Abstract
Anatectic magmas form plutons or accumulate in the core of anatectic domes. Both scenarios have distinct implications on the behaviour of the continental crust during orogenic evolution from collision to collapse. Considering a stepwise extraction of melt, we simulate the evolution of anatectic melt and of solid residues produced in the crust from collision to collapse using thermodynamic modelling. We also simulate the effect of entrainment of source material (restite-unmixing and peritectic assemblage entrainment) on the compositional range of the resulting magmas. The results are then compared to the compositions of lower crustal xenoliths and of peraluminous granites in both plutons and anatectic dome in the southeastern French Massif Central (SE-FMC). From our calculations, we identify two type of anatectic melts (1) cool-and-wet produced at low-temperature (< 800 °C) which release fluids during crystallisation and (2) hot-and-dry produced at high-temperature (> 750 °C) which only release fluids at the end of crystallisation. When emplaced around 0.4 GPa, cold-and-wet melts are produced by muscovite-dehydration melting reactions; hot-and-dry are produced by biotite-dehydration melting. In the SE-FMC, the Velay dome is cored by the Velay granite, intruded by small bodies of Velay leucogranite and surrounded by plutons made of either two mica leucogranite (MPG) or cordierite-bearing granite (CPG). MPG and Velay leucogranite compositions are best reproduced by cool-and-wet magmas. CPG and Velay granite compositions are best reproduced by hot-and-dry magmas. Melt extraction after biotite dehydration melting leaves residues that are similar in composition to lower-crustal xenoliths. Magmas forming plutons migrate freely toward the upper crust forming plutons with distinct compositions. On the contrary, to form a dome, magmas are retained on the way up. The emplacement and accumulation of magma at deeper level enhances (or trigger) melting due to the addition of heat (from hot-and-dry) and fluids (from cool-and-wet). The accumulation of magma and the in situ melting increases melt fraction and has consequence to weaken the middle crust and leads to the formation of an anatectic dome. We suggest that magmas are retained due to lithological heterogeneities in the crust. In the case of the Velay dome, a large orthogneiss formation similar to the Velay orthogneiss formation may have played that role.
Similar content being viewed by others
References
Acosta-Vigil A, London D, Morgan G, Dewers TA (2006) Dissolution of quartz, albite, and orthoclase in H2O-saturated haplogranitic melt at 800 °C and 200 MPa: diffusive transport properties of granitic melts at crustal anatectic conditions. J Petrol 47:231–254
Arzi AA (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184
Auzanneau E, Vielzeuf D, Schmidt MW (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol 152:125–148
Auzanneau E, Schmidt MW, Vielzeuf D, Connolly JAD (2010) Titanium in phengite: a geobarometer for high temperature eclogites. Contrib Mineral Petrol 159:1–24
Barbarin B (1996) Genesis of the two main types of peraluminous granitoids. Geology 24:295–298
Barbarin B (1999) A review of the relationships between granitoïd types, their origins and their geodynamic environments. Lithos 46:605–626
Barbey P, Marignac C, Montel JM, Macaudiere J, Gasquet D, Jabbori J (1999) Cordierite growth textures and the conditions of genesis and emplacement of crustal granitic magmas: the Velay granite complex (Massif Central, France). J Petrol 40:1425–1441
Barbey P, Villaros A, Marignac C, Montel J-M (2015) Multiphase melting, magma emplacement and P–T–time path in late-collisional context: the Velay example (Massif Central, France). Bull Soc Geol Fr 186:93–116
Bé Mézème E, Faure M, Cocherie A, Chen Y (2005) In situ chemical dating of tectonothermal events in the French Variscan Belt. Terra Nova 17:420–426
Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742
Beaumont C, Jamieson RA, Nguyen MH, Medvedev S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J Geophys Res Solid Earth 109(B6):B06406
Bons PD, Arnold J, Elburg MA, Kalda J, Soesoo A, van Milligen BP (2004) Melt extraction and accumulation from partially molten rocks. Lithos 78:25–42
Bouilhol P, Delor C, Vauchez A (2006) Relationships between lower and upper crust tectonic during doming: the mylonitic southern edge of the Velay metamorphic core complex (Cévennes-French Massif Central). Geodin Act 4:137–153
Brown M (2006) Melt extraction from the lower continental crust of orogens: The field evidence. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 332–384
Brown M, Korhonen FJ, Siddoway CS (2011) Organizing melt flow through the crust. Elements 7:261–266
Bruguier O, Becq-Giraudon JF, Champenois M, Deloule E, Ludden J, Mangin D (2003) Application of in situ zircon geochronology and accessory phase chemistry to constraining basin development during post-collisional extension: a case study from the French Massif Central. Chem Geol 201:319–336
Burg JP, Vanderhaeghe O (1993) Structures and way-up criteria in migmatites, with application to the Velay dome (French Massif Central). J Struct Geol 15:1293–1301
Caron C (1994) Pb–Zn mineralisations associated lower Palaeozoic in southern Europe. Pb-Pb isotopes in Iglesiente (SW Sardaigne) and the Cevennes and evolution of the host using U-Pb, 40Ar/39Ar. Geochronology, Ph.D. Thesis. Université de Montpellier, Montpellier (in French)
Champallier R, Bystricky M, Arbaret L (2008) Experimental investigation of magma rheology at 300 MPa: from pure hydrous melt to 76 vol.% of crystals. Earth Planet Sci Lett 267:571–583
Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138
Chelle-Michou C, Laurent O, Moyen J-F, Block S, Paquette J-L, Couzinié S, Gardien V, Vanderhaeghe O, Villaros A, Zeh A (2017) Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res 46:170–190
Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61:1–18
Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 297–331
Clemens JD, Stevens G (2016) Melt segregation and magma interactions during crustal melting: Breaking out of the matrix. Earth Sci Rev 160:333–349
Clemens JD, Watkins JM (2001) The fluid regime of high temperature metamorphism during granitoid magma genesis. Contrib Mineral Petrol 140:600–606
Clemens JD, Droop GTR, Stevens G (1997) High-grade metamorphism, dehydrations and crustal melting: a reinvestigation based on new experiments in the silica-saturated portion of the system KAlO2–MgO–SiO2–H2O–CO2 at P < 1.5 GPa. Contrib Mineral Petrol 129:308–325
Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696
Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436
Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modelling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541
Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:Q10014. https://doi.org/10.1029/2009GC002540
Couzinié S (2017) Evolution of the continental crust and significance of the zircon record, a case study from the French Massif Central. Ph.D. thesis. St Etienne
Couzinié S, Moyen J-F, Villaros A, Paquette J-L, Scarrow JH, Marignac C (2014) Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay complex (Massif Central, France). J Geosci 59:1–18
Couzinié S, Laurent O, Moyen JF, Zeh A, Bouilhol P, Villaros A (2016) Post-collisional magmatism: crustal growth not identified by zircon Hf-O isotopes. Earth Planet Sci Lett 456:182–195
Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen J-F, Bouilhol P, Vezinet A, Marko L (2017) Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286:16–34
de Saint Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500:20–33
Debon F, Le Fort P (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth Sci 73:135–149
Depine GV, Andronicos CL, Phipps-Morgan J (2008) Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature 452:80–83
Didier A, Bosse V, Boulvais P, Bouloton J, Paquette J-L, Montel J-M, Devidal J-L (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Mineral Petrol 165:1051–1072
Dostal J, Dupuy C, Leyreloup A (1980) Geochemistry and petrology of meta-igneous granulitic xenoliths in Neogene volcanic rocks of the Massif Central, France—implications for the lower crust. Earth Planet Sci Lett 50:31–40
Downes H, Duthou J-L (1988) Isotopic and trace-element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chem Geol 68:291–308
Downes H, Leyreloup AF (1986) Granulitic xenoliths from the French Massif Central—petrology, Sr and Nd isotope systematics and model age estimates, Special Publications, vol 24. Geological Society, London, pp 319–330
Downes H, Dupuy C, Leyreloup A (1990) Crustal evolution of the Hercynian belt of Western Europe: evidence from lower-crustal granulitic xenoliths (French Massif Central). Chem Geol 83:209–231
Dupuy C, Leyreloup A, Vernieres J (1979) The lower continental crust of the Massif Central (Bournac, France) with special references to REE, U and Th composition, evolution, heat-flow production. Phys Chem Earth 11:401–415
Farina F, Stevens G, Villaros A (2012) Multi-batch, incremental assembly of a dynamic magma chamber: the case of the Peninsula pluton granite (Cape Granite Suite, South Africa. Mineral Petrol 106:193–216
Faure M, Lardeaux J-M, Ledru P (2009) A review of pre-Permian geology of the Variscan French Massif Central. C R Geosci 341:202–213
Gao P. Zheng Y, Zhao Z (2016) Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos 266–267:133–157
Garcia-Arias M, Stevens G (2017a) Phase equilibrium modelling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source. Lithos 277:131–153
Garcia-Arias M, Stevens G (2017b) Phase equilibrium modelling of granite magma petrogenesis: B. An evaluation of the magma compositions that result from fractional crystallization. Lithos 277:109–130
Gardien V, Thompson AB, Grujic D, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J Geophys Res Solid Earth 100:15581–15591
Gardien V, Lardeaux J-M, Ledru P, Allemand P, Guillot S (1997) Metamorphism during late orogenic extension; insights from the French Variscan belt. Bull Soc Geol Fr 168:271–286
Gardien V, Thompson AB, Ulmer P (2000) Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole. J Petrol 41:651–666
Gerya TV, Perchuk LL, Maresch WV, Willner AP (2004) Inherent gravitational instability of hot continental crust: implications for doming and diapirism in granulite facies terrains. Spec Papers Geol Soc Am 380:97–116
Gerya TV, Perchuk LL, Burg JP (2008) Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust–mantle associations in collision belts. Lithos 103:236–256
Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11
Guernina S, Sawyer EW (2003) Large scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi Subprovince of Quebec. J Metamorph Geol 21:181–201
Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for of petrological interest. J Metamorph Geol 16:309–343
Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. In: Wyllie A, El Goresy WvE, Hahn T (eds). Springer, Heidelberg, p 335
Johnson TE, White R, Powell R (2008) Partial melting of metagreywacke: a calculated mineral equilibria study. J Metamorph Geol 26:837–853
Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212
Korhonen FJ, Saito S, Brown M, Siddoway CS (2009) Modelling multiple melt loss events in the evolution of an active continental margin. Lithos 116:230–248
Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329
Laporte D, Watson EB (1995) Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chem Geol 124:161–184
Laporte D, Rapaille C, Provost A, Hutton DHW, Stephens WE (1997) Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths. In: Bouchez JL (ed) Granite: from segregation of melt to emplacement fabrics. Springer, Dordrecht, pp 31–54
Lardeaux JM, Ledru P, Daniel I, Duchene S (2001) The Variscan French Massif Central—a new addition to the ultra-high pressure metamorphic ‘club’: exhumation processes and geodynamic consequences. Tectonophysics 332:143–167
Lardeaux JM, Schulmann K, Faure M, Janoucek V, Lexa O, Skrzypek E, Edel JB, Stipska P (2014) The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geolog Soc London Spec Publ 405:7–44
Laumonier M, Arbaret L, Burgisser A, Champallier R (2011) Porosity redistribution enhanced by strain localization in crystal-rich magmas. Geology 39:715–718
Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen J-F, Villaros A, Gardien V (2017) Protracted, coeval crust- and mantle melting during Variscan late-orogenic evolution: zircon U–Pb dating in the eastern French Massif Central. Int J Earth Sci 106:421–451
Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99:226–237
Ledru P, Courrioux G, Dallain C, Lardeaux J-M, Montel J-M, Vanderhaeghe O, Vitel G (2001) The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342:207–237
Lejeune A-M, Richet P (1995) Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J Geophys Res Solid Earth 100:4215–4229
Leyreloup A (1973) The deep Velay crust after enclaves extruded by neogene volcanoes: thermometamorphism and lithology: granites and Charnockites (French Massif Central). Ph.D. dissertation. Université de Nantes, France
Leyreloup A (1974) The catazonales enclaves extruded by Neogene eruptions un France: Nature of the lower crust. Contrib Mineral Petrol 46:17–27
Leyreloup A, Dupuy C, Andriambololona R (1977) Catazonal xenoliths in French Neogene volcanic rocks: constitution of the lower crust. Contrib Mineral Petrol 62:283–300
Malavieille J (1993) Late orogenic extension in mountain belts: insights from the Basin and Range and the late Paleozoic Variscan belt. Tectonics 12:1115–1130
Malavieille J, Guihot P, Costa S, Lardeaux JM, Gardien V (1990) Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics 177:139–154
Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374
Mayne MJ, Moyen JF, Stevens G, Kaislaniemi L (2016) Rcrust: a tool for calculating path-dependent open system processes and application to melt loss. J Metamorph Geol 34:663–682
Melleton J, Cocherie A, Faure M, Rossi P (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17:13–25
Melo MG, Stevens G, Lana C, Pedrosa-Soares AC, Frei D, Alkmim FF, Alkmin LA (2017) Two cryptic anatectic events within a syn-collisional granitoïd from the Araçuaí orogen (southeastern Brazil): evidence from the polymetamorphic Carlos Chagas batholith. Lithos 277:51–71
Mintrone M (2015) Constraining the duration of metamorphic events by modelling pf phase equilibrium and diffusion in garnet—example from the French Massif Central, France. M.Sc. Thesis. Université de Clermont Auvergne, Clermont-Ferrand
Montel JM, Abdelghaffar R (1993) Major petrographic and geochemical characteristics of the late-migmatitic Velay granites (Massif Central). Géol Fr 1:15–28
Montel J-M, Vielzeuf D (1997) Partial melting of metagreywacke—2: compositions of minerals and melts. Contrib Mineral Petrol 128:176–196
Montel JM, Marignac C, Barbey P, Pichavant M (1992) Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif Central). J Metamorph Geol 10:1–15
Mougeot R, Respaut JP, Ledru P, Marignac C (1997) U–Pb chronology on accessory minerals of the Velay anatectic dome (French Massif Central). Eur J Mineral 9:141–156
Moyen J-F, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, Villaros A, Gardien V (2017) Collision vs. subduction-related magmatism: two contrasting sites of granite formation and implications for crustal growth. Lithos 277:154–177
Newton RC, Haselton HT (1981) Thermodynamics of the garnet–plagioclase–Al2SiO5–quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thrmodynamics of minerals and melts. Springer, New York, pp 131–147
Poujol M, Pitra P, Van Den Driessche J, Tartese R, Ruffet G, Paquette J-L, Poilvet J-C (2017) Two-stage partial melting during the Variscan extensional tectonics. Int J Earth Sci 106:477–500
Powell R, Holland T (1999) Relating formulations of the thermodynamics of mineral solid solutions: activity modelling of pyroxenes, amphiboles, and micas. Am Mineral 84:1–14
Rabinowicz M, Vigneresse J-L (2004) Melt segregation under compaction and shear channeling: application to granitic magma segregation in a continental Crust. J Geophys Res B Solid Earth 109:B04407
Rey P, Vanderhaeghe O, Teyssier C (2001) Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342:435–449
Rey PF, Teyssier C, Whitney DL (2009) Extension rates, crustal melting, and core complex dynamics. Geology 37:391–394
Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28
Rossi P, Cocherie A, Fanning CM, Deloule É (2006) Variscan to eo-Alpine events recorded in European lower-crust zircons sampled from the French Massif Central and Corsica, France. Lithos 87:235–260
Sabatier H (1991) Vaugnerites: special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in petrology. Elsevier, Amsterdam, pp 63–81
Sandiford M, Foden J, Zhou S, Turner S (1992) Granite genesis and the mechanics of convergent orogenic belts with application to the southern Adelaide Fold Belt. Geol Soc Am Spec Pap 272:83–94
Sanislav IV, Bell TH (2011) The inter-relationship between long-lived metamorphism, pluton emplacement and changes in the direction of bulk shortening during orogenesis. J Metamorph Geol 29:513–536
Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234
Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmasJ. Petrol 36:663–705
Schwindinger M, Weinberg RF (2017) A felsic MASH zone of crustal magmas—feedback between granite magma intrusion and in situ crustal anatexis. Lithos 284:109–121
Shaw DM (2006) Trace elements in magmas: a theoretical treatment. Cambridge University Press, Cambridge
Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucogranite in plutons? J Petrol 42:789–823
Stampfli GM, Hochard C, Verard C, Wilhem C, von-Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19
Stevens G, van Reenen D (1992) Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt, South Africa. Precamb Res 55:303–319
Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from primitive metasedimentary protoliths. Contrib Mineral Petrol 128:352–370
Stevens G, Villaros A, Moyen J-F (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35:9–12
Tajcmanovà L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27:153–165
Taylor J, Stevens G (2010) Selective entrainment of peritectic garnet into S-type granitic magmas: evidence from Archaean mid-crustal anatectites. Lithos 120:277–292
Teyssier C, Whitney DL (2002) Gneiss domes and orogeny. Geology 30:1139–1142
Teyssier C, Ferré EC, Whitney DL, Norlander B, Vanderhaeghe O, Parkinson D (2005) Flow of partially molten crust and origin of detachments during collapse of the Cordilleran orogen. Geol Soc Lond Spec Publ 245:39–64
Tobschall HJ (1971) Zur Genese der Migmatite des Beaume-Tales (Mittlere Cevennen, Dep. Ardeche). Contrib Mineral Petrol 32:93–111
van der Molen I, Paterson MS (1979) Experimental deformation of partially melted granite. Contrib Mineral Petrol 70:299–318
Vanderhaeghe O (2009) Migmatites, granites and orogeny: flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477:119–134
Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276
Vielzeuf D, Montel J-M (1994) Partial melting of Metagreywackes. 1: Fluid-absent experiments and phase-relationships. Contrib Mineral Petrol 117:375–393
Villaros A, Stevens G, Moyen J-F, Buick IS (2009) The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contrib Mineral Petrol 158:543–561
Villaseca C, Barbero L, Herreros V (1998) A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth Environ Sci Trans R Soc Edinburgh 89:113–119
Ward R, Stevens G, Kisters A (2008) Fluid and deformation induced partial melting and melt volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia. Lithos 105:253–271
Weinberg RF, Hasalová P (2015) Water-fluxed melting of the continental crust: A review. Lithos 212:158–188
Weisbrod A (1970) Petrology of the metamorphic socle of the central Cevennes (French Massif central). Sedimentalogical reconstruction and thermodynamic approach of metamorphism, vol 4—unpubl. thesis. Université de Nancy, Nancy (in French)
White RW, Powell R (2002) Melt loss and the preservation of granulite facies mineral assemblages. J Metamorph Geol 20:621–632
White RW, Powell R (2010) Retrograde melt–residue interaction and the formation of near-anhydrous leucosomes in migmatites. J Metamorph Geol 28:579–597
White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol 18:497–511
White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). J Metamorph Geol 19:139–153
White RW, Powell R, Halpin JA (2004) Spatially-focussed melt formation in aluminous metapelites from Broken Hill, Australia. J Metamorph Geol 22:825–845
White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527
White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286
Whitney DL, Teyssier C, Vanderhaeghe O (2004) Gneiss domes and crustal flow. Geol Soc Am Spec Pap 380:15–33
Williamson BJ, Downes H, Thirlwall MF (1992) The relationship between crustal magmatic underplating and granite genesis—an example from the Velay Granite Complex, Massif-Central, France. Trans R Soc Edinb Earth Sci 83:235–245
Williamson BJ, Shaw A, Downes H, Thirlwall MF (1996) Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chem Geol 127:25–42
Williamson BJ, Downes H, Thirlwall MF, Beard A (1997) Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos 40:295–319
Yakymchuk C, Brown M (2014) Behaviour of zircon and monazite during crustal melting. J Geol Soc 171:465–479
Yakymchuk C, Brown M, Clark C, Korhonen FJ, Piccoli PM, Siddoway CS, Taylor RJM, Vervoort JD (2015) Decoding polyphase migmatites using geochronology and phase equilibria modelling. J Metamorph Geol 33:203–230
Acknowledgements
AV acknowledges funding from LabEx VOLTAIRE (ANR-10-LABX-100-01) and the ANR program VARPEG (ANR-15-CE01-0001). JFM was supported by an INSU-PNP grant “Quantification de la durée d’un épisode de fusion partielle en contexte de désépaississement tardi-orogénique” (2016). The authors thank O. Vanderhaeghe and V. Gardien for discussions on the subject and the area; Bruna Carvalho and Roberto Weinberg for constructive comments that helped to improve this manuscript.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Villaros, A., Laurent, O., Couzinié, S. et al. Plutons and domes: the consequences of anatectic magma extraction—example from the southeastern French Massif Central. Int J Earth Sci (Geol Rundsch) 107, 2819–2842 (2018). https://doi.org/10.1007/s00531-018-1630-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-018-1630-x