Magnetotelluric study of the eastern margin of the Bohemian Massif: relations between the Cadomian, Variscan, and Alpine orogeny

Abstract

Eastern margin of the Bohemian Massif is a geologically remarkable area, where three different orogenic cycles are meeting—the oldest, Cadomian, building a basement for younger cycles; a younger, Variscan; and the youngest, Alpine, covering the older units. In the past, this area was investigated by gravimetry and seismic methods. Recently, we have supplemented broadband magnetotelluric measurements within the period range of 0.001–1000 s, carried out on 29 stations distributed along a 140-km-long west-east regional profile. The profile direction was based on local geology and then confirmed by a dimensionality and directionality analysis. Data showed moderate effects of cultural noise in the signals and could be successfully processed by robust methods. We carried out a 2D inversion of the data using the REBOCC approach. The inversion results confirm the known near-surface geology and reveal deeper structures. On the west and in the central part of the profile, units of the Bohemian massif (the Moldanubian Zone, the Brunovistulicum) are interpreted. In the east, the Western Carpathians units are encountered. Short-period data agree well with the known near-surface geology of all inner smaller units and bring new knowledge in particular on their thickness. In the shallow structure, several conductive anomalies have been identified which are hypothesized to be related to graphitized layers in the Moldanubian Zone. From long-period data, a new image of the Moldanubian/Brunovistulicum contact and about the structure of the Brunovistulicum, especially the Brunovistulian Massifs, was obtained.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abdelfettah Y, Tiercelin JJ, Tarits P, Hautot S, Maia M, Thuo P (2016) Subsurface structure and stratigraphy of the northwest end of the Turkana Basin, Northern Kenya Rift, as revealed by magnetotellurics and gravity joint inversion. J Afr Earth Sci 119:120–138

    Article  Google Scholar 

  2. Amatyakul P, Rung-Arunwan T, Siripunvaraporn W (2015) A pilot magnetotelluric survey for geothermal exploration in Mae Chan region, northern Thailand. Geothermics 55:31–38

    Article  Google Scholar 

  3. Bahr K (1991) Geological noise in magnetotelluric data: a classification of distortion types. Phys Earth Planet Inter 66:24–38

    Article  Google Scholar 

  4. Bailey RC, Groom RW (1987) Decomposition of the magnetotelluric impedance tensor which is useful in the presence of channeling. In: SEG technical program expanded abstracts 1987, pp 154–156

  5. Becken M, Ritter O, Burkhardt H (2008) Mode separation of magnetotelluric responses in three-dimensional environments. Geophys J Int 172:67–86

    Article  Google Scholar 

  6. Bertrand EA, Caldwell TG, Hill GJ, Bennie SL, Soengkono S (2013) Magnetotelluric imaging of the Ohaaki geothermal system, New Zealand: Implications for locating basement permeability. J Volcanol Geoth Res 268:36–45

    Article  Google Scholar 

  7. Bielik M, Kloska K, Meurers B, Švancara J, Wybraniec S (2006) Gravity anomaly map of the CELEBRATION 2000 region. Geol Carpathica 57(3):145–156

    Google Scholar 

  8. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469

    Article  Google Scholar 

  9. Carswell DA (1991) Variscan high P–T metamorphism and uplift history in the Moldanubian Zone of the Bohemian Massif in Lower Austria. Eur J Mineral 3:323–342

    Article  Google Scholar 

  10. Červ V, Kováčiková S, Pek J, Pěčová J, Praus O (1997) Model of electrical conductivity distribution across Central Europe. J Geomag Geoelctr 49:1585–1600

    Article  Google Scholar 

  11. Červ V, Kováčiková S, Pek J, Pěčová J, Praus O (2001) Geoelectrical structure across the Bohemian Massif and the transition zone to the west Carpathians. Tectonophysics 332:201–210

    Article  Google Scholar 

  12. Červ V, Pek J, Menvielle M (2010) Bayesian approach to magnetotelluric tensor decomposition. Ann Geophys 53:21–32

    Google Scholar 

  13. Cherevatova M, Smirnov M, Korja T, Kaikkonen P, Pedersen LB, Hübert J, Kamm J, Kalscheuer T (2014) Crustal structure beneath southern Norway imaged by magnetotellurics. Tectonophysics 628:55–70

    Article  Google Scholar 

  14. Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z (2011) Geologická minulost České republiky. Academia, Praha

    Google Scholar 

  15. Cicha I (1975) Die Entwicklung der Pouzdrany Schichtengruppe und des Egerien in der Zdanice-Podslezska (Steinitz-Subsilesischer) Einheit in der Tschechoslowakei. In: Baldi T, Senes J (eds) Chronostratigraphie und Neostratotypen, Miozan der Zentralen Paratethys. Bd. V, Veda, Slovak akad vied, Bratislava, pp 65–70

    Google Scholar 

  16. Cicha I (2001) Outline of the stratigraphy of the Middle Miocene in the Alpine-Carpathian Foredeep (Lower Austria–Moravia). Scripta Fac Sci Nat Univ Masaryk Brun Geol 30:23–26

    Google Scholar 

  17. Čížek P, Tomek Č (1991) Large-scale thin-skinned tectonics in the eastern boundary of the Bohemian Massif. Tectonics 10(2):273–286

    Article  Google Scholar 

  18. Commission, Report of the Working Group for Regional Geological Classification of the Bohemian Massif at the former Czechoslovak Stratigraphic Commision (1994) Regional geological subdivision of the Bohemian Massif on the territory of the Czech Republic. J Czech Geol Soc 39(1):127–144

    Google Scholar 

  19. Condie KC (1989) Plate tectonic and crustal evolution. Pergamon Press, New York

    Google Scholar 

  20. Dallmeyer RD, Urban M (1994) Evolution of Variscan (Hercynian) and comparable Palaeozoic orogenic belts. J Czech Geol Soc 39:21–22

    Google Scholar 

  21. deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624

    Article  Google Scholar 

  22. Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia. Trans Czech Acad Sci Math Nat Sci Ser 90:1–85

    Google Scholar 

  23. Dudek A, Frolíková I, Nekovařík Č (1992) Hloubka intruze hercynských granitoidních plutonitů Českého masivu. Acta Univ Carol Geologica Kettner 3–4:249–256

    Google Scholar 

  24. Egbert GD, Eisel M (1998) EMTF: programs for robust single station and remote reference analysis of magnetotelluric data: UNIX (and PC) version

  25. Eliáš M (1979) Facies and paleogeography of the Silesian unit in the western part Czechoslovak Flysch Carpathians—Věst. Ústř Úst Geol 54:327–339 (Praha)

    Google Scholar 

  26. Faryad SH, Kachlík V, Sláma J, Jedlička R (2016) Coincidence of gabbro and granulite formation and their implication for Variscan HT metamorphism in the Moldanubian Zone (Bohemian Massif), example from the Kutná. Hora Complex Lithos 264:56–69

    Article  Google Scholar 

  27. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of Central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    Article  Google Scholar 

  28. Finger F, Hanžl P, Pin C, von Quadt A, Steyrer HP (2000) The Bruno-Vistulian: Avalonian Precambrian sequence at the eastern end of the central European Variscides? Geol Soc Lond Spec Publ 179:103–112

    Article  Google Scholar 

  29. Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases. J Geosci 52:9–28

    Google Scholar 

  30. Franke W, Haak V, Oncken O, Tanner D (eds) (2000) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:464

  31. Friedrichs B (2004) Mapros, (Ver. 0.87b freeware), Metronix Measurement Instruments and Electronics Ltd. https://www.geo-metronix.de/mtxgeo/. Accessed 6 Nov 2017

  32. Fritz H (1996) Geodynamic and tectonic evolution of the southeastern Bohemian Massif: the Thaya section (Austria). Mineral Petrol 58:253–278

    Article  Google Scholar 

  33. Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (the south-eastern Bohemian Massif, Czech Republic–Austria). Tectonics 15:1389–1413

    Article  Google Scholar 

  34. Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jahrbuch Geologischen Bundelsanstalt 129:41–49

    Google Scholar 

  35. Fuchs G (1986) Zur Diskussion um den Deckenbau der Böhmischen Masse. Jahrb Geol Bundelsansalt 129:41–49

    Google Scholar 

  36. Geological map of the Czech republic 1:500 000 (2014) Internet application, Czech Geological Survey. https://mapy.geology.cz/geocr500/. Accessed 26 Oct 2017

  37. Guy A, Edel JB, Schulmann K, Tomek Č, Lexa O (2011) A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos 124:144–157

    Article  Google Scholar 

  38. Hrubcová P, Środa P (2008) Crustal structure at the easternmost termination of the Variscan belt based on celebration 2000 and ALP 2002 data. Tectonophysics 460:55–75

    Article  Google Scholar 

  39. Hrubcová P, Środa P, Špičák A, Guterch A, Grad M, Keller GR, Brueckl E, Thybo H (2005) Crustal and uppermost mantle structure of the Bohemian Massif based on Celebration 2000 data. J Geophys Res 110:B11305

    Article  Google Scholar 

  40. Ibrmajer J (1963) Gravimetric Map of Czechoslovakia on 1∶200 000 scale. Stud Geophys Geod 7(3):303–308

    Article  Google Scholar 

  41. Ibrmajer J (1981) Geological interpretation of gravity maps of Czechoslovakia. In: Geophysical Synthesis in Czechoslovakia, Bratislava, pp 135–148

  42. ISR LVIV Long-period magnetotelluric station Lemi-417M (2017). http://www.isr.lviv.ua/lemi417.htm. Accessed 9 Aug 2017

  43. Jankowski J, Tarłowski Z, Praus O, Pěčová J, Petr V (1985) The results of deep geomagnetic soundings in the West Carpathians. Geophys J R Astron Soc 80:561–574

    Article  Google Scholar 

  44. Jiříček R (1983) Geology of Lower Miocene in the Carpathian Foredeep in the section SOUTH. Zem Plyn Nafta 28(2):197–212

    Google Scholar 

  45. Jones AG (1993) Electromagnetic images of modern and ancient subduction zones: plate tectonic signatures in the continental lithosphere. Tectonophysics 219:29–45

    Article  Google Scholar 

  46. Jones AG, Dumas I (1993) Electromagnetic images of a volcanic zone. Phys Earth Planet Inter 81:289–314

    Article  Google Scholar 

  47. Kalvoda J, Babek O, Fatka O, Leichmann J, Melichar R, Nehyba S, Spacek P (2008) Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. Int J Earth Sci (Geol Rundsch) 97:497–518

    Article  Google Scholar 

  48. Kröner A, O’Brien P, Nemchin A, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to carboniferous high temperature processes. Contrib Mineral Petrol 138:127–142

    Article  Google Scholar 

  49. Liddell M, Unsworth M, Pek J (2016) Magnetotelluric imaging of anisotropic crust near Fort McMurray, Alberta: implications for engineered geothermal system development. Geophys J Int 205:1365–1381

    Article  Google Scholar 

  50. Liew TC, Finger F, Höck V (1989) The Moldanubian granitoid plutons of Austria: chemical and isotopic studies bearing on their environmental setting. Chem Geol 76:41–55

    Article  Google Scholar 

  51. Matte Ph, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  52. Matte Ph (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337

    Article  Google Scholar 

  53. McCann T (2008) The geology of central Europe—Volume 2 Mesozoic and Cenozoic. Geological Society of London, London

  54. Metronix Measurement Instruments and Electronics Ltd., Germany (2017). http://www.geo-metronix.de/mtxgeo/. Accessed 19 Oct 2017

  55. Mineralogy database, Hudson Institute of Mineralogy (2017). https://www.mindat.org/. Accessed 21 Sept 2017

  56. Mísař Z, Mottlová L, Suk M, Weiss J (1972) Interpretace tíhového pole moldanubika a přilehlých jednotek. Sborník geologických věd 10:7–31 (Praha)

    Google Scholar 

  57. Moravian Oil Mines, a joint venture Hodonín (1978) Final report on structural—stratigraphic borehole Strachotín-1, in Czech

  58. Naganjaneyulu K, Santosh M (2010) The Cambrian collisional suture of Gondwana in southern India: a geophysical appraisal. J Geodyn 50:256–267

    Article  Google Scholar 

  59. O’Brien PJ, Carswell DA (1993) Tectonometamorphic evolution of the Bohemian Massif: evidence from high pressure metamorphic rocks. Geol Rundsch 82:531–555

    Article  Google Scholar 

  60. Palacky GJ (1987) Resistivity characteristics of geologic targets. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 1. Soc. of Expl. Geophys, Tulsa, Oklahoma (Series: Investigation in Geophysics, vol 3)

    Google Scholar 

  61. Petr V, Pěčová J, Praus O, Pěč K (1987) Anomalous induction zone near the eastern margin of the Bohemian Massif. Phys Earth Planet Inter 45:161–169

    Article  Google Scholar 

  62. Picha F (1965) Sedimentologic methods applied for the reconstruction of the Carpathian Outer Flysch zone sedimentation basins in southern Moravia. Carpatho-Balkan Geological Association, VII Congress Sofia, September 1965, Reports, Part II/1, pp 315–320

  63. Pitra P, Burg JP, Guiraud M (1999) Late Variscan strike-slip tectonics between the Tepla-Barrandian and Moldanubian terranes (Czech Bohemian Massif): petrostructural evidence. J Geol Soc Lond 156:1003–1020

    Article  Google Scholar 

  64. Plašienka D, Grecula P, Putiš M, Kováč M, Hovorka D (1997) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner. Slovaca, Geocomplex, Bratislava, pp 1–24i

    Google Scholar 

  65. Robertson K, Taylor D, Thiel S, Heinson G (2015) Magnetotelluric evidence for serpentinisation in a Cambrian subduction zone beneath the Delamerian Orogen, southeast Australia. Gondwana Res 28:601–611

    Article  Google Scholar 

  66. Roštínský P, Pospíšil L, Švábenský O (2013) Recent geodynamic and geomorphological analyses of the Diendorf–Čebín Tectonic Zone, Czech Republic. Tectonophysics 599:45–66

    Article  Google Scholar 

  67. Royden LH (1985) The Vienna basin: a thin-skinned pull-apart basin. The Society of Economic Paleontologists and Mineralogists (SEPM) Strike-Slip Deformation, Basin Formation, and Sedimentation (SP37), pp 319–338

    Google Scholar 

  68. Šalanský K (1995) Magnetic map of the Czech republic, 1:500 000. Czech Geological Institute

  69. Schrauder M, Beran A, Hoernes S, Richter W (1993) Constraints on the origin and the genesis of graphite-bearing rocks from the variegated sequence of the Bohemian Massif (Austria). Mineral Petrol 49:175–188

    Article  Google Scholar 

  70. Schulmann K, Gayer R (2000) A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. J Geol Soc London 157:401–416

    Article  Google Scholar 

  71. Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92

    Article  Google Scholar 

  72. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448

    Article  Google Scholar 

  73. Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J, Edel JB, Peschler A, Lehmann J (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26:273–297

    Article  Google Scholar 

  74. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. CR Geosci 341:266–286

    Article  Google Scholar 

  75. Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge

    Google Scholar 

  76. Siripunvaraporn W, Egbert G (1999) Reduced Basis Occam (REBOCC) inversion version 1.0 for two-dimensional magnetotelluric data. College of Oceanic and Atmospheric Sciences, Oregon State University, Oregon

    Google Scholar 

  77. Suk M, Ďurica D, Obstová V, Staňková E (1991) Deep boreholes in the Czech and Moravia and their geological results (in Czech). Gabriel, Praha, p 171

    Google Scholar 

  78. Swift CM (1967) A magnetotelluric investigation of an electrical conductivity anomaly in the South Western United States. Thesis PhD, M.I.T., Cambridge, Mass

  79. Tomek Č (1986) Deep seismic reflection profiling in the Bohemian Massif and the West Carpathians. Geologiska Foreningens i Stockholm Forhandlingar 108(3):311–312

    Article  Google Scholar 

  80. Unsworth MJ, Malin PE, Egbert GD, Booker JR (1997) Internal structure of the San Andreas Fault Zone at Parkfield, California. Geology 25:359–362

    Article  Google Scholar 

  81. van Breemen O, Aftalion M, Bowes DR, Vrána S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Earth Environ Sci Trans R Soc Edinb 73:89–108

    Article  Google Scholar 

  82. Vellmer C, Wedepohl KH (1994) Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria. Contrib Miner Petrol 118:13–32

    Article  Google Scholar 

  83. Verner K, Žák J, Hrouda F, Holub F (2006) Magma emplacement during exhumation of the lower- to mid-crustal orogenic root: the Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. J Struct Geol 28:1553–1567

    Article  Google Scholar 

  84. Volpi G, Manzella A, Fioderlisi A (2003) Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area. Italy Geotherm 32:131–145

    Article  Google Scholar 

  85. Wannamaker PE, Booker JR, Jones AG, Chave AD, Filloux JH, Waff HS, Law LK (1989) Resistivity cross-section through the Juan de Fuca subduction system and its tectonic implications. J Geophys Res 94:14121–114125

    Google Scholar 

  86. Weiss J (1977) Basement of the Moravian block in context of the European platform. Folia facultatis scientiarum naturalium universitatis Purkynianae Brunensis. Geologia 18, 13. Brno, in Czech

  87. Wendt JI, Kroner A, Fiala J, Todt W (1993) Evidence from Zircon dating for existence of approximately 2.1 Ga old crystalline basement in Southern Bohemia. Czech Republic Geologische Rundschau 82(1):42–50

    Article  Google Scholar 

  88. Winchester JA, Pharaoh TC, Verniers J (2002) Paleozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations, vol 201. Geological Society, London, Special Publications, pp 1–18

    Article  Google Scholar 

  89. Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40

    Article  Google Scholar 

Download references

Acknowledgements

Our gratitude goes to the Ministry of Education, Youth and Sports of the CR, project LM2015079 CzechGeo/EPOS. J. Pek’s participation was supported by the Czech Sci. Found. Project no. 17-19877S. The authors greatly appreciate the constructive review of Anne Neska and one anonymous reviewer which helped to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radek Klanica.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klanica, R., Červ, V. & Pek, J. Magnetotelluric study of the eastern margin of the Bohemian Massif: relations between the Cadomian, Variscan, and Alpine orogeny. Int J Earth Sci (Geol Rundsch) 107, 2843–2857 (2018). https://doi.org/10.1007/s00531-018-1631-9

Download citation

Keywords

  • Magnetotelluric
  • Tectonics
  • Bohemian Massif
  • Brunovistulicum