Early Mesozoic magmatism and tectonic evolution of east-central Tibet

Abstract

The Early Mesozoic granitoids in the east-central Tibet are the key to understand the tectonic evolution of the Tibetan Plateau. In this study, three stages of Early Mesozoic granitic magmatism were indicated by LA-ICP-MS zircon U–Pb dating on 14 samples. The Early Triassic (248–243 Ma) and the Late Triassic (213–208 Ma) were distributed in the North Qiangtang terrane, and the Early Jurassic (ca. 187 Ma) occurred in the Tongka and Jiayuqiao blocks. The Late Triassic and Early Jurassic granitoids show similar negative zircon εHf(t) values (− 5.5 to − 16.6) with TDM2 model ages of 1.60–2.28 Ga, suggesting a Paleoproterozoic crustal source, whereas the Early Triassic granitoids have zircon εHf(t) values from − 3.4 to + 5.3 with TDM2 model ages of 0.94–1.50 Ga, indicating a Mesoproterozoic crustal source. Based on the whole-rock geochemical data, we suggest that the Early Triassic rocks from the North Qiangtang terrane include I- and S-type granites and the Late Triassic rocks are S-type granites, which were related to the northward subduction of the Longmu Tso–Shuanghu–Dingqing Paleo-Tethys Ocean and subsequent collision between the North Qiangtang terrane and Tongka block, respectively. The Early Jurassic granitoids from the Tongka and Jiayuqiao blocks also included both I- and S-type granites and were probably generated in an arc-related setting during the northward subduction of the Bangong–Nujiang Tethys Ocean. Therefore, we suggest a collision–accretion model that attributes the Early Mesozoic tectonic-magmatic event to the sequential multistage subduction and collision in the east of central Tibet.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Blichert TJ (2008) The Hf isotopic composition of zircon reference material 91500. Chem Geol 253:252–257

    Article  Google Scholar 

  2. Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Article  Google Scholar 

  3. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  4. Burg JP, Chen GM (1984) Tectonics and structural zonation of southern Tibet. Nature 311:219–223

    Article  Google Scholar 

  5. Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535–551

    Article  Google Scholar 

  6. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  7. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinburgh Earth Sci 83:1–26

    Article  Google Scholar 

  8. Chen JW, Li C, Hu PY, Xie CM, Peng H, Jiang QY (2014) LA–ICP–MS zircon UPb age and geochemical characteristics of the granodiorite in the Riwanchaka area, central Qiangtang. Geol Bull China 33:1750–1758

    Google Scholar 

  9. Chen SS, Shi RD, Zou HB, Huan QS, Liu DL, Gong XH, Yi GD, Wu K (2015) Late Triassic island-arc–back-arc basin development along the Bangong–Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks. Lithos 230:30–45

    Article  Google Scholar 

  10. Chen SS, Shi RD, Fan WM, Zou HB, Liu DL, Huang QS, Gong XH, Yi GD, Wu K (2016a) Middle Triassic ultrapotassic rhyolites from the Tanggula Pass, southern Qiangtang, China: a previously unrecognized stage of silicic magmatism. Lithos 264:258–276

    Article  Google Scholar 

  11. Chen SS, Shi RD, Yi GD, Zou HB (2016b) Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet): geochronology, petrogenesis, and tectonic implications. Tectonophysics 666:90–102

    Article  Google Scholar 

  12. Chiu HY, Chung SL, Wu FY, Liu DY, Liang YH, Lin IJ, Iizuka Y, Xie LW, Wang YB, Chu MF (2009) Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics 477:3–19

    Article  Google Scholar 

  13. Collins WL (2002a) Hot orogens, tectonic switching, and creation of continental crust. Geology 30:535–538

    Article  Google Scholar 

  14. Collins WL (2002b) Nature of extensional accretionary orogens. Tectonics 21:1–12

    Article  Google Scholar 

  15. Collins WL (2003) Hot orogens, tectonic switching, and creation of continental crust: comment and reply: reply. Geology 31:e10

    Article  Google Scholar 

  16. Collins WL, Richards SW (2008) Geodynamic significance of S-type granites in circum-Pacific orogens. Geology 36:559–562

    Article  Google Scholar 

  17. Dewey JF, Shackelton RM, Chang CF, Sun Y (1988) The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc Lond A327:379–413

    Article  Google Scholar 

  18. Ding HX, Zhang ZM, Dong X, Yan R, Lin YH, Jiang HY (2015) Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana. Gondwana Res 27:1616–1629

    Article  Google Scholar 

  19. Ding HX, Zhang ZM, Dong X, Tian ZL, Xiang H, Mu HC, Gou ZB, Shui XF, Li WC, Mao LJ (2016) Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth Planet Sci Lett 435:64–73

    Article  Google Scholar 

  20. Dong YS, Xie YW, Li C, Sha SL (2007) Discovery of the retro-metamorphic eclogite in the Baxoi area, eastern Tibet. Geol Bull China 26:1018–1020 (in Chinese with English abstract)

    Google Scholar 

  21. Dong X, Zhang ZM, Santosh M, Wang W, Yu F, Liu F (2011) Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications. J Geodyn 52:389–405

    Article  Google Scholar 

  22. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculation on their petrogenesis. Lithos 26:115–126

    Article  Google Scholar 

  23. Elhlou S, Belousova E, Griffin WL, Pearson NJ, O’Reilly SY (2006) Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta 70:A158

    Article  Google Scholar 

  24. Fan JJ, Li C, Xie CM, Wang M, Chen JW (2015) The evolution of the Bangong–Nujiang Neo-Tethys ocean: Evidence from zircon U–Pb and Lu–Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites. Tectonophysics 655:27–40

    Article  Google Scholar 

  25. Fan JJ, Li C, Xie CM, Liu YM (2016) Depositional environment and provenance of the upper Permian–Lower Triassic Tianquanshan Formation, northern Tibet: implications for the Palaeozoic evolution of the Southern Qiangtang, Lhasa, and Himalayan terranes in the Tibetan Plateau. Int Geol Rev 58:228–245

    Article  Google Scholar 

  26. Fan JJ, Li C, Xie CM, Liu YM, Xu JX, Chen JW (2017) Remnants of late Permian–Middle Triassic ocean islands in northern Tibet: Implications for the late-stage evolution of the Paleo–Tethys Ocean. Gondwana Res 44:7–21

    Article  Google Scholar 

  27. Fan JJ, Li C, Wang M, Xie CM (2018) Reconstructing in space and time the closure of the middle and western segments of the Bangong–Nujiang Tethyan Ocean in the Tibetan Plateau. Int J Earth Sci 107:231–249

    Article  Google Scholar 

  28. Frost BR, Arculus RJ, Barnes CG, Collins WJ, Ellis DJ, Frost CD (2001) A geochemical classification of granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  29. Fu XG, Wang J, Tan FW, Chen M, Chen WB (2010) The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): age and tectonic implications. Gondwana Res 17:135–144

    Article  Google Scholar 

  30. Girardeau J, Marcoux J, Allegre CJ, Bassoullet JP, Tang YK, Xiao XC, Zao YG, Wang XB (1984) Tectonic environment and geodynamic significance of the Neo-Cimmerian Dongqiao ophiolite, Bangong–Nujiang suture zone. Tibet Nature 307:27–31

    Article  Google Scholar 

  31. Griffin WL, Pearson NJ, Belousova E, Jackson SE, Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  32. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  33. Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G, Ding L (2006) Tibetan terrane rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34:505–508

    Article  Google Scholar 

  34. Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics. Special Publication. Geological Society of London Special Publications, vol 19. pp 67–81

  35. He SP, Li RS, Wang C, Gu PY, Yu PS, Shi C, Zha XF (2012a) The formation age of Kaqiong Rock Group in the northern margin of Gangdese, the Qinghai-Tibet plateau. Geochimica 41:216–226 (in Chinese with English abstract)

    Google Scholar 

  36. He SP, Li RS, Wang C, Gu PY, Yu PS, Shi C, Zha XF (2012b) The determination of the age of Jiayuqiao Group in northern Gangdese of Tibetan Plateau. Geol China 39:21–28 (in Chinese with English abstract)

  37. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Miner Geochem 53:27–62

    Article  Google Scholar 

  38. Hu PY, Li C, Yang HT, Zhang HB, Yu H (2010a) Characteristic, zircon dating and tectonic significance of Late Triassic granite in the Guoganjianianshan area, central Qiangtang, Qinghai-Tibet Plateau, China. Geol Bull China 29:1825–1832 (in Chinese with English abstract)

    Google Scholar 

  39. Hu PY, Li C, Su L, Li CB, Yu H (2010b) Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau: age records of Pan-African movement and Indo-China movement. Geol China 37:1050–1060 (in Chinese with English abstract)

    Google Scholar 

  40. Hu PY, Li C, Li J, Wang M, Xie CM, Wu YW (2014) Zircon U–Pb–Hf isotopes and whole-rock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China: Record of the closure of the Paleo-Tethys Ocean. Tectonophysics 623:83–99

    Article  Google Scholar 

  41. Jiang QY, Li C, Xie CM, Wang M, Hu PY, Wu H, Peng H, Chen JW (2014) Geochemistry and LA–ICP–MS zircon U–Pb age of volcanic rocks of Wangguoshan Formation in the Gangmar Co area of Qiangtang, Tibet. Geol Bull China 33:1702–1714 (in Chinese with English abstract)

    Google Scholar 

  42. Kapp P, Murphy MA, Yin A, Harrison TM, Ding L, Guo J (2003) Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22:1029

    Google Scholar 

  43. Kapp P, DeCelles PG, Gehrels GE, Heizler M, Ding L (2007) Geological records of the Lhasa–Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol Soc Am Bull 119:917–933

    Article  Google Scholar 

  44. Leeder MR, Smith AB, Yin JX (1988) Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse. Philos Trans R Soc Lond A327:107–143

    Article  Google Scholar 

  45. Li C, Zhai QG, Chen W, Dong YS, Yu JJ (2007a) Geochronology evidence of the closure of Longmu Co- Shuanghu suture, Qinghai–Tibet plateau: Ar–Ar and zircon SHRIMP geochronology from ophiolite and rhyolite in Guoganjianian. Acta Petrol Sin 23:911–918 (in Chinese with English abstract)

    Google Scholar 

  46. Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ, Qi CS (2007b) U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos 96:186–204

    Article  Google Scholar 

  47. Li C, Dong YS, Zhai QG, Yu JJ, Huang XP (2008) High-pressure eclogite-blueschist metamorphic belt and closure of Paleo–Tethys Ocean in Central Qiangtang, Qinghai-Tibet plateau. J Earth Sci 20:209–218 (in Chinese with English abstract)

    Article  Google Scholar 

  48. Li C, Xie YW, Dong YS, Qiangba ZX, Jiang GW (2009) Discussion on the age of Jitang Group around Leiwuqi area, eastern Tibet, China and primary understanding. Geol Bull China 28:1178–1180 (in Chinese with English abstract)

    Google Scholar 

  49. Li SM, Zhu DC, Wang Q, Zhao ZD, Sui QL, Liu SA, Liu D, Mo XX (2014) Northward subduction of Bangong–Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos 205:284–297

    Article  Google Scholar 

  50. Li GM, Li JX, Zhao JX, Qin KZ, Cao MJ, Evans NJ (2015a) Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: Evidence from U–Pb ages, petrochemistry and Sr–Nd–Hf isotopes. J Asian Earth Sci 105:443–455

    Article  Google Scholar 

  51. Li Y, He J, Wang C, Han Z, Ma P, Xu M, Du K (2015b) Cretaceous volcanic rocks in south Qiangtang Terrane: products of northward subduction of the Bangong–Nujiang Ocean? J Asian Earth Sci 104:69–83

    Article  Google Scholar 

  52. Li HQ, Xu ZQ, Webb AAG, Li TF, Ma SW, Huang XM (2017a) Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: Implications for an archipelago-accretion orogenic model. Tectonophysics 702:29–41

    Article  Google Scholar 

  53. Li S, Guilmette C, Ding L, Xu Q, Fu JJ, Yue YH (2017b) Provenance of Mesozoic clastic rocks within the Bangong–Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision. J Asian Earth Sci 147:469–484

    Article  Google Scholar 

  54. Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH (2010) Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA–ICP–MS. Chin Sci Bull 55:1535–1546

    Article  Google Scholar 

  55. Liu Y, Santosh M, Zhao ZB, Niu WC, Wang GH (2011) Evidence for palaeo-Tethyan oceanic subduction within central Qiangtang, northern Tibet. Lithos 127:39–53

    Article  Google Scholar 

  56. Liu B, Peng ZM, Geng QR, Zhang Z, Guan JL (2015) LA–ICP–MS zircon U–Pb ages and geochemical features of the granodiorite in Naru area of Shuanghu, Tibet. Geol Bull China 34:283–291 (in Chinese with English abstract)

    Google Scholar 

  57. Liu H, Wang BD, Ma L, Gao R, Li C, Li XB, Wang LQ (2016) Late Triassic syn-exhumation magmatism in central Qiangtang, Tibet: evidence from the Sangehu adakitic rocks. J Asian Earth Sci 132:9–24

    Article  Google Scholar 

  58. Liu D, Shi R, Ding L, Huang Q, Zhang X, Yue Y, Zhang L (2017) Zircon U–Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong–Nujiang Tethyan Ocean. Gondwana Res 41:157–172

    Article  Google Scholar 

  59. Ludwig KR (2003) Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Special Publication, No. 4. Berkeley Geochronology Center, pp 1–73

  60. Ma SW, Meng YK, Xu ZQ, Liu XJ (2016) The discovery of late Triassic mylonitic granite and geologic significance in the middle Gangdese batholiths, southern Tibet. J Geodyn 104:49–64

    Article  Google Scholar 

  61. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  62. Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth-Sci Rev 37:215–224

    Article  Google Scholar 

  63. Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ, Wang LL (2003) Response of volcanism to the India–Asia collision. Earth Sci Front 10:135–148 (in Chinese with English abstract)

    Google Scholar 

  64. Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ, Zhang FQ (2005) Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geol J China Univ 11:281–290

    Google Scholar 

  65. Mo XX, Zhao ZD, DePaolo DJ, Zhou S, Dong GC (2006) Three types of collisional and post-collisional magmatism in the Lhasa block, Tibet and implications for India intracontinental subduction and mineralization: evidence from Sr–Nd isotopes. Acta Petrol Sin 22:795–803 (in Chinese with English abstract)

    Google Scholar 

  66. Mo XX, Hou ZQ, Niu Y, Dong G, Qu X, Zhao ZD, Yang Z (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242

    Article  Google Scholar 

  67. Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleocene Linzizong volcanic succession in southern Tibet. Chem Geol 250:49–67

    Article  Google Scholar 

  68. Murphy MA, Yin A, Harrison TM, Dürr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X, Zhou X (1997) Did the Indo-Asian collision alone create the Tibetan plateau? Geology 25:719–722

    Article  Google Scholar 

  69. Pan G, Ding J, Yao D, Wang L (2004) Geological map of Qinghai–Xizang (Tibet) plateau and adjacent areas (1:1,500,000). Chengdu Cartographic Publishing House, Chengdu (in Chinese)

    Google Scholar 

  70. Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD (2012) Tectonic evolution of the Qinghai–Tibet Plateau. J Asian Earth Sci 53:3–14

    Article  Google Scholar 

  71. Peng TP, Zhao GC, Fan WM, Peng BX, Mao YS (2015) Late Triassic granitic magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau: Geochronology, petrogenesis and implications for the tectonic evolution of the Paleo–Tethys. Gondwana Res 27:1494–1508

    Article  Google Scholar 

  72. Rickwood PC (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22:247–263

    Article  Google Scholar 

  73. Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Li TD, Xiao XC, Jan MQ, Thakur VC, Kumar S (1987) The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull 98:678–701

    Article  Google Scholar 

  74. Sha SL, Xie YW, Chen YM, Xiluo LJ, Liu XL, Zhang N, Jiang CX (2009) Tongka garnet pyroxenite in eastern Tibet and Songduo blue schist in Lhasa block. Geol China 36:1302–1311 (in Chinese with English abstract)

    Google Scholar 

  75. Sha SL, Xie YW, Peng DP, Chen YM, Liu XL, Zhang N (2012) A brief discussion of the Jitang Group in Eastern Tibet. Goel Explor 48:768–774 (in Chinese with English abstract)

    Google Scholar 

  76. Shi C, Li RS, He SP, Wang C, Pan SJ, Zhang HD, Gu PY (2012) Zircon U–Pb dating, geochemical and geological significances studies for gneissic biotite monzogranite in Riwoqe County, Tibet, Xinjiang. Geology 30:457–464 (in Chinese with English abstract)

    Google Scholar 

  77. Shui XF, He ZY, Klemd R, Zhang ZM, Lu TY, Yan LL (2017) Early Jurassic adakitic rocks in the southern Lhasa sub-terrane, southern Tibet: petrogenesis and geodynamic implications. Geol Mag. https://doi.org/10.1017/S0016756817000577

    Article  Google Scholar 

  78. Smith AB, Xu JT (1988) Paleontology of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philos Trans R Soc Lond A 327:53–105

    Article  Google Scholar 

  79. Soderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  80. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  81. Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44

    Article  Google Scholar 

  82. Tao Y, Bi XW, Li JG, Zhu FL, Liao MY, Li YB (2011) Geochemistry and petrogenesis of the Jitang granitoids in Tibet, SW China. Acta Petrol Sin 27:2763–2774 (in Chinese with English abstract)

    Google Scholar 

  83. Tao Y, Bi XW, Li CS, Hu RZ, Li YB, Liao MY (2014) Geochronology, petrogenesis and tectonic significance of the Jitang granitic pluton in eastern Tibet, SW China. Lithos 184–187:314–323

    Article  Google Scholar 

  84. Wang J, Wang ZJ, Chen WX, Fu XG, Chen M (2007) New evidences for the age assignment of the NadiKangri Formation in the North Qiangtang basin, northern Tibet, China. Geol Bull China 26:404–409 (in Chinese with English abstract)

    Google Scholar 

  85. Wang LQ, Pan GT, Li C, Dong YS, Zhu DC, Yuan SH, Zhu TX (2008) SHRIMP U-Pb zircon dating of Eopaleozoic cumulate in Guoganjianian Mt. from central Qiangtang area of northern Tibet—considering the evolvement of Proto-and Paleo-Tethys. Geol Bull China 27:2045–2056

    Google Scholar 

  86. Wang Q, Li ZX, Chung SL, Wyman DA, Sun YL, Zhao ZH, Zhu YT, Niu HN (2011) Late Triassic high-Mg andesite/dacite suites from northern Hohxil. North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 126:54–67

    Article  Google Scholar 

  87. Wang BD, Wang LQ, Chung SL, Chen JL, Yin FG, Liu H, Li XB, Chen LK (2016) Evolution of the Bangong–Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 245:18–33

    Article  Google Scholar 

  88. Wang YX, Liang X, Wang GH, Yuan GL, Bons PD (2018) Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic–early Jurassic tectonics associated with the Paleo–Tethys Ocean. Int J Earth Sci 107:757–776

    Article  Google Scholar 

  89. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419

    Article  Google Scholar 

  90. Wu H (2016) Multiple stages of magmatism from ~ 375 to ~ 200 Ma in central Qiangtang, Tibet: constraints on subduction and the timing of closure of the Longmu Co-Shuanghu-Lancangjiang Ocean. Jilin University, Changchun, pp 1–191 (in Chinese with English abstract)

    Google Scholar 

  91. Wu H, Xie CM, Li C, Wang M, Fan JJ, Xu WL (2016) Tectonic shortening and crustal thickening in subduction zones: Evidence from Middle-Late Jurassic magmatism in Southern Qiangtang, China. Gondwana Res 39:1–13

    Article  Google Scholar 

  92. Xu RH, Schärer U, Allègre CJ (1985) Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. J Geol 93:41–57

    Article  Google Scholar 

  93. Xu ZQ, Li HB, Yang JS (2006) An orogenic plateau: the orogenic collage and orogenic types of the Qinghai-Tibet plateau. Earth Sci Front 13:1–17 (in Chinese with English abstract)

    Google Scholar 

  94. Xu ZQ, Dilek Y, Cao H, Yang JS, Robinson P, Ma CQ, Li HQ, Jolivet M, Roger F, Chen XJ (2015) Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. J Asian Earth Sci 105:320–337

    Article  Google Scholar 

  95. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  96. Zeng QG, Wang BD, Qiangba ZX, Nima CR, Li H (2010) Zircon Cameca U–Pb dating of granitoid gneisses in the Leiwuqi area of the eastern Tibet, China, and its geological implication. Geol Bull China 29:1123–1128 (in Chinese with English abstract)

    Google Scholar 

  97. Zeng M, Zhang X, Cao H, Ettensohn FR, Cheng W, Lang X (2016) Late Triassic initial subduction of the Bangong–Nujiang Ocean beneath Qiangtang revealed: stratigraphic and geochronological evidence from Gaize, Tibet. Basin Res 28:147–157

    Article  Google Scholar 

  98. Zhai QG, Jahn BM, Zhang RY, Wang J, Su L (2011) Triassic subduction of the Paleo-Tethys in northern Tibet, China: evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang block. J Asian Earth Sci 42:1356–1370

    Article  Google Scholar 

  99. Zhai QG, Jahn BM, Su L, Wang J, Mo XX, Lee HY, Wang KL, Tang S (2013) Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U–Pb ages, geochemical and Sr–Nd–Hf isotopic characteristics, and tectonic implications. J Asian Earth Sci 63:162–178

    Article  Google Scholar 

  100. Zhai QG, Jahn BM, Wang J, Hu PY, Chung SL, Lee HY, Tang SH, Tang Y (2016) Oldest Paleo–Tethyan ophiolitic mélange in the Tibetan Plateau. Geol Soc Am Bull 128:B31296.1

    Article  Google Scholar 

  101. Zhai QG, Jahn BM, Li XH, Zhang RY, Li QL, Yang YN, Wang J, Liu T, Hu PY, Tang SH (2017) Zircon U–Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features. Int J Earth Sci 106:1239–1255

    Article  Google Scholar 

  102. Zhang KJ, Tang XC (2009) Eclogites in the interior of the Tibetan Plateau and their geodynamic implications. Chin Sci Bull 54:2556–2567

    Google Scholar 

  103. Zhang KJ, Zhang YX, Tang XC, Xie YW, Sha SL, Peng XJ (2008) First report of eclogites from central Tibet, China: Evidence for ultradeep continental subduction prior to the Cenozoic India–Asian collision. Terra Nova 20:302–308

    Article  Google Scholar 

  104. Zhang WP, Wang LQ, Qiang BZX, Wang BD, Liu W, Yuan SH (2010) Discovery and P–T path of high- pressure granulite in Tongka area of Tibet and its tectonic significance. Acta Petrologica Sinica 26:1915–1924 (in Chinese with English abstract)

    Google Scholar 

  105. Zhang ZM, Dong X, Liu F, Lin YH, Yan R, He ZY, Santosh M (2012a) The making of Gondwana: Discovery of 650 Ma HP granulites from the North Lhasa, Tibet. Precambr Res 212:107–116

    Article  Google Scholar 

  106. Zhang ZM, Dong X, Liu F, Lin YH, Yan R, Santosh M (2012b) Tectonic Evolution of the Amdo Terrane, Central Tibet: Petrochemistry and Zircon U–Pb Geochronology. J Geol 120:431–451

    Article  Google Scholar 

  107. Zhang ZM, Dong X, Xiang H, Liou JG, Santosh M (2013) Building of the Deep Gangdese Arc, South Tibet: Paleocene Plutonism and Granulite-Facies Metamorphism. J Petrol 54:2547–2580

    Article  Google Scholar 

  108. Zhang KJ, Xia B, Zhang YX, Liu WL, Zeng L, Li JF, Xu LF (2014a) Central Tibetan Meso-Tethyan oceanic plateau. Lithos 210–211:278–288

    Article  Google Scholar 

  109. Zhang XR, Shi RD, Huang QS, Liu DL, Gong XH, Chen SS, Wu K, Yi GD, Sun YL, Ding L (2014b) Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U–Pb geochronology of mafic granulites. Gondwana Res 26:975–985

    Article  Google Scholar 

  110. Zhang ZM, Dong X, Santosh M, Zhao GC (2014c) Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet. Gondwana Res 25:170–189

    Article  Google Scholar 

  111. Zhou MF, Malpas J, Robinson PT, Reynolds PH (1997) The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Can J Earth Sci 34:59–65

    Article  Google Scholar 

  112. Zhu DC, Mo XX, Niu Y, Zhao ZD, Wang LQ, Liu YS, Wu FY (2009) Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chem Geol 268:298–312

    Article  Google Scholar 

  113. Zhu DC, Zhao ZD, Niu Y, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255

    Article  Google Scholar 

  114. Zhu DC, Zhao ZD, Niu Y, Dilek Y, Hou ZQ, Mo XX (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454

    Article  Google Scholar 

  115. Zhu DC, Wang Q, Zhao ZD, Chung SL, Cawood PA, Niu Y, Liu SA, Wu FY, Mo XX (2015) Magmatic record of India-Asia collision. Sci Rep UK 5:17236

    Article  Google Scholar 

  116. Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA, Wang LQ (2016) Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 245:7–17

    Article  Google Scholar 

Download references

Acknowledgements

This study is co-supported by the National Key Research and Development Project of China (2016YFC0600310), the National Natural Science Foundation of China (41230205, 41472056, 41202035 and 41602062) and the China Geological Survey (DD20160201). We thank Prof. Wenjiao Xiao and Prof. XP Long for constructive reviews that have greatly improved this manuscript. We thank Prof. Wolf-Christian Dullo for the editorial handling. We also thank Dr. Changlei Fu and Yuelei Yuan for valuable discussions and suggestions. Ph.D. student Yuanyuan Jiang and Graduate student Mengmei Li participated in the field work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yanfei Chen or Zeming Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 57 KB)

Supplementary material 2 (XLSX 35 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, Z., Tian, Z. et al. Early Mesozoic magmatism and tectonic evolution of east-central Tibet. Int J Earth Sci (Geol Rundsch) 107, 2767–2784 (2018). https://doi.org/10.1007/s00531-018-1625-7

Download citation

Keywords

  • Zircon U–Pb age
  • Granitoids
  • Early Mesozoic
  • Collision–accretion
  • Tethys Ocean
  • East-central Tibet