Evidences for pre-orogenic passive-margin extension in a Cretaceous fold-and-thrust belt on the basis of combined seismic and field data (western Transdanubian Range, Hungary)

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Combined sedimentological and structural analysis was carried out in the field and on 2D seismic reflection profiles to recognize pre-orogenic structures in a Cretaceous fold-and-thrust belt. Detailed field observations were made in the Keszthely Hills, Western Hungary, while 2D seismic interpretation was carried out in the neighbouring Zala Basin. As a result, a fault-controlled intraplatform basin system was identified by a detailed analysis of bounding faults, and related outcrop-scale structures. The Norian–Rhaetian (227–201.3 Ma) synsedimentary faulting was associated with talus breccia formation, small-scale faulting, and dyke formation, in addition to slumping and other soft-sediment deformations. Based on the distribution of talus breccia, WNW–ESE-trending map-scale normal faults were identified in the Keszthely Hills, which is in agreement with the directly observed outcrop-scale synsedimentary faults. On seismic sections, similar WNW- or NW-trending Late Triassic normal faults were identified based on thickness variations of the syn-rift sediments and the presence of wedge-shaped bodies of talus breccia. Normal faulting occurred already in the Norian, and extensional tectonics was active through the Early and Middle Jurassic. The Late Triassic grabens of the western Transdanubian Range could be correlated with those in western part of the Southern Alps, and the Bajuvaric nappe system of the Northern Calcareous Alps. These grabens were situated on the proximal Adriatic margin, and they represent the first sign of the Alpine Tethys rifting. The locus of extension was laterally migrated westward, towards the distal Adriatic margin during Early and Middle Jurassic.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alsop GI, Marco S (2011) Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. J Struct Geol 33(4):433–457. https://doi.org/10.1016/j.jsg.2011.02.003

    Article  Google Scholar 

  2. Angelier J (1990) Inversion of field data in fault tectonics to obtain the regional stress. III—A new rapid direct inversion method by analytical means. Geophys J Int 103:363–373

    Article  Google Scholar 

  3. Balázs A, Matenco L, Magyar I, Horváth F, Cloetingh S (2016) The link between tectonics and sedimentation in back-arc basins: new genetic constraints from the analysis of the Pannonian Basin. Tectonics 35:1526–1559. https://doi.org/10.1002/2015TC004109

    Article  Google Scholar 

  4. Balázs A, Burov E, Matenco L, Vogt K, Francois T, Cloetingh S (2017) Symmetry during the syn- and post-rift evolution of extensional back-arc basins: the role of inherited orogenic structures. Earth Planet Sci Lett 462:86–98. https://doi.org/10.1016/j.epsl.2017.01.015

    Article  Google Scholar 

  5. Balla Z (1984) The Carpathian loop and Pannonian Basin: a kinematic analysis. Geophys Trans 30(4):313–355

    Google Scholar 

  6. Bally A, Bernoulli D, Davis A, Montadert L (1981) Listric normal faults. Oceanologica Acta 0:87–101 (special issue (0399–1784))

    Google Scholar 

  7. Becke M, Mauritsch HJ (1985) Die Entwicklung der Nördlichen Kalkalpen ans palaomagnetischer Sicht. Archiv für Lagerstattenforschung der Geologisehen Bundesanstalt 6:113–116

    Google Scholar 

  8. Behrmann JH, Tanner DC (2006) Structural synthesis of the Northern Calcareous Alps, TRANSALP segment. Tectonophysics 414:225–240

    Article  Google Scholar 

  9. Bergerat F, Collin PY, Ganzhorn AC, Baudin F, Galbrun B, Rouget I, Schnyder J (2011) Instability structures, synsedimentary faults and turbidites, witnesses of a Liassic seismotectonic activity in the Dauphiné Zone (French Alps): a case example in the Lower Pliensbachian at Saint-Michel-en-Beaumont. J Geodyn 51(5):344–357. https://doi.org/10.1016/j.jog.2010.10.003

    Article  Google Scholar 

  10. Berra F, Galli MT, Reghellin F, Torricelli S, Fantoni R (2009) Stratigraphic evolution of the Triassic-Jurassic succession in the Western Southern Alps (Italy): the record of the two-stage rifting on the distal passive margin of Adria. Basin Res 21(3):335–353

    Article  Google Scholar 

  11. Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sediment Geol 86(1–2):53–76. https://doi.org/10.1016/0037-0738(93)90133-P

    Article  Google Scholar 

  12. Billi A, Salvini F (2003) Development of systematic joints in response to flexure-related fibre stress in flexed foreland plates: the Apulian forebulge case history, Italy. J Geodyn 36(4):523–536. https://doi.org/10.1016/S0264-3707(03)00086-3

    Article  Google Scholar 

  13. Bohn P (1979) The regional geology of the Keszthely Mountains. Geologica Hungarica Series Geologica 19:197

    Google Scholar 

  14. Bonini M, Sani F, Antonielli B (2012) Basin inversion and contractional reactivation of inherited normal faults: a review based on previous and new experimental models. Tectonophysics 522–523:55–88. https://doi.org/10.1016/j.tecto.2011.11.014

    Article  Google Scholar 

  15. Bradley D, Hanson L (1998) Paleoslope analysis of slump folds in the Devonian Flysch of Maine. J Geol 106(3):305–318. https://doi.org/10.1086/516024

    Article  Google Scholar 

  16. Budai T, Koloszár L (1987) Stratigraphic investigation of the Norian-Rhaetian formations in the Keszthely Montains (in Hungarian with English abstract). Földtani Közlöny 117:121–130

    Google Scholar 

  17. Budai T, Kovács S (1986) Contributions to the stratigraphy of the Rezi Dolomite Formation [Metapolygnathus Slovakensis (conodonta, Upper Triassic) from the Keszthely Mts (W Hungary)].). Annual report of the Geological Institute of Hungary 1984, pp 175–191

  18. Budai T, Vörös A (2006) Middle Triassic platform and basin evolution of the Southern Bakony Mountains (Transdanubian Range, Hungary). Rivista Italiana di Paleontologia e stratigrafia 112(3):359–371

    Google Scholar 

  19. Budai T, Császár G, Csillag G, Dudko A, Koloszár L, Majoros G (1999a) Geology of the Balaton Highland. Explanation to the geological map of the Balaton Highland (1:50 000). Budapest

  20. Budai T, Csillag G, Dudko A, Koloszár L (1999b) Geological map of the Balaton Highland (1:50 000). Budapest

  21. Butler RWH, Tavarnelli E, Grasso M (2006) Structural inheritance in mountain belts: an Alpine–Apennine perspective. J Struct Geol 28:1893–1908

    Article  Google Scholar 

  22. Carminati E, Cavazza D, Scrocca D, Fantoni R, Scotti P, Doglioni C (2010) Thermal and tectonic evolution of the southern Alps (Northern Italy) rifting: Coupled organic matter maturity analysis and thermokinematic modeling. AAPG Bull 94(3):369–397. https://doi.org/10.1306/08240909069

    Article  Google Scholar 

  23. Cazzini F, Zotto OD, Fantoni R, Ghielmi M, Ronchi P, Scotti P (2015) Oil and gas in the adriatic foreland, Italy. J Pet Geol 38(3):255–279. https://doi.org/10.1111/jpg.12610

    Article  Google Scholar 

  24. Celarc B, Goričan Š, Kolar-Jurkovšek T (2013) Middle Triassic carbonate-platform break-up and formation of small-scale half-grabens (Julian and Kamnik-Savinja Alps, Slovenia). Facies 59(3):583–610. https://doi.org/10.1007/s10347-012-0326-0

    Article  Google Scholar 

  25. Channell JET, Brandner R, Spieler A (1990) Mesozoic paleogeography of the Northern Calcareous Alps—evidence from paleomagnetism and facies analysis. Geology 18(9):828–831. https://doi.org/10.1130/0091-7613(1990)018%3C0828:MPOTNC%3E2.3.CO;2

    Article  Google Scholar 

  26. Cozzi A (2000) Synsedimentary tensional features in Upper Triassic shallow-water platformcarbonates of theCarnianPrealps (northern Italy) and their importance as palaeostress indicators. Basin Res 12:133–146

    Article  Google Scholar 

  27. Császár G, Gyalog L (1982) Pre-quaternary geological map of the Bakony Mountains (1:50 000). Budapest

  28. Csillag G, Budai T, Gyalog L, Koloszár L (1995) Contribution to the Upper Triassic geology of the Keszthely Mountains (Transdanubian Range), western Hungary. Acta Geol Hung 38(2):111–129

    Google Scholar 

  29. Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversions. Tectonophysics 297:51–71. https://doi.org/10.1016/S0040-1951(98)00163-2

    Article  Google Scholar 

  30. Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210(1):1–56. https://doi.org/10.1016/j.palaeo.2004.02.033

    Article  Google Scholar 

  31. De Vicente G, Vegas R, Muñoz-Martín A, Van Wees JD, Casas-Sáinz A, Sopeña A, Fernández-Lozano J (2009) Oblique strain partitioning and transpression on an inverted rift: the Castilian Branch of the Iberian Chain. Tectonophysics 470(3–4):224–242. https://doi.org/10.1016/j.tecto.2008.11.003

    Article  Google Scholar 

  32. Debacker TN, Dumon M, Matthys A (2009) Interpreting fold and fault geometries from within the lateral to oblique parts of slumps: a case study from the Anglo-Brabant Deformation Belt (Belgium). J Struct Geol 31:1525–1539. https://doi.org/10.1016/j.jsg.2009.09.002

    Article  Google Scholar 

  33. Decarlis A, Manatschal G, Haupert I, Masini E (2015) The tectono-stratigraphic evolution of distal, hyper-extended magma-poor conjugate rifted margins: examples from the Alpine Tethys and Newfoundland Iberia. Mar Pet Geol 68:54–72

    Article  Google Scholar 

  34. Decarlis A, Beltrando M, Manatschal G, Ferrando S, Carosi R (2017) Architecture of the distal Piedmont-Ligurian rifted margin in NW Italy: hints for a flip of the rift system polarity. Tectonics 36(11):2388–2406. https://doi.org/10.1002/2017TC004561

    Article  Google Scholar 

  35. Dohr G (1981) Geophysikalische Untersuchungen im Gebiet der Tiefbohrung Vorderriß 1. Geologica Bavarica 81:55–64 (6 Abb., München)

    Google Scholar 

  36. Dudko A (1996) A Balaton-felvidék szerkezete (fedetlen földtani térkép alapján) (Translated title: structure of the Balaton Highland (based on pre-Quaternary geological map)). manuscript. Geological Institute of Hungary, Budapest

    Google Scholar 

  37. Farrell SG (1984) A dislocation model applied to slump structures, Ainsa Basin, South Central Pyrenees. J Struct Geol 6:727–736

    Article  Google Scholar 

  38. Fodor L (2008) Structural geology. In: Budai T, Fodor L (eds) Explanatory book to the geological map of the Vértes Hills (1:50 000). Geological Institute of Hungary, Budapest, pp 282–302

    Google Scholar 

  39. Fodor L, Csontos L, Bada G, Györfi I, Benkovics L (1999) Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of paleostress data. In: Durand B, Jolivet L, Horváth F Séranne M (eds) The Mediterranean basins: tertiary extension within the Alpine Orogen, vol 156. Geological Society, Special Publications, London, pp 295–334

    Google Scholar 

  40. Fodor L, Uhrin A, Palotás K, Selmeczi I, Tóthné Makk Á, Rižnar I, Trajanova M, Rifelj H, Jelen B, Budai T, Koroknai B, Mozetič S, Nádor A, Lapanje A (2013) Geological and structural model of the Mura–Zala Basin and its rims as a basis for hydrogeological analysis (in Hungarian with English abstract). Annual report of the Geological Institute of Hungary 2011, pp 47–92

  41. Fodor L, Héja G, Kövér Sz, Csillag G, Csicsek ÁL (2017) Cretaceous deformation of the south-eastern Transdanubian Range Unit, and the effect of inherited Triassic–Jurassic normal faults. Pre-conference excursion guide, 15th meeting of the CentralEuropean Tectonic Studies Group (CETeG) 5–8th April 2017 Zánka, Lake Balaton. Acta Mineralogica-Petrographica, Field Guide Series 32, pp 47–76

  42. Froitzneim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Bull Geol Soc Am 108(9):1120–1133. https://doi.org/10.1130/0016-7606(1996)108%3C1120:KOJRME%3E2.3.CO;2

    Article  Google Scholar 

  43. Fruth I, Scherreiks R (1984) Hauptdolomit—sedimentary and paleogeographic models (Norian, Northern Calcareous Alps). Geol Rundsch 73(1):305–319

    Article  Google Scholar 

  44. Gale L, Celarc B, Caggiati M, Kolar-Jurkovsek T, Jurkovsek B, Gianolla P (2015) Paleogeographic significance of Upper Triassic basinal succession of the Tamar Valley, northern Julian Alps (Slovenia). Geol Carpath 66(4):269–283. https://doi.org/10.1515/geoca-2015-0025

    Article  Google Scholar 

  45. Gallet Y, Krystyn L, Besse J (1998) Upper Anisian to Lower Carnian magnetostratigraphy from the Northern Calcareous Alps (Austria). J Geophys Res 103(B1):605–621

    Article  Google Scholar 

  46. Gawlick HJ, Böhm F (2000) Sequence and isotope stratigraphy of Late Triassic distal periplatform limestones from the Northern Calcareous Alps (Kälberstein Quarry, Berchtesgaden Hallstatt Zone). Int J Earth Sci 89:108–129

    Article  Google Scholar 

  47. Gawlick HJ, Missoni S (2013) Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm). Berichte Geol B A 99:178–190

    Google Scholar 

  48. Gawlick HJ, Frisch W, Vecsei A, Steiger T, Böhm F (1999) The change from rifting to thrusting in the Northern Calcareous Alps as recorded in Jurassic sediments. Geol Rundsch 87(4):644–657. https://doi.org/10.1007/s005310050237

    Article  Google Scholar 

  49. Goričan S, Kosir A, Rozic B, Smuc A, Gale L, Kukoc D, Celarc B, Crne AE, Kolar-Jurovsek T, Placer L, Skaberne D (2012) Mesozoic deep-water basins of the eastern Southern Alps (NW Slovenia). IAS Field Trip 649 Guidebook, pp 101–143

  50. Goričan S (1991) Jelentés a Keszthelyi-hegység és a Bakonyban 1990-ben a Plató program keretében végzett felszíni geofizikai mérésekrõl. (translated tilte: report of near-surface geophysical measurement of Keszhely Hills and Bakony, Plató project 1990) manuscript, Budapest

  51. Haas J (1993) Formation and evolution of the “Kösseni Basin” in the Transdanubian Range. Földtani Közlöny 123(1):9–54

    Article  Google Scholar 

  52. Haas J (2002) Origin and evolution of late triassic backplatform and intraplatform basins in the Transdanubian Range, Hungary. Geol Carpath 53(3):159–178

    Google Scholar 

  53. Haas J, Jocháné-Edelényi E, Gidai L, Kaiser M, Kretzoi M, Oravecz J (1984) Geology of the Sümeg Area. Geologica Hungarica Series Geologica 20:353

    Google Scholar 

  54. Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242(1–2):19–40. https://doi.org/10.1016/0040-1951(94)00157-5

    Article  Google Scholar 

  55. Haas J, Götz AE, Pálfy J (2010) Late Triassic to early Jurassic palaeogeography and eustatic history in the NW Tethyan realm: new insights from sedimentary and organic facies of the Csővár Basin (Hungary). Palaeogeography, Palaeoclimatology. Palaeoecology 291(3–4):456–468. https://doi.org/10.1016/j.palaeo.2010.03.014

    Article  Google Scholar 

  56. Haas J, Budai T, Raucsik B (2012) Climatic controls on sedimentary environments in the Triassic of the Transdanubian range (Western Hungary). Palaeogeography, palaeoclimatology. Palaeoecology 353–355:31–44. https://doi.org/10.1016/j.palaeo.2012.06.031

    Article  Google Scholar 

  57. Haas J, Budai T, Gyori O, Kele S (2014) Multiphase partial and selective dolomitization of Carnian reef limestone (Transdanubian Range, Hungary). Sedimentology 61(3):836–859. https://doi.org/10.1111/sed.12088

    Article  Google Scholar 

  58. Heer L (1982) Paläomagnetische Testuntersuchungen in den Nördlichen Kalkalpen im Gebiet zwischen Golling und Kössen. M.Sc. Thesis, Technical University, Munich

  59. Hips K, Haas J, Győri O (2016) Hydrothermal dolomitization of basinal deposits controlled by a synsedimentary fault system in Triassic extensional setting, Hungary. Int J Earth Sci (Geol Rundsch) 105:1215–1231. https://doi.org/10.1007/s00531-015-1237-4

    Article  Google Scholar 

  60. Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352. https://doi.org/10.1016/j.geothermics.2014.07.009

    Article  Google Scholar 

  61. Jadoul F, Galli MT, Calabrese L, Gnaccolini M (2005) Stratigraphy of Rhaetian To Lower Sinemurian Carbonate Platforms in Western Lombardy (Southern Alps, Italy): paleogeographic implications. Rivista Italiana Di Paleontoligia E Stratigrafia 111(2):285–303

    Google Scholar 

  62. Knipe RJ (1986) Deformation mechanism path diagrams for sediments undergoing lithification. Mem Geol Soc Am 166:151–160

    Google Scholar 

  63. Kőrössy L (1988) Hydrocarbon geology of the Zala Basin in Hungary (in Hungarian). Általános Földtani Szemle 23:3–162

    Google Scholar 

  64. Lantos Z (1997) Sediments of a Liassic carbonate slope controlled by strike-slip fault activity (Gerecse Hills, Hungary). Földtani Közlöny 127(3–4):291–320

    Google Scholar 

  65. Lavier L, Manatschal G (2006) A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440:324–328

    Article  Google Scholar 

  66. Lein R (1985) Das Mesozoikum der Nördlichen Kalkalpen als Beispiel eines gerichteten Sedimentationsverlaufes infolge fortschreitender Krustenausdünnung. Arch F Lagerstforsch Geol B A 6:117–128

    Google Scholar 

  67. Manatschal G, Lavier L, Chenin P (2015) The role of inheritance in structuring hyperextended rift systems: some considerations based on observations and numerical modeling. Gondwana Res 27:140–164

    Article  Google Scholar 

  68. Mandl GW (2000) The Alpine sector of the Tethyan shelf—examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitt Österr Geol Ges 92:61–77

    Google Scholar 

  69. Márton E, Márton P (1983) A refined polar wander curve for the Transdanubian Central Mountains and its bearing on the Mediterranean tectonic history. Tectonophysics 98:43–57

    Article  Google Scholar 

  70. Masetti D, Fantoni R, Romano R, Sartorio D, Trevisani E (2012) Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data. AAPG Bull 96(11):2065–2089. https://doi.org/10.1306/03091211087

    Article  Google Scholar 

  71. Mauritsch HJ (1980) Palaomagnetische Untersuchungen an einigen Magnesiten aus der westlichen Grauwackenzone. Mitt Österr Geol Ges 73:1–4

    Google Scholar 

  72. Mauritsch HJ, Becke M (1987) Palaeomagnetic Investigations in the Eastern Alps and the Southern Border Zone. In: Flugel HW, Faupl P (eds) Geodynamics of the Eastern Alps. Deuticke, Vienna, pp 283–308

    Google Scholar 

  73. Mauritsch HJ, Frisch W (1978) Palaeomagnetic data from the Central part of the Northern Calcareous Alps, Austria. J Geophys 44:623–637

    Google Scholar 

  74. Meister P, Mckenzie JA, Bernasconi SM, Brack P (2013) Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology 60(1):270–291. https://doi.org/10.1111/sed.12001

    Article  Google Scholar 

  75. Missoni S, Gawlick HJ, Dumitrică P, Krystyn L, Lein R (2008) Late Triassic mass-flow deposits in hemipelagic “Slovenian Trough”-like sediments in the Karavank Mountains (Austria) triggered by Late Triassic strike-slip movements. J Alp Geol 49:71

    Google Scholar 

  76. Oprčkal P, Gale L, Kolar-Jurkovšek T, Rožič B (2012) Outcrop-scale evidence for the Norian-Rhaetian extensional tectonics in the Slovenian Basin (Southern Alps) (in Slovenian with English abstract). Geologija 55(1):45–56. https://doi.org/10.5474/geologija.2012.003

    Article  Google Scholar 

  77. Ortner H (2007) Styles of soft-sediment deformation on top of a growing fold system in the Gosau Group at Muttekopf, Northern Calcareous Alps, Austria: slumping versus tectonic deformation. Sediment Geol 196(1–4):99–118. https://doi.org/10.1016/j.sedgeo.2006.05.028

    Article  Google Scholar 

  78. Ortner H (2013) Deep water sedimentation on top of a growing orogenic wedge—interaction of thrusting, erosion and deposition in the Cretaceous Northern Calcareous Alps. GeoAlp 13:141–182

    Google Scholar 

  79. Ortner H, Ustaszewski M, Rittner M (2008) Late Jurassic tectonics and sedimentation: Breccias in the Unken syncline, central Northern Calcareous Alps. Swiss J Geosci. https://doi.org/10.1007/s00015-008-1282-0

    Article  Google Scholar 

  80. Pace P, Di Domenica A, Calamita F (2014) Summit low-angle faults in the Central Apennines of Italy: younger-on-older thrusts or rotated normal faults? Constraints for defining the tectonic style of thrust belts. Tectonics 33(5):756–785. https://doi.org/10.1002/2013TC003385

    Article  Google Scholar 

  81. Perez ND, Horton BK, Carlotto V (2016) Structural inheritance and selective reactivation in the central Andes: Cenozoic deformation guided by pre-Andean structures in southern Peru. Tectonophysics 671:264–280. https://doi.org/10.1016/j.tecto.2015.12.031

    Article  Google Scholar 

  82. Rožič B, Kolar-Jurkovšek T, Šmuc A (2009) Late Triassic sedimentary evolution of Slovenian Basin (eastern Southern Alps): description and correlation of the Slatnik Formation. Facies 55(1):137–155. https://doi.org/10.1007/s10347-008-0164-2

    Article  Google Scholar 

  83. Satterley AK, Brandner R (1995) The genesis of Lofer cycles of the Dachstein Limestone, Northern Calcareous Alps, Austria. Geol Rundsch 84(2):287–292. https://doi.org/10.1007/BF00260441

    Article  Google Scholar 

  84. Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183. https://doi.org/10.1007/s00015-008-1247-3

    Article  Google Scholar 

  85. Tari G (1994) Alpine tectonics of the Pannonian Basin. Ph.D. dissertation Rice University, Houston

  86. Ustaszewski K, Schmid SM (2006) Control of preexisting faults on geometry and kinematics in the northernmost part of the Jura fold-and-thrust belt. Tectonics 25(5):26. https://doi.org/10.1029/2005TC001915

    Article  Google Scholar 

  87. Vörös A, Galácz A (1998) Jurassic palaeogeography of the Transdanubian Central Range (Hungary). Rivista Italiana Di Paleontologia E Stratigrafia 104(1):69–84

    Google Scholar 

  88. Yagupsky DL, Cristallini EO, Fantín J, Valcarce GZ, Bottesi G, Varadé R (2008) Oblique half-graben inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina: new insights from analogue models. J Struct Geol 30(7):839–853. https://doi.org/10.1016/j.jsg.2008.03.007

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Researched Found OTKA 113013. Seismic data set is available by MOL Hungarian Oil and Gas Plc. Quarry managers permitted the access to the visited quarries (Dolomit Ltd., Molnárkő Ltd., and Pajtika Ltd.). The authors are grateful to János Haas and Hugo Ortner for the helpful discussion. Constructive comments of Dušan Plašienka and an anonymous reviewer are appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gábor Héja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 13783 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Héja, G., Kövér, S., Csillag, G. et al. Evidences for pre-orogenic passive-margin extension in a Cretaceous fold-and-thrust belt on the basis of combined seismic and field data (western Transdanubian Range, Hungary). Int J Earth Sci (Geol Rundsch) 107, 2955–2973 (2018). https://doi.org/10.1007/s00531-018-1637-3

Download citation

Keywords

  • Pre-orogenic extension
  • Synsedimentary deformation
  • Norian tectonics
  • Alpine Tethys rifting
  • Triassic paleogeography