Cadomian metasediments and Ordovician sandstone from Corsica: detrital zircon U–Pb–Hf constrains on their provenance and paleogeography

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The island of Corsica, which belongs to the southern Variscan realm, was detached from southern France in the Tertiary. Alongside Alpine and Variscan edifices, it carries outliers of Neoproterozoic metasediments and Lower Paleozoic siliciclastics including Ordovician sandstone and conglomerates as well as Hirnantian diamictites in its NW sector. We investigated the U–Pb–Hf of detrital zircons of basement metasediments and overlying Ordovician sandstone and channeling conglomerate to constrain their provenance, the timing of their deposition, and to deduce the late Ediacaran to Ordovician paleogeography. The youngest detrital zircons in the metasediments are 0.55–0.53 Ga indicating their maximum age of deposition is Late Ediacaran to Early Cambrian, thus classifying the Corsica basement metasediments as Cadomian. The U–Pb analyses revealed that a preponderance of the detrital zircons in the basement micaschist and quartzite portray Neoproterozoic ages concentrating between 0.55 and 0.65 Ga. This is partly consistent with derivation from Pan-African terranes of north Africa yet the presence of detrital zircons younger than ~ 0.6 Ga indicates significant input from Cadomian magmatic arcs that resided within or at the margin of the Cadomian basin in which the metasediments of Corsica were deposited. εHf values of the Ediacaran zircons varies between samples, indicating the provenance comprised both, juvenile arcs and magmatic arcs that involved various degrees of mixing with old crustal components. The Hf-TDM ages of many of the Ediacaran-aged zircons point to a plausible involvement of Meso-Paleoproterozoic crust in the generation of these Cadomian arcs. The presence of small but fairly distinguished populations of Mesoproterozoic-aged (1.0–1.6 Ga) as well as 2.0–2.2 Ga and 2.4–2.6 Ga detrital zircons in the Cadomian metasediments farther indicates the presence of such crust in the provenance. Although Mesoproterozoic detrital zircons are usually considered the hallmark of Avalonian terranes, the presence of Hirnantian glacial sediments at the Corsican sequence indicates it resided in the vicinity of Gondwana. We therefore postulate that the Pre-Neoproterozoic zircons have sourced from exotic crustal vestiges that were entrained and accreted within the Cadomian realm itself. The transition into the overlying Ordovician sandstone and conglomerate marks a major change in the provenance, possibly pointing to lateral motions along the strike of the peripheral Cadomian domain. The youngest concordant detrital zircon in the Ordovician (“Ciuttone”) sandstone yielded an age of 0.48 Ga. The detrital zircon ages define an overwhelming concentration at 0.55 Ga, indicating the source of the Ordovician sandstone was cut off from the Gondwana hinterland and that sand was exclusively derived from a latest Ediacaran arc. In view of the sharp detrital zircon age peak, the Corsica Ordovician sandstone cannot be straightforwardly correlated with Armorican sandstone because the detrital zircon spectra of the latter are generally broader, indicating derivation from various sectors of the North Gondwana crust. εHf(t) values of the 0.55 Ga zircons are mostly positive and the corresponding TDM ages at 0.7–1.2 Ga indicating derivation from a juvenile island arc. While TDM ages of this type are common for late Ediacaran Avalonian rocks, the presence of Hirnantian diamictite in Corsica further substantiates that the aforementioned 0.55 Ga island arc evolved in the peripheral Cadomian realm. As a whole, the U–Pb–Hf zircon data from the Corsica sequences reveal the presence of juvenile Cadomian arcs alongside Cadomian arcs that recycled ancient (pre-Neoproterozoic) crust. Along strike variations of this type are known from the Japanese islands, in line with the peripheral Cadomian orogeny being an ancient analog of a Western-Pacific type plate boundary.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abati J, Aghzer AM, Gerdes A, Ennih N (2012) Insights on the crustal evolution of the West African Craton from Hf isotopes in detrital zircons from the Anti-Atlas belt. Precambrian Res 212:263–274. https://doi.org/10.1016/j.precamres.2012.06.005 doi

    Article  Google Scholar 

  2. Abbo A, Avigad D, Gerdes A, Güngör T (2015) Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): paleogeographic constraints from U–Pb–Hf in zircons. Lithos 227:122–139. https://doi.org/10.1016/j.lithos.2015.03.023

    Article  Google Scholar 

  3. Albert R, Arenas R, Gerdes A et al (2014) Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif). Gondwana Res. https://doi.org/10.1016/j.gr.2014.10.016

    Article  Google Scholar 

  4. Avigad D, Gerdes A, Morag N, Bechstadt T (2012) Coupled U–Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of North Africa. Gondwana Res 21:690–703. https://doi.org/10.1016/J.Gr.2011.06.005 doi

    Article  Google Scholar 

  5. Avigad D, Abbo A, Gerdes A (2016) Origin of the eastern mediterranean: Neotethys rifting along a cryptic cadomian suture with Afro-Arabia. Bull Geol Soc Am. https://doi.org/10.1130/B31370.1

    Article  Google Scholar 

  6. Bahlburg H, Vervoort JD, DuFrane SA (2010) Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany—U–Pb and Hf isotope evidence from detrital zircons. Gondwana Res 17:223–235. https://doi.org/10.1016/j.gr.2009.11.007

    Article  Google Scholar 

  7. Ballèvre M, Le Goff E, Hébert R (2001) The tectonothermal evolution of the Cadomian belt of northern Brittany, France: a Neoproterozoic volcanic arc. Tectonophysics 331:19–43. https://doi.org/10.1016/S0040-1951(00)00234-1

    Article  Google Scholar 

  8. Barca S, Durand-Delga M, Rossi P, Storch P (1996) Les micaschistes panafricains de Corse et leur couverture paleozoique; leur interpretation au sein de l’orogene varisque sud-europeen. Comptes Rendues Acad Sci Paris 322:981–989

    Google Scholar 

  9. Bard J-P (1997) Démembrement anté-mésozoïque de la chaîne varisque d’Europe occidentale et d’Afrique du Nord: rôle essentiel des grands décrochements transpressifs dextres accompagnant la rotation-translation horaire de l’Afrique durant le Stéphanien. Comptes Rendus l’Académie des Sci Série 2 Sci la terre des planètes 324:693–704

    Google Scholar 

  10. Blichert-Toft J, Puchtel IS (2010) Depleted mantle sources through time: evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites. Earth Planet Sci Lett 297:598–606. https://doi.org/10.1016/j.epsl.2010.07.012

    Article  Google Scholar 

  11. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57. https://doi.org/10.1016/j.epsl.2008.06.010 doi

    Article  Google Scholar 

  12. Calvez JY, Vidal P (1978) Two billion years old relicts in the Hercynian Belt of western Europe. Contrib to Mineral Petrol 65:395–399

    Article  Google Scholar 

  13. Chantraine J, Egal E, Thiéblemont D et al (2001) The Cadomian active margin (North Armorican Massif, France): a segment of the North Atlantic Panafrican belt. Tectonophysics 331:1–18. https://doi.org/10.1016/S0040-1951(00)00233-X

    Article  Google Scholar 

  14. Chelle-Michou C, Laurent O, Moyen J-F et al (2017) Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res 46:170–190. https://doi.org/10.1016/j.gr.2017.02.010

    Article  Google Scholar 

  15. Couzinié S, Laurent O, Poujol M et al (2017) Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286–287:16–34. https://doi.org/10.1016/j.lithos.2017.06.001

    Article  Google Scholar 

  16. Díez Fernández R, Martínez Catalán JR, Arenas R et al (2012) U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons. J Geol Soc Lond 169:655–665. https://doi.org/10.1144/jgs2011-146

    Article  Google Scholar 

  17. Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Tepla crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic). Geol Rundschau 87:135–149. https://doi.org/10.1007/s005310050195

    Article  Google Scholar 

  18. Dörr W, Zulauf G, Gerdes A et al (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U–Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponnesus). Precambrian Res 258:83–108. https://doi.org/10.1016/j.precamres.2014.12.015

    Article  Google Scholar 

  19. Drost K, Gerdes A, Jeffries T et al (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Tepla-Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19:213–231. https://doi.org/10.1016/J.Gr.2010.05.003 doi

    Article  Google Scholar 

  20. Durand-Delga M, Rossi P (1991) Les massifs anciens de la France: la Corse. Sci Géol Mém Strasbg 44:311–336

    Google Scholar 

  21. Edel J-B, Casini L, Oggiano G et al (2014) Early Permian 90° clockwise rotation of the Maures–Estérel–Corsica–Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic 60° clockwise rotation. Geol Soc Lond Spec Publ 405:333–361. https://doi.org/10.1144/SP405.10

    Article  Google Scholar 

  22. Faure M, Rossi P, Gaché J et al (2014) Variscan orogeny in Corsica: new structural and geochronological insights, and its place in the Variscan geodynamic framework. Int J Earth Sci 103:1533–1551. https://doi.org/10.1007/s00531-014-1031-8

    Article  Google Scholar 

  23. Fernández-Suárez J, Gutiérrez-Alonso G, Jenner G, Tubrett MN (2000) New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: Insights from U–Pb detrital zircon ages. Precambrian Res 102:185–206. https://doi.org/10.1016/S0301-9268(00)00065-6

    Article  Google Scholar 

  24. Friedl G, Finger F, McNaughton NJ, Fletcher IR (2000) Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology 28:1035–1038. https://doi.org/10.1130/0091-7613(2000)28%3C1035:DTAOTS%3E2.0.CO;2

    Article  Google Scholar 

  25. Friedl G, Finger F, Paquette JL et al (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci 93:802–823. https://doi.org/10.1007/s00531-004-0420-9 doi

    Article  Google Scholar 

  26. Gasquet D, Levresse G, Cheilletz A et al (2005) Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian–Cambrian transition. Precambrian Res 140:157–182. https://doi.org/10.1016/j.precamres.2005.06.009

    Article  Google Scholar 

  27. Gasquet D, Ennih N, Liégeois J-P et al (2008) The Pan-African Belt. In: Continental evolution: the geology of Morocco. Springer, New York, pp 33–64

    Google Scholar 

  28. Gattacceca J, Deino A, Rizzo R et al (2007) Miocene rotation of Sardinia: new paleomagnetic and geochronological constraints and geodynamic implications. Earth Planet Sci Lett 258:359–377. https://doi.org/10.1016/j.epsl.2007.02.003

    Article  Google Scholar 

  29. Gebauer D, Friedl G (1994) A 1.38 Ga protolith age for the Dobra orthogneiss (Moldanubian Zone of the southern Bohemian Massif, NE-Austria): evidence from ion-microprobe (SHRIMP) dating of zircon. J Czech Geol Soc 39:34–35

    Google Scholar 

  30. Gebauer D, Williams IS, Compston W, Grünenfelder M (1989) The development of the Central European continental crust since the Early Archaean based on conventional and ion-microprobe dating of up to 3.84 b.y. old detrital zircons. Tectonophysics 157:81–96. https://doi.org/10.1016/0040-1951(89)90342-9

    Article  Google Scholar 

  31. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Annorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61. https://doi.org/10.1016/j.epsl.2006.06.039 doi

    Article  Google Scholar 

  32. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243. https://doi.org/10.1016/j.chemgeo.2008.03.005 doi

    Article  Google Scholar 

  33. Guillot S, Ménot R-P (2009) Paleozoic evolution of the external crystalline massifs of the Western Alps. Comptes Rendus Geosci 341:253–265

    Article  Google Scholar 

  34. Gutierrez-Alonso G, Fernandez-Suarez J, Collins AS et al (2005) Amazonian Mesoproterozoic basement in the core of the Ibero-Armorican Arc: 40Ar/39Ar detrital mica ages complement the zircon’s tale. Geology 33:637–640. https://doi.org/10.1130/G21485.1

    Article  Google Scholar 

  35. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE et al (2003) Terrane accretion and dispersal in the northern Gondwana margin. An Early Paleozoic analog of a long-lived active margin. Tectonophysics 365:221–232. https://doi.org/10.1016/S0040-1951(03)00023-4

    Article  Google Scholar 

  36. Gutiérrez-Alonso G, Fernández-Suárez J, Gutiérrez-Marco JC et al (2007) U–Pb depositional age for the upper Barrios Formation (Armorican Quartzite facies) in the Cantabrian zone of Iberia: Implications for stratigraphic correlation and paleogeography. Spec Pap Soc Am 423:287

    Google Scholar 

  37. Hajná J, Žák J, Dörr W (2017) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondwana Res 42:63–83. https://doi.org/10.1016/j.gr.2016.10.004

    Article  Google Scholar 

  38. Henderson BJ, Collins WJ, Murphy JB et al (2016) Gondwanan basement terranes of the Variscan–Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics 681:278–304. https://doi.org/10.1016/j.tecto.2015.11.020

    Article  Google Scholar 

  39. Inglis JD, Samson SD, D’Lemos RS, Hamilton M (2004) U–Pb geochronological constraints on the tectonothermal evolution of the Paleoproterozoic basement of Cadomia, la Hague, NW France. Precambrian Res 134:293–315. https://doi.org/10.1016/j.precamres.2004.07.003

    Article  Google Scholar 

  40. Isozaki Y, Maruyama S, Nakama T, Yamamoto S, Yanai S (2011) Growth and shrinkage of an active continental margin: updated geotectonic history of the japanese islands. J Geogr (Chigaku Zasshi) 120(1):65–99

    Article  Google Scholar 

  41. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017 doi

    Article  Google Scholar 

  42. Jahn BM (2010) Accretionary orogen and evolution of the Japanese Islands-implications from a Sr–Nd isotopic study of the phanerozoic granitoids from SW Japan. Am J Sci 310:1210–1249. https://doi.org/10.2475/10.2010.02

    Article  Google Scholar 

  43. Jahn BM, Usuki M, Usuki T, Chung SL (2014) Generation of cenozoic granitoids in hokkaido (JAPAN): constraints from zircon geochronology, Sr-Nd-Hf ISOTOPIC and geochemical analyses, and implications for crustal growth. Am J Sci 314:704–750. https://doi.org/10.2475/02.2014.09

    Article  Google Scholar 

  44. Keay S, Lister G (2002) African provenance for the metasediments and metaigneous rocks of the Cyclades, Aegean Sea, Greece. Geology 30:235–238. https://doi.org/10.1130/0091-7613(2002)030<0235:APFTMA>2.0.CO;2

    Article  Google Scholar 

  45. Košler J, Konopásek J, Sláma J, Vrána S (2014) U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc Lond 171:83–95. https://doi.org/10.1144/jgs2013-059

    Article  Google Scholar 

  46. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). Geol Soc Am Spec Pap 423:61–96. https://doi.org/10.1130/2007.2423(03)

    Article  Google Scholar 

  47. Linnemann U, D’Lemos R, Drost K et al (2008a) Cadomian tectonics. In: McCann T (ed) The geology of Central Europe—Volume 1: Precambrian and Palaeozoic. The Geological Society of London, London, pp 103–154

    Google Scholar 

  48. Linnemann U, Pereira F, Jeffries TE et al (2008b) The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43. https://doi.org/10.1016/j.tecto.2008.05.002 doi

    Article  Google Scholar 

  49. Linnemann U, Romer R, Pin C et al (2008c) Precambrian. In: McCann T (ed) The geology of Central Europe—Volume 1: Precambrian and Palaeozoic. The Geological Society of London, London, pp 21–101

    Google Scholar 

  50. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278. https://doi.org/10.1016/j.precamres.2013.08.007

    Article  Google Scholar 

  51. Martinez Catalan JR, Fernandez-Suarez J, Jenner GA et al (2004) Provenance constraints from detrital zircon U–Pb ages in the NW Iberian Massif: implications for Palaeozoic plate configuration and Variscan evolution. J Geol Soc London 161:463–476. https://doi.org/10.1144/0016-764903-054

    Article  Google Scholar 

  52. Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nov 13:122–128

    Article  Google Scholar 

  53. Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res 23:661–665. https://doi.org/10.1016/J.Gr.2012.05.003 doi

    Article  Google Scholar 

  54. Morag N, Avigad D, Gerdes A et al (2011) Crustal evolution and recycling in the northern Arabian-Nubian Shield: New perspectives from zircon Lu–Hf and U–Pb systematics. Precambrian Res 186:101–116. https://doi.org/10.1016/j.precamres.2011.01.004 doi

    Article  Google Scholar 

  55. Murphy JB, Nance RD (2002) Sm–Nd isotopic systematics as tectonic tracers: an example from West Avalonia in the Canadian Appalachians. Earth-Science Rev 59:77–100. https://doi.org/10.1016/S0012-8252(02)00070-3

    Article  Google Scholar 

  56. Nance RD, Murphy JB, Strachan RA et al (2008) Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. Geol Soc Lond Spec Publ 297:345–383. https://doi.org/10.1144/sp297.17

    Article  Google Scholar 

  57. Noblet C, Lefort JP (1990) Sedimentological evidence for a limited separation between Armorica and Gondwana during the Early Ordovician. Geol 18:303–306. https://doi.org/10.1130/0091-7613(1990)018<0303:SEFALS>2.3.CO;2

    Article  Google Scholar 

  58. Orejana D, Merino Martínez E, Villaseca C, Andersen T (2015) Ediacaran–Cambrian paleogeography and geodynamic setting of the Central Iberian Zone: constraints from coupled U–Pb–Hf isotopes of detrital zircons. Precambrian Res 261:234–251. https://doi.org/10.1016/j.precamres.2015.02.009

    Article  Google Scholar 

  59. Pereira MF, Chichorro M, Williams IS, Silva JB (2008) Zircon U–Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): evidence for a palaeogeographical link between the Ossa–Morena Ediacaran basins and the West African craton. Geol Soc London Spec Publ 297:385–408. https://doi.org/10.1144/SP297.18

    Article  Google Scholar 

  60. Pereira MF, Sola AR, Chichorro M et al (2012) North-Gondwana assembly, break-up and paleogeography: U–Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Res 22:866–881. https://doi.org/10.1016/J.Gr.2012.02.010 doi

    Article  Google Scholar 

  61. Rossi P, Lahondère JC, Lluch D et al (1994) Carte Géologique de France 1: 50.000; feuille Saint Florent (1103). Not Explic BRGM, Orléans 93

  62. Rossi P, Cocherie A, Durand-Delga M (1995) Arguments géochronologiques en faveur de la présence d’un socle panafricain (cadomien) en Corse, conséquences sur la paléogéographie de l’orogène varisque sud-européen. Comptes Rendus l’Académie des Sci Série 2 Sci la terre des planètes 321:983–992

    Google Scholar 

  63. Rossi Ph, Durand-Delga M, Lahondère J-C et al (2000) Carte géol. France à 1/50 000, feuille Santo-Pietro-di-Tenda (1106) – Orléans : BRGM. Notice explicative par Ph. Rossi, M. Durand-Delga, J-C. Lahondère, D. Lahondère, 2000

  64. Rossi P, Oggiano G, Cocherie A (2009) A restored section of the “southern Variscan realm” across the Corsica–Sardinia microcontinent. Comptes Rendus Geosci 341:224–238

    Article  Google Scholar 

  65. Sagawe A, Gärtner A, Linnemann U et al (2016) Exotic crustal components at the northern margin of the Bohemian Massif—implications from U[sbnd]Th[sbnd]Pb and Hf isotopes of zircon from the Saxonian Granulite Massif. Tectonophysics 681:234–249. https://doi.org/10.1016/j.tecto.2016.04.013

    Article  Google Scholar 

  66. Samson SD, D’Lemos RS, Miller BV, Hamilton M (2005) Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. J Geol Soc London 162:65–71. https://doi.org/10.1144/0016-764904-003

    Article  Google Scholar 

  67. Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687. https://doi.org/10.1126/science.1061372 doi

    Article  Google Scholar 

  68. Shaw J, Gutiérrez-Alonso G, Johnston ST, Pastor Galán D (2014) Provenance variability along the Early Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U–Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Bull Geol Soc Am 126:702–719. https://doi.org/10.1130/B30935.1

    Article  Google Scholar 

  69. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176 Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  70. Soulaimani A, Piqué A (2004) The Tasrirt structure (Kerdous inlier, Western Anti-Atlas, Morocco): a late Pan-African transtensive dome. J African Earth Sci 39:247–255

    Article  Google Scholar 

  71. Soulaimani A, Bouabdelli M, Piqué A (2003) L’extension continentale au Néo-Protérozoïque supérieur-Cambrien inférieur dans l’Anti-Atlas (Maroc). Bull Soc Geol Fr 174:83–92. https://doi.org/10.2113/174.1.83

    Article  Google Scholar 

  72. Stacey JS, Kramers JD (1975) Approximation of Terrestrial Lead Isotope Evolution by a 2-Stage Model. Earth Planet Sci Lett 26:207–221. https://doi.org/10.1016/0012-821x(75)90088-6 doi

    Article  Google Scholar 

  73. Stam JC (1952) Géologie de la région du Tenda Septentrional (Corse). Universiteit van Amsterdam

  74. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33. https://doi.org/10.1016/S0012-821x(01)00588-X

    Article  Google Scholar 

  75. Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. Spec Pap Soc Am 263–280

  76. Stampfli GM, Von Raumer J, Wilhem C (2011) The distribution of Gondwana-derived terranes in the early paleozoic. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the World. IGME, Madrid, pp 567–574

    Google Scholar 

  77. Stern RA, Bodorkos S, Kamo SL et al (2009) Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand Geoanalytical Res 33:145–168

    Article  Google Scholar 

  78. Termier P, Maury E (1928) Nouvelles observations géologiques dans la Corse orientale. Comptes-Rendus l’Académie des Sci Paris 186:1324–1327

    Google Scholar 

  79. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021

    Article  Google Scholar 

  80. von Raumer J, Stampfli G, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52. https://doi.org/10.1007/s005310100200

    Article  Google Scholar 

  81. von Raumer JF, Stampfli GA, Bussy F (2003) Gondwana-derived microcontinents - the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22. https://doi.org/10.1016/S0040-1951(03)00015-5 doi

    Article  Google Scholar 

  82. Wendt JI, Kröner A, Fiala J, Todt W (1993) Evidence from zircon dating for existence of approximately 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic. Geol Rundschau 82:42–50. https://doi.org/10.1007/BF00563269

    Article  Google Scholar 

  83. Wiedenbeck M, Allé P, Corfu F et al (1995) Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostand Newsl 19:1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  84. Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanalytical Res 29:183–195

    Article  Google Scholar 

  85. Zeh A, Gerdes A (2010) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): Implications for the closure of the Rheic ocean. Gondwana Res 17:254–263. https://doi.org/10.1016/j.gr.2009.08.004

    Article  Google Scholar 

  86. Zlatkin O, Avigad D, Gerdes A (2013) Evolution and provenance of Neoproterozoic basement and Lower Paleozoic siliciclastic cover of the Menderes Massif (western Taurides): Coupled U–Pb-Hf zircon isotope geochemistry. Gondwana Res 23:682–700. https://doi.org/10.1016/J.Gr.2012.05.006 doi

    Article  Google Scholar 

  87. Zlatkin O, Avigad D, Gerdes A (2014) Peri-Amazonian provenance of the Proto-Pelagonian basement (Greece), from zircon U–Pb geochronology and Lu-Hf isotopic geochemistry. Lithos 184:379–392. https://doi.org/10.1016/j.lithos.2013.11.010 doi

    Article  Google Scholar 

  88. Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundschau 86:571–584. https://doi.org/10.1007/s005310050164

    Article  Google Scholar 

  89. Zulauf G, Romano SS, Dörr W, Fiala J (2007) Crete and the Minoan terranes: Age constraints from U–Pb dating of detrital zircons. Geol Soc Am Spec Pap 423:401–411. https://doi.org/10.1130/2007.2423(19

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the G.I.F., the German–Israeli Foundation for Scientific Research and Development (Grant Number 1248-301.8/2014). We thank O. Zlatkin for carrying the analytical measurements on #Cor-1, to Y. Geller for technical assistance and to L. Marko for invaluable analytical support at GUF. We thank Jiří Žák for guiding us on a fieldtrip to the Bohemian Massif in the frame of Erasmus cooperation. Reviews by M. Faure and C. Chelle-Michou helped to improve this manuscript and are greatly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Avigad.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avigad, D., Rossi, P., Gerdes, A. et al. Cadomian metasediments and Ordovician sandstone from Corsica: detrital zircon U–Pb–Hf constrains on their provenance and paleogeography. Int J Earth Sci (Geol Rundsch) 107, 2803–2818 (2018). https://doi.org/10.1007/s00531-018-1629-3

Download citation

Keywords

  • Corsica metasediments
  • Cadomian paleogeography
  • Pre-variscan terranes
  • Detrital zircon U–Pb–Hf
  • Ordovician sandstone
  • Provenance