbuch für Geowissenschaften 10:21–34

    Google Scholar 

  82. Reichel W, Lange JM (2007) Cherts (Hornsteine) aus dem Döhlener Becken bei Dresden. Geologica Saxonica 52/53:117–128

    Google Scholar 

  83. Reichel W, Schauer M (2006) Das Döhlener Becken bei Dresden / Geologie und Bergbau. Sächsisches Landesamt für Umwelt und Geologie (LfUG), Dresden

    Google Scholar 

  84. Reichel W, Schneider JW (2012) Rotliegend im Döhlen-Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61:589–625

    Google Scholar 

  85. Repstock A, Breitkreuz C, Lapp M, Schulz B (2018) Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization. Int J Earth Sci 107:1485–1513. https://doi.org/10.1007/s00531-017-1554-x

    Article  Google Scholar 

  86. Robardet M (2002) Alternative approach to the Variscan Belt in southwestern Europe: preorogenic paleobiogeographical constraints. In: Martinez Catalán MR, Hatcher RD Jr, Arenas R, García FD (eds) Variscan-Appalachian dynamics: The building of the late Paleozoic basement. Geological Society of America Special Paper 364, pp 1–15. https://doi.org/10.1130/0-8137-2364-7.1

  87. Röllig G (1976) Zur Petrogenese und Vulkanotektonik der Pyroxenquarzporphyre (Ignimbrite) des Nordwestsächsischen Vulkanitkomplexes. Jb Geol 5:176–268

    Google Scholar 

  88. Romer RL, Linnemann U, Gehmlich M (2003) Geochronologische und isotopengeochemische Randbedingungen für die cadomische und variszische Orogenese im Saxothuringikum. In: Linnemann U (ed) Saxothuringikum Das, vol 48/49. Geologica Saxonica, Dresden, pp 19–28

    Google Scholar 

  89. Roser BP, Korsch RJ (1986) Determination of Tectonic Setting of Sandstone-mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. J Geol 94(5):635–650

    Article  Google Scholar 

  90. Rößler R, Barthel M (1998) Rotlignd taphocoenoses preservation favoured by rhyolithic explosive volcanism. Freib Forsch H C474:59–101

    Google Scholar 

  91. Rößler R, Kretzschmar R, Annacker V, Mehlhorn S, Merbitz M, Schneider J, Luthardt L (2009) Auf Schatzsuche in Chemnitz–Wissenschaftliche Grabungen’09 Veröffentlichungen des. Museums für Naturkunde Chemnitz 32:25–46

    Google Scholar 

  92. Sagawe A, Gärtner A, Linnemann U, Hofmann M, Gerdes A (2016) Exotic crustal components at the northern margin of the Bohemian Massif—implications from U–Th–Pb and Hf isotopes of zircon from the Saxonian Granulite Massif. Tectonophysics 681:234–249

    Article  Google Scholar 

  93. Schmiedel T, Breitkreuz C, Görz I, Ehling B (2015) Geometry of laccolith margins: 2D and 3D models of the Late Paleozoic Halle Volcanic Complex (Germany). Int J Earth Sci 104:323–333

    Article  Google Scholar 

  94. Schneider JW (1994) Environment, biotas and taphonomy of the Lower Permian lacustrine Niederhäslich limestone, Döhlen basin, Germany. Trans R Soc Edinburgh Earth Sci 84:453–464

    Article  Google Scholar 

  95. Schneider JW, Gebhardt U (1992) Dasycladaceen und andere “marine” Algen in lakustrischen Kalken des Unter-Perm (Assel) im intramontanen Döhlen Becken (Elbe-Zone). Freib. Forsch H C 445:66–88

    Google Scholar 

  96. Schneider JW, Hoffmann U (2001) Jungpaläozoikum der Döhlener Senke. In: Alexowsky W, Schneider JW, Tröger KA, Wolf L (eds) Geologische Karte des Freistaates Sachsen 1: 25 000, Erläuterungen zu Blatt 4948 Dresden. Sächsisches Landesamt für Umwelt und Geologie, Freiberg, pp 15–40

    Google Scholar 

  97. Schneider JW, Romer RL (2010) The Late Variscan Molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian Zone. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia. Schweizerbart, Stuttgart, pp 323–346

    Google Scholar 

  98. Schneider JW, Rössler R, Gaitzsch B (1995) Time lines of the Late Variscan volcanism—holostratigraphic synthesis. Zentralblatt für Geologie und Paläontologie Teil I 5(6):477–490

    Google Scholar 

  99. Schneider J, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Lützner H, Kowalczyk G (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken, vol 61. Schriftenr. Dt. Ges. Geowiss, Hannover, pp 530–588

    Google Scholar 

  100. Sircombe KN (2004) AGEDISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30(1):21–31

    Article  Google Scholar 

  101. Slama J, Kosler J, Concon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  102. Smith G, Lowe DR (1991) Lahars: volcano – hydrologic events and deposition in the debris flow-hyperconcentrated flow continuum. In: Fisher R, Smith G (eds) Sedimentation in Volcanic Settings, vol 45. SEPM Specual Publication, Tulsa, OK, pp 60–70

    Google Scholar 

  103. Stacey J, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221

    Article  Google Scholar 

  104. Sterzel JT (1881) Über die Flora der unteren Schichten des Plauenschen Grundes. Z deutsh Geol Ges 33:339–347

    Google Scholar 

  105. Sterzel JT (1893) Die Flora des Rothliegenden im Plauenschen Grunde bei Dresden. Abhandlungen der Mathematisch-Physikalischen Classe Königlich Sächsischen Gesellschaft der Wissenschaften 19:1–172

    Google Scholar 

  106. Stille H (1949) Uralte Anlagen in der Tektonik Europas. Z deutsh Geol Ges 99:150–174

    Google Scholar 

  107. Tichomirowa M, Berger H-J, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2001) Zircon ages of high-grade Gneisses in the eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332

    Article  Google Scholar 

  108. Tröger K-A, Behr H-J, Reichel W (1968) Die tektonisch-fazielle Entwicklung des Elbelineaments im Bereich der Elbtalzone. Freib Forsch H C241:71–85

    Google Scholar 

  109. Walther D et al (2016) The Late Carboniferous Schönfeld-Altenberg Depression on the NW margin of the Bohemian Massif (Germany/Czech Republic): volcano sedimentary and magmatic evolution. J Geosci 61:371–393

    Article  Google Scholar 

  110. Wang X, Griffin WL, Chen J, Huang P, Li X (2011) U and Th contents and Th/U ratios of Zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients. Acta Geol Sin 85:164–174

    Article  Google Scholar 

  111. Wendt I, Höhndorf A, Wendt JI, Müller P, Wetzel K (1995) Radiometric dating of volcanic rocks in NW-Saxony by combined use of U–Pb and Sm-Nd zircon dating as well as Sm-Nd and Rb-Sr whole rock and mineral systematics. 11th meeting on geodynamics of eurpean Variscides, 2nd Symposium on Permocarboniferous igneous rocks. Terra Nostra Potsdam 7:147–148

    Google Scholar 

  112. Werneburg R, Schneider JW (2006) Amphibian biostratigraphy of the European Permo-Carboniferous. Geol Soc Lond Spec Publ 265(1):201–215

    Article  Google Scholar 

  113. Ziegler P (1990) Geological Atlas of Western and Central Europe. Geological Society Publishing House, London

    Google Scholar 

Download references

Acknowledgements

The authors thank R Krause for helpful assist during the laboratory work. The constructive comments and suggestions by R Rößler, F Breitkreuz and A von Quadt greatly helped to improve the manuscript. In addition, the authors would like to thank Prof. Wolf-Christian Dullo for his editorial work and help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Zieger.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zieger, J., Bittner, L., Gärtner, A. et al. U–Pb ages of magmatic and detrital zircon of the Döhlen Basin: geological history of a Permian strike-slip basin in the Elbe Zone (Germany). Int J Earth Sci (Geol Rundsch) 108, 887–910 (2019). https://doi.org/10.1007/s00531-019-01683-0

Download citation

Keywords

  • Döhlen Basin
  • U–Pb–Th geochronology
  • Zircon
  • Pyroclastic rocks
  • Variscides