Submarine hydrothermal processes, mirroring the geotectonic evolution of the NE Hungarian Jurassic Szarvaskő Unit

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Jurassic pillow basalt of the NE Hungarian Szarvaskő Unit is part of an incomplete ophiolitic sequence, formed in a back-arc- or marginal basin of Neotethyan origin. Different, often superimposing hydrothermal processes were studied aiming to characterise them and to discover their relationship with the geotectonic evolution of the region. Closely packed pillow, pillow-fragmented hyaloclastite breccia and transition to peperitic facies of a submarine lava flow were observed. The rocks underwent primary and cooling-related local submarine hydrothermal processes immediately after eruption at ridge setting. Physico-chemical data of this process and volcanic facies analyses revealed distal formation in the submarine lava flow. A superimposing, more extensive fluid circulation system resulted in intense alteration of basalt and in the formation of mostly sulphide-filled cavities. This lower temperature, but larger-scale process was similar to VMS systems and was related to ridge setting. As a peculiarity of the Szarvaskő Unit, locally basalt may be completely altered to a grossular-bearing mineral assemblage formed by rodingitisation s.l. This unique process observed in basalt happened in ridge setting/during spreading, in the absence of known large ultramafic blocks. Epigenetic veins formed also during Alpine regional metamorphism, related to subduction/obduction. The observed hydrothermal minerals represent different steps of the geotectonic evolution of the Szarvaskő Unit, from the ridge setting and spreading till the subduction/obduction. Hence, studying the superimposing alteration mineral assemblages can be a useful tool for reconstructing the tectonic history of an ophiolitic complex. Though the found mineral parageneses are often similar, careful study can help in distinguishing the processes and characterising their P, T, and X conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aigner-Torres M (1996) Petrology and Geochemistry of the Szarvaskő igneous rocks, Bükk Mountains—NE Hungary. Diploma thesis, University of Vienna, NAWI Faculty, p 128

  2. Aigner-Torres M, Koller F (1999) Nature of the magma source of the Szarvaskő complex (NE-Hungary). Ofioliti 24:1–12

    Google Scholar 

  3. Árkai P (1983) Very low- and low-grade Alpine regional metamorphism of the Paleozoic and Mesozoic formations of the Bükkium, NE Hungary. Acta Geol Hung 26:83–101

    Google Scholar 

  4. Árkai P (2001) Alpine regional metamorphism in the main tectonic units of Hungary: a review. Acta Geol Hung 44(2–3):329–344

    Google Scholar 

  5. Árkai P, Balogh K, Dunkl I (1995) Timing of low-temperature metamorphism and cooling of the Paleozoic and Mesozoic formations of the Bükkium, innermost western Carpathians, Hungary. Geologische Rundschau 84(2):334–344

    Article  Google Scholar 

  6. Árváné Sós E, Balogh K, Ravaszné Baranyai L, Ravasz CS (1987) Mezozoós magmás kőzetek K/Ar kora Magyarország egyes területein (K/Ar age of mesozoic magmatic rock sin Hungary). MÁFI Évi Jelentése az 1985. Évről 295–307 (in Hungarian)

  7. Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos 104:177–198

    Article  Google Scholar 

  8. Bajwah ZU, Seccombe PK, Offier R (1987) Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral Deposita 22:292–300

    Article  Google Scholar 

  9. Balla Z (1984) The North Hungarian Mesozoic mafics and ultramafics. Acta Geol Hung 27:341–357

    Google Scholar 

  10. Balogh K, Pécskay Z (2001) K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region. Acta Geol Hung 44:281–299

    Google Scholar 

  11. Bogdanov YA, Lisitzin AP, Sagalevich AM, Gurvich EG (2006) Hydrothermal ore genesis of the ocean floor. Nauka, Moscow, p 527

    Google Scholar 

  12. Borojević S, Palinkaš LA, Bermanec V (2000) Fluid inclusions in Pillow Lavas of Hruškovec, Mt. Kalnik. Proc Croat Geol Congr 123–125

  13. Cathelineau M, Izquierdo G (1988) Temperature—composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contrib Mineral Petrol 100(4):418–428

    Article  Google Scholar 

  14. Coleman RG (1977) Ophiolites, ancient oceanic lithosphere? Springer, Heidelberg

    Google Scholar 

  15. Cortesogno L, Lucchetti G, Spadea P (1984) Pumpellyite in low-grade metamorphic rocks from Ligurian and Lucanian Apennines, Maritime Alps and Calabria (Italy). Contrib Min Petr 85(1):14–24

    Article  Google Scholar 

  16. Csontos L (1995) Tertiary tectonic evolution of the Intra-Carpathian area: a rewiev. Acta Vulc 7(2):1–13

    Google Scholar 

  17. Csontos L (2000) A Bükk hegység mezozoós rétegtani újraértékelése (Re-evaluation of the mesozoic stratigraphy of the Bükk Mts). Földt Közl 130(1):95–131 (in Hungarian)

    Google Scholar 

  18. Dosztály L, Gulácsi Z, Kovács S (1998) Az észak-magyarországi jura képződmények rétegtana (Stratigraphy of the N-Hungarian Jurassic rocks). In: Bérczi I, Jámbor Á (eds) Magyarország geológiai képződményeinek rétegtana, pp 309–318 (in Hungarian)

  19. Goto Y, McPhie J (1998) Endogenous growth of a Miocene submarine dacite cryptodome, Rebun Island, Hokkaido, Japan. J Volc Geotherm Res 84(3–4):273–286

    Article  Google Scholar 

  20. Goto Y, McPhie J (2004) Morphology and propagation styles of Miocene submarine basanite lavas at Stanley, northwestern Tasmania, Australia. J Volc Geotherm Res 130(3–4):307–328

    Article  Google Scholar 

  21. Goto Y, Tsuchiya N (2004) Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan. J Volc Geotherm Res 134(4):255–275

    Article  Google Scholar 

  22. Haas J, Kovács S (2001) The Dinaric-Alpine connection—as seen from Hungary. Acta Geol Hung 44(2–3):345–362

    Google Scholar 

  23. Haas J, Kovács S, Pelikán P, Kövér S, Görög Á, Ozsvárt P, Józsa S, Németh N (2011) A Neotethys-óceán akkréciós komplexumának maradványai Észak-Magyarországon (Remnants of the Neotethyan accretionary complexes in N-Hungary). Földt Közl 141(2):167–196 (in Hungarian, with English abstract)

    Google Scholar 

  24. Honnorez J, Kirst P (1975) Petrology of rodingites from the equatorial Mid-Atlantic fracture zones and their geotectonic significance. Contr Min Petr 49(3):233–257

    Article  Google Scholar 

  25. Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite: comparison with δ38S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Article  Google Scholar 

  26. Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol Rev 72:728–745

    Article  Google Scholar 

  27. Kiss G, Molnár F, Koller F, Péntek A (2011) Triassic rifting and Jurassic ophiolite-like magmatic rocks in the Bükk Unit, NE-Hungary—an overview. Mitt Österr Mineral Ges 157:43–69

    Google Scholar 

  28. Kiss G, Molnár F, Zaccarini F (2012) Fluid inclusion studies in datolite of low grade metamorphic origin from a Jurassic pillow basalt series in northeastern Hungary. Centr Eur J Geosci 4(2):261–274

    Google Scholar 

  29. Kiss GB, Molnár F, Palinkaš LA (2016) Hydrothermal processes related to some Triassic and Jurassic submarine basaltic complexes in northeastern Hungary, the Dinarides and Hellenides. Geol Croat 69(1):39–64. https://doi.org/10.4154/gc.2016.04

    Article  Google Scholar 

  30. Kohút M, Kiss G (2013) Plagiogranites from Szarvaskő (Bükk Unit, NE-Hungary): A monazite EMP dating. Occasional Papers of the Geological and Geophysical Institute of Hungary. Geol Croat 1:28–29

    Google Scholar 

  31. Less Gy, Mello J (Eds) Elečko M, Kovács S, Pelikán P, Pentelényi L, Peregi ZS, Pristaš J, Radócz Gy, Szentpétery I, Vass D, Vozár J, Vozárová A (2004) Geological map of the Gemer-Bükk area 1:100 000. Geological Institute of Hungary

  32. Luchetti G, Cabella R, Cortesogno L (1990) Pumpellyites and coexisting minerals in different low-grade metamorphic facies of Liguria, Italy. J Metamorph Geol 8(5):539–550

    Article  Google Scholar 

  33. Mitchell RH (1968) A semiquantitative study of trace elements in pyrite by spark source mass spectrography. Norsk Geol Tidsskr 48(1–2):65–80

    Google Scholar 

  34. Nehlig P (1991) Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Planet Sci Letters 102:310–325

    Article  Google Scholar 

  35. Németh K (1999) A víz alatti vulkanizmus jelenségei és üledékképződési folyamatai, kapcsolatai a szárazföldi vulkáni folyamatokkal: áttekintés. Földt Közl 129(3):419–443

    Google Scholar 

  36. Palinkaš AL, Bermanec V, Borojević Šoštarić S, Kolar Jurkovšek T, Palinkaš S, Molnár F, Kniewald G (2008) Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia-evidence of advanced rifting in the Tethyan domain. J Volc Geotherm Res 178:644–656

    Article  Google Scholar 

  37. Panseri M, Fontana E, Tartarotti P (2008) Evolution of rodingitic dykes: metasomatism and metamorphism in the Mount Avic serpentinites. Ofioliti 33(2):165–185

    Google Scholar 

  38. Pelikán P (ed) (2005) A Bükk-hegység földtana (Geology of the Bükk Mts). Magyar Állami Földtani Intézet kiadványa, Budapest, p 284 (in Hungarian)

  39. Péntek A, Molnár F, Watkinson DH (2006) Magmatic fluid segregation and overprinting hydrothermal processes in gabbro pegmatites of the Neotethyan ophiolitic Szarvaskő Complex (Bükk Mountains, NE Hungary). Geol Carpath 57(6):433–446

    Google Scholar 

  40. Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Geological Survey of Western Australia, p 1250

  41. Puschnig AR (2002) Metasomatic alterations at mafic-ultramafic contacts in Valmalenco (Rhetic Alps, N-Italy). Schweiz Mineral Petrogr Mitt 82(3):515–536

    Google Scholar 

  42. Sadek Ghabrial D, Árkai P, Nagy G (1996) Alpine polyphase metamorphism of the ophiolitic Szarvaskő Complex, Bükk Mountains, Hungary. Acta Mineral Petrol 37:99–128

    Google Scholar 

  43. Schiffman P, Day HW (eds) (1995) Low-Grade Metamorphism of Mafic Rocks. Geol Soc Am special paper 296:187 p

  44. Schmid MS, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101(1):139–183. https://doi.org/10.1007/s00015-008-1247-3

    Article  Google Scholar 

  45. Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J of Volc Geotherm Res 117:1–17

    Article  Google Scholar 

  46. Sun Q, Zhao L, Li N, Liu J (2010) Raman spectroscopic study for the determination of Cl—concentration (molarity scale) in aqueous solutions: Application to fluid inclusions. Chem Geol 272:55–61

    Article  Google Scholar 

  47. Szentpétery Z (1953) A Déli-Bükk-hegység diabáz és gabbrótömegei (The diabase and gabbro bodies of the Southern Bükk Mts). Magyar Állami Földtani Intézet Évkönyve. 41(1):1–102 (in Hungarian)

    Google Scholar 

  48. Tsikouras B, Karipi S, Rigopoluos I, Perraki M, Pomonis P, Hatzipanagiotou K (2009) Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos 113(3–4):540–554

    Article  Google Scholar 

  49. Vine FJ, Moores EM (1972) A model for the gross structure, petrology, and magnetic properties of oceanic crust, vol 132. Geological Society of America, Memoirs, pp 195–208

    Google Scholar 

  50. Zane A, Weiss Z (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rend Linc Sci Fis Nat Ser 9.9:51–56

    Article  Google Scholar 

  51. Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineral Dep 30:30–38

    Article  Google Scholar 

Download references

Acknowledgements

Constructive comments of E. Harman-Tóth (Eötvös Loránd University) field discussions with F. Molnár and English review of K. Kobelrausch and Zs. Sáry have highly improved the original version of the manuscript. Constructive suggestions of L. A. Palinkaš and an anonymous reviewer are greatly acknowledged. The University Centre for Applied Geosciences (University of Leoben) is thanked for the access to the Eugen F. Stumpfl Electron Microprobe Laboratory while the Research Instrument Core Facility (Eötvös Loránd University) is thanked for the access to the Raman laboratory. This work was supported by the Hungarian National Science Fund [Grant No. OTKA PD 112580 to G. B. Kiss] by NKFIH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriella B. Kiss.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiss, G.B., Zagyva, T., Pásztor, D. et al. Submarine hydrothermal processes, mirroring the geotectonic evolution of the NE Hungarian Jurassic Szarvaskő Unit. Int J Earth Sci (Geol Rundsch) 107, 2671–2688 (2018). https://doi.org/10.1007/s00531-018-1619-5

Download citation

Keywords

  • Submarine fluid–rock interaction
  • Local sulphide mineralisation
  • Rodingitisation s.l. in basalt
  • Volcanic facies analyses
  • Fluid inclusion study
  • Mineral and rock chemistry