Skip to main content
Log in

Magnetic fabric constraints for syn-magmatic doming of the laccolithic Brocken granite pluton (Harz Mountains, northern Germany)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Hyper-solidus fabrics of the early Permian Brocken granite pluton, exposed over an area of c. 160 km² and elongated in NNE–SSW direction, were determined by measuring the anisotropy of magnetic susceptibility (AMS). The Brocken granite pluton consists of five petrographically distinguishable and mappable granitic varieties characterized by a generally paramagnetic behavior with primary biotite, partly altered to chlorite, and secondary tourmaline as the major carrier of the susceptibility. Whereas biotite modal content isolines roughly follow petrographic trends, the tourmaline modal contents do not, hence implying secondary, post-emplacement processes that controlled tourmaline distribution. A few samples with primary and secondary magnetite show ferrimagnetic behavior and are co-axial with the paramagnetic fabrics. The generally low magnetic anisotropies in all granitic varieties are a distinct and challenging feature for determining magmatic flow directions. AMS data indicate the predominance of sub-horizontal fabrics outlining an NNE–SSW trending dome axis interpreted to have resulted from granite sheets stacked syn-magmatically in a high crustal level building up a laccolithic pluton. AMS fabrics together with age data and geophysical indications suggest that the emplacement and distribution of the Brocken granite pluton is structurally controlled by NNE–SSW striking deep fault structures, and only weakly influenced by WNW/NW-trending structures. Late Carboniferous-to-early Permian plutonism in the Harz Mountains evolved in an E–W directed extensional regime, and was accompanied by volcanic activity and development of NW- and NE-trending sedimentary basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham K, Schreyer W (1973) Petrology of a ferruginous hornfels from Riekensglück, Harz Mountains, Germany. Contrib Miner Petrol 40:275–292

    Article  Google Scholar 

  • Aranguren A, Cuevas J, Tubia JM et al (2003) Granite laccolith emplacement in the Iberian arc: AMS and gravity study of the La Tojiza pluton (NW Spain). J Geol Soc Lond 160:435–445

    Article  Google Scholar 

  • Archanjo CJ, Launeau P, Bouchez JL (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gameleiras (Northeast Brazil). Phys Earth Planet Inter 89:63–75

    Article  Google Scholar 

  • Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320

    Article  Google Scholar 

  • Arzi AA (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44(1–4):173–184

    Article  Google Scholar 

  • Awdankiewicz M (1999) Volcanism in a late Variscan intramontane trough: the petrology and geochemistry of the Carboniferous and Permian volcanic rocks of the Intra-Sudetic Basin, SW Poland. Geol Sudet 32:83–111

    Google Scholar 

  • Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany. Geol Rundschau 80:669–690

    Article  Google Scholar 

  • Benn K (1994) Overprinting of magnetic fabrics in granites by small strains: numerical modelling. Tectonophysics 233(3–4):153–162

    Article  Google Scholar 

  • Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 95–112

    Chapter  Google Scholar 

  • Bouchez JL, Nguema TMM, Esteban L, Siqueira R, Scrivener R (2006) The tourmaline-bearing granite pluton of Bodmin (Cornwall, UK): magnetic fabric study and regional inference. J Geol Soc Lond 163:607–616

    Article  Google Scholar 

  • Brandl W (1939) Erdmagnetische untersuchungen im Brockenmassiv: Vergleich einer erdmagnetischen und einer feldgeologischen Spezialaufnahme. Abh Preuss Geol LA NF 188:5–8

    Google Scholar 

  • Breitkreuz C, Ehling BC, Sergeev S (2009) Chronological evolution of an intrusive/extrusive system: the Late Paleozoic Halle Volcanic Complex in the northeastern Saale Basin (Germany). Z dtsch Ges Geowiss 160(2):173–190

    Google Scholar 

  • Brink H (2011) The crustal structure around the Harz Mountains (Germany): review and analysis. Z dt Ges Geowiss 162/3:235–250

    Google Scholar 

  • Büthe F, Wachendorf H (1997) Die Rotliegend-Entwicklung des Ilfelder Beckens und des Kyffhäusers: Pull-Apart-Becken und Rhomb-Horst. Z geol Wiss 25(3/4):291–306

    Google Scholar 

  • Candela PA (1997) A review of shallow, ore-related granites: textures, volatiles, and ore metals. J Petrol 38:1619–1633

    Article  Google Scholar 

  • Chafii-Badavi A (1980) Die Geologie des westlichen Anteils des Brockenmassivs. Clausthaler Geowissenschaftliche Dissertationen 2:1–71

  • Chrobok SM (1965) Untersuchungen zur Geologie des Brockenmassivs (Harz). Geol Beih 48:1–82

    Google Scholar 

  • Conrad W (1995) Regionale geophysikalische Messungen im Umfeld des Harzes. Nova Acta Leopoldina NF 71/291:191–215

    Google Scholar 

  • Corry CE (1988) Laccoliths: mechanics of emplacement and growth. Geol Soc Am 220:110 pp

    Google Scholar 

  • Cruden AR (1998) On the emplacement of tabular granites. J Geol Soc Lond 155(5):853–862

    Article  Google Scholar 

  • Cruden AR, McCaffrey KJW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth Part A 26(4–5):303–315

    Article  Google Scholar 

  • Dietl C (2005) Die magnetische Suszeptibilität–eine wertvolle Materialeigenschaft zur Charakterisierung von Granitintrusionen. Z dt Geol Ges 155:299–309

    Google Scholar 

  • Doblas M, Oyarzun R, Lopez-Ruiz J, Cebria JM, Youbi N, Mahecha V, Cabanis B (1998) Permo-Carboniferous volcanism in Europe and northwest Africa: a superplume exhaust valve in the centre of Pangaea? J African Earth Sci 26:89–99

    Article  Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism. Cambridge University Press, New York

    Book  Google Scholar 

  • Erdmannsdörffer OH (1908) Über Bau und Bildungsweise des Brockenmassivs. Jb Königlich Preuss Geol Landesanstalt Bergakademie Berlin 26(1905):379–405

    Google Scholar 

  • Fiebig B (1990) Beiträge zum strukturellen Bau des Harzes auf Grundlage der Interpretation geophysikalischer Daten. Dissertation, Martin-Luther-Universität Halle-Wittenberg

  • Fiedrich A, Kraus K, Appel P, Stipp M, Friedel C-H (2014) Age of metamorphism and structural development of the Eckergneiss, Harz Mountains. In: 15th Symposium on tectonics, structural geology and geology of crystalline rocks (TSK15), Potsdam, p 20

  • Franke W, Dulce JC (2017) Back to sender: tectonic accretion and recycling of Baltica-derived Devonian clastic sediments in the Rheno-Hercynian Variscides. Int J Earth Sci 106(1):377–386

    Article  Google Scholar 

  • Franke W, Cocks LRM, Torsvik TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Res 48:257–284

    Article  Google Scholar 

  • Franz L, Schuster AK, Strauss KW (1997) Basement evolution in the Rhenohercynian Segment: discontinuous exhumation history of the Eckergneis complex (Harz Mountains, Germany). Chem der Erde Geochem 57:105–135

    Google Scholar 

  • Franzke H-J, Schwab M (2011) Harz, östlicher Teil mit Kyffhäuser Kristallin. Sammlung Geol Führer 104:327 pp

    Google Scholar 

  • Franzke HJ, Voigt T, von Eynatten H, Brix MR, Burmester G (2004) Geometrie und Kinematik der Harznordrandstörung, erläutert an Profilen aus dem Gebiet von Blankenburg. Geowiss Mitt Thüringen 11:39–62

    Google Scholar 

  • Friedel C-H, Hoth P, Franz G, Stedingk K (1995) Niedriggradige Regionalmetamorphose im Harz. Zbl Geol Paläontol 9:1213–1235

    Google Scholar 

  • Gabriel G, Jahr T, Jentzsch G, Melzer J (1997) Deep structure and evolution of the Harz Mountains: results of three-dimensional gravity and finite-element modeling. Tectonophysics 270(3–4):279–299

    Article  Google Scholar 

  • Gabriel G, Jahr T, Weber U (2001) The gravity field south of the Harz Mountains: predominated by granitic material? Zeitschrift für Geol Wissenschaften 29:249–266

    Google Scholar 

  • Geisler T, Vinx R, Martin-Gombojav N, Pidgeon RT (2005) Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history. Int J Earth Sci 94:369–384

    Article  Google Scholar 

  • Goll M, Lippolt HJ, Obert C, Schwarz W (1998) Datierungen zum permokarbonen Magmatismus des Harzes-erste K-Ar-Ergebnisse. Terra Nostra 98(2):62–65

    Google Scholar 

  • Grégoire V, de Saint Blanquat M, Nédélec A, Bouchez J (1995) Shape anisotropy versus magnetic interactions of magnetite grains: experiments and application to AMS in granitic rocks. Geophys Res Lett 22:2765–2768

    Article  Google Scholar 

  • Greiling RO, de Wall H, Sadek MF, Dietl C (2014) Late Pan-African granite emplacement during regional deformation, evidence from magnetic fabric and structural studies in the Hammamat–Atalla area, Central Eastern Desert of Egypt. J Afr Earth Sci 99:109–121

    Article  Google Scholar 

  • Grimmer JC, Ritter JRR, Eisbacher GH, Fielitz W (2017) The Late Variscan control on the location and asymmetry of the Upper Rhine Graben. Int J Earth Sci 106:827–853

    Article  Google Scholar 

  • Hargraves RB, Johnson D, Chan CY (1991) Distribution anisotropy: the cause of AMS in igneous rocks? Geophys Res Lett 18(12):2193–2196

    Article  Google Scholar 

  • Hinze C, Jordan H, Knoth W, Kriebel U, Martiklos G (1998) Geologische Karte Harz. 1:100,000. Landesamt f. Geologie u. Bergwesen Sachsen-Anhalt, Halle/S

  • Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous–Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102:73–99

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Surv Geophys 5:37–82

    Article  Google Scholar 

  • Hrouda F, Chlupacova M, Pokorny J (2006) Low-field variation of magnetic susceptibility measured by the KLY-4S Kappabridge and KLF-4A magnetic susceptibility meter; accuracy and interpretational programme. Studia Geophys Geod 50:283–298

    Article  Google Scholar 

  • Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–67

    Article  Google Scholar 

  • Jelínek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of samples. Studia Geophys Geod 22:55–62

    Article  Google Scholar 

  • Jentzsch G, Jahr T (1995) Der Tiefenbau des Harzes aus Untersuchungen des Schwerefeldes. Nova Acta Leopoldina NF 71 291:169–190

    Google Scholar 

  • Jezek J, Hrouda F (2004) Determination of the orientation of magnetic minerals from the anisotropy of magnetic susceptibility. In: Martin-Hernandez F, Lueneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications. Geol Soc Lond Spec Publ, vol 238, pp 9–20

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36/11:839–842

    Article  Google Scholar 

  • Kontny A, de Wall H (2000) The use of low and high k(T)-curves for the characterization of magneto-minerological changes during metamorphism. Phys Chem Earth 25:421–429

    Article  Google Scholar 

  • Krohe A (1992) Structural evolution of intermediate-crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. Tectonophysics 205:357–386

    Article  Google Scholar 

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329

    Article  Google Scholar 

  • Kruckenberg SC, Ferré EC, Teyssier C, Vanderhaeghe O, Whitney DL, Seaton NC, Skord JA (2010) Viscoplastic flow in migmatites deduced from fabric anisotropy: an example from the Naxos dome, Greece. J Geophys Res Solid Earth 115(B9):1978–2012

    Article  Google Scholar 

  • Lennox PG, de Wall H, Durney DW (2016) Correlation between magnetic fabrics, strain and biotite microstructure with increasing mylonitisation in the pretectonic Wyangala Granite, Australia. Tectonophysics 676:170–197

    Article  Google Scholar 

  • Lippolt H, Hess J (1996) Numerische Stratigraphie permokarbonischer Vulkanite Zentraleuropas. Teil II Westharz. Z dt Geol Ges 147:1–9

    Google Scholar 

  • Lotze F (1933) Das tektonische Bild des Brockenmassivs. Cent für Mineral Geol und Paläontologie, Abteilung B 633–647

  • Mamtani MA, Greiling RO (2005) Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt (India)—inferences from magnetic fabric. J Struct Geol 27(11):2008–2029

    Article  Google Scholar 

  • McCann T, Pascal C, Timmerman MJ, Krzywiec P, López-Gómez J, Wetzel A et al (2006) Post-Variscan (end Carboniferous–Early Permian) basin evolution in Western and Central Europe. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, Memoirs, pp 97–112

  • Menand T (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Plan Sci Lett 267(1–2):93–99

    Article  Google Scholar 

  • Morgan S, Stanik A, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30(4):491–512

    Article  Google Scholar 

  • Morteani G, Möller P, Hoefs J (1986) Rare-earth element and oxygen isotope studies of altered Variscan granites: the Western Harz (Germany) and Southern Sardinia (Italy). Chem Geol 54:53–68

    Article  Google Scholar 

  • Nédélec A, Bouchez J-L (2015) Granites: petrology, structure, geological setting, and metallogeny. OUP, Oxford

    Book  Google Scholar 

  • Obst K, Katzung G, Haupt M (2001) Gangmagmatismus im Mittelharz als Indikator für spätvasiszlsche Dehnungstektonik. N Jb Geol Paläont Abh 219(3):393–432

    Article  Google Scholar 

  • Paul J (1982) Zur Rand-und Schwellen-Fazies des Kupferschiefers. Z dt geol Ges 133:571–605

    Google Scholar 

  • Paul J (1999) Evolution of a Permo-Carboniferous Basin: the Ilfeld Basin and its relationship to adjoining Permo-Carboniferous structures in Central Germany. N Jb Geol Paläont Abh 214:211–236

    Article  Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669

    Article  Google Scholar 

  • Petronis MS, O’Driscoll B, Stevenson CTE, Reavy RJ (2012) Controls on emplacement of the Caledonian Ross of Mull Granite, NW Scotland: Anisotropy of magnetic susceptibility and magmatic and regional structures. Geol Soc Am Bull B 124:906–927

    Article  Google Scholar 

  • Piller H (1951) Über den Schwermineralgehalt von anstehendem und verwittertem Brockengranit nördlich St. Andreasberg. Heidelberger Beitrage 2:523

    Google Scholar 

  • Plaumann S (1978) Die Schwerekarte des Westharzes. Geol Jb E12:23–29

    Google Scholar 

  • Plesch A, Oncken O (1999) Orogenic wedge growth during collision—constraints on mechanics of a fossil wedge from its kinematic record (Rhenohercynian FTB, Central Europe). Tectonophysics 309:117–139

    Article  Google Scholar 

  • Pueyo EL, Román-Berdiel MT, Bouchez J-L, Casas AM, Larrasoaña JC (2004) Statistical significance of magnetic fabric data in studies of paramagnetic granites. Geol Soc Lond 238:395–420

    Article  Google Scholar 

  • Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage growth of laccoliths at Elba Island, Italy. Geology 30(11):983–986

    Article  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  Google Scholar 

  • Saint-Blanquat M de, Law RD, Bouchez JL, Morgan SS (2001) Internal structure and emplacement of the Papoose Flat pluton: An integrated structural, petrographic, and magnetic susceptibility study. Geol Soc Am Bull 113(8):976–995

    Article  Google Scholar 

  • Sant’Ovaia H, Bouchez JL, Noronha F, Leblanc D, Vigneresse JL (2000) Composite-laccolith emplacement of the post-tectonic Vila Pouca de Aguiar granite pluton (northern Portugal): a combined AMS and gravity study. Earth Environ Sci Trans R Soc Edinb 91(1–2):123–137

    Article  Google Scholar 

  • Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360:281–299

    Article  Google Scholar 

  • Schoell M (1986) Radiometrische Altersbestimmungen am Brocken-Intrusions-komplex im Harz als Beispiel der Interpretation diskordanter Modellalter. In: Wendt I (ed) Radiometrische Methoden in der Geochronologie. Springer, New York, pp 132–157

    Chapter  Google Scholar 

  • Schust F (1995) The sequence of rock types of the Brocken pluton, Harz Mountains. Zbl Geol Paläont I 1993(9/10):1385–1399

    Google Scholar 

  • Schust F, Kaemmel T, Gotte W (1997) Zur geologischen Position und zum Intrusionsalter der postkinematischen Plutonite im NE–Rhenoherzynikum. Z Geol Wiss 25(3/4):413–431

    Google Scholar 

  • Schwab M, Lutzens H (1958) Zur Stratigraphie und Tektonik der Wernigeröder Schichten bei Wernigerode. Ber geol Ges DDR 3:235–237

    Google Scholar 

  • Stampfli GM, Hochard C, Vérard C, Wilhem C (2013) The formation of Pangea. Tectonophysics 593:1–19

    Article  Google Scholar 

  • Steiner W (1968) Die Harzer Granite (Brocken-Granite) und ihre Verwendung als Werk- und Dekorationssteine. Wissenschaftliche Zeitschrift Hochschule für Architektur und Bauwesen Weimar 5:551–576

    Google Scholar 

  • Stephan T, Kroner U, Hahn T, Hallas P, Heuse T (2016) Fold/cleavage relationships as indicator for late Variscan sinistral transpression at the Rheno-Hercynian–Saxo-Thuringian boundary zone. Central Eur Variscides Tectonophys 681:250–262

    Google Scholar 

  • Tanner DC, Krawczyk CM (2017) Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: evidence for the geometry of a thick–skinned thrust. Int J Earth Sci (Geol Rundsch) 106:2963–2972

    Article  Google Scholar 

  • Tarling D, Hrouda F (1993) Magnetic anisotropy of rocks. Chapman & Hall, London

    Google Scholar 

  • Thieke HU (1969) Petrographische und tektonische Untersuchungen am Ilsesteingranit-Komplex (Harz). Geologie 18:400–428

    Google Scholar 

  • Timmerman MJ (2004) Timing, geodynamic setting and character of Permo-Carboniferous magmatism in the foreland oft he Variscan Orogen, NW Europe. Geol Soc Lond Spec Publ 223:41–74

    Article  Google Scholar 

  • Von Seckendorff V (2012) Der Magmatismus in und zwischen den spätvariszischen permokarbonen Sedimentbecken in Deutschland. Schriftr Deutsch Gesellschaft Geowiss 61:743–860

    Google Scholar 

  • von Seckendorff V, Arz C, Lorenz V (2004) Magmatism of the late Variscan intermontane Saar-Nahe Basin (Germany): a review. Geol Soc Lond 223(1):361–391

    Article  Google Scholar 

  • von Eynatten H, Voigt T, Meier A, Franzke H-J, Gaupp R (2008) Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe. Int J Earth Sci 97:1315–1330

    Article  Google Scholar 

  • Wachendorf H (1986) Der Harz – variszischer Bau und geodynamische Entwicklung. Geol Jb A 91:3–67

    Google Scholar 

  • Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (2004) Permo-Carboniferous magmatism and rifting in Europe: introduction. Geol Soc Lond Spec Publ 223(1):1–10

    Article  Google Scholar 

  • Wilson PI, McCaffrey KJ, Wilson RW, Jarvis I, Holdsworth RE (2016) Deformation structures associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: Implications for sill and laccolith emplacement mechanisms. J Struct Geol 87:30–46

    Article  Google Scholar 

  • Wrede V (2008) Nördliche Harzrandstörung: Diskussionsbeiträge zu Tiefenstruktur Zeitlichkeit und Kinematik. Z dt Ges Geowiss 159/2:293–316

    Google Scholar 

  • Zech J, Jeffries T, Faust D, Ullrich B, Linnemann U (2010) U/Pb-dating and geochemical characterization of the Brocken and the Ramberg Pluton, Harz Mountains, Germany. Geol Sax 56:9–24

    Google Scholar 

Download references

Acknowledgements

Constructive reviews of H. de Wall and J. Žák as well as editorial handling of W. Dullo are gratefully acknowledged. We thank I. Klisch for an informative field-trip along the eastern part of the Brocken granite pluton and A. Kontny for fruitful discussions. We also acknowledge T. Güldner, T. Redtmann, and some other former students of the Martin-Luther University Halle-Wittenberg for their help during sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Zundel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 95 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zundel, M., Friedel, CH. & Grimmer, J.C. Magnetic fabric constraints for syn-magmatic doming of the laccolithic Brocken granite pluton (Harz Mountains, northern Germany). Int J Earth Sci (Geol Rundsch) 108, 799–816 (2019). https://doi.org/10.1007/s00531-019-01679-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01679-w

Keywords

Navigation