Submarine hydrothermal processes, mirroring the geotectonic evolution of the NE Hungarian Jurassic Szarvaskő Unit

  • Gabriella B. Kiss
  • Tamás Zagyva
  • Domokos Pásztor
  • Federica Zaccarini
Original Paper


The Jurassic pillow basalt of the NE Hungarian Szarvaskő Unit is part of an incomplete ophiolitic sequence, formed in a back-arc- or marginal basin of Neotethyan origin. Different, often superimposing hydrothermal processes were studied aiming to characterise them and to discover their relationship with the geotectonic evolution of the region. Closely packed pillow, pillow-fragmented hyaloclastite breccia and transition to peperitic facies of a submarine lava flow were observed. The rocks underwent primary and cooling-related local submarine hydrothermal processes immediately after eruption at ridge setting. Physico-chemical data of this process and volcanic facies analyses revealed distal formation in the submarine lava flow. A superimposing, more extensive fluid circulation system resulted in intense alteration of basalt and in the formation of mostly sulphide-filled cavities. This lower temperature, but larger-scale process was similar to VMS systems and was related to ridge setting. As a peculiarity of the Szarvaskő Unit, locally basalt may be completely altered to a grossular-bearing mineral assemblage formed by rodingitisation s.l. This unique process observed in basalt happened in ridge setting/during spreading, in the absence of known large ultramafic blocks. Epigenetic veins formed also during Alpine regional metamorphism, related to subduction/obduction. The observed hydrothermal minerals represent different steps of the geotectonic evolution of the Szarvaskő Unit, from the ridge setting and spreading till the subduction/obduction. Hence, studying the superimposing alteration mineral assemblages can be a useful tool for reconstructing the tectonic history of an ophiolitic complex. Though the found mineral parageneses are often similar, careful study can help in distinguishing the processes and characterising their P, T, and X conditions.


Submarine fluid–rock interaction Local sulphide mineralisation Rodingitisation s.l. in basalt Volcanic facies analyses Fluid inclusion study Mineral and rock chemistry 



Constructive comments of E. Harman-Tóth (Eötvös Loránd University) field discussions with F. Molnár and English review of K. Kobelrausch and Zs. Sáry have highly improved the original version of the manuscript. Constructive suggestions of L. A. Palinkaš and an anonymous reviewer are greatly acknowledged. The University Centre for Applied Geosciences (University of Leoben) is thanked for the access to the Eugen F. Stumpfl Electron Microprobe Laboratory while the Research Instrument Core Facility (Eötvös Loránd University) is thanked for the access to the Raman laboratory. This work was supported by the Hungarian National Science Fund [Grant No. OTKA PD 112580 to G. B. Kiss] by NKFIH.


  1. Aigner-Torres M (1996) Petrology and Geochemistry of the Szarvaskő igneous rocks, Bükk Mountains—NE Hungary. Diploma thesis, University of Vienna, NAWI Faculty, p 128Google Scholar
  2. Aigner-Torres M, Koller F (1999) Nature of the magma source of the Szarvaskő complex (NE-Hungary). Ofioliti 24:1–12Google Scholar
  3. Árkai P (1983) Very low- and low-grade Alpine regional metamorphism of the Paleozoic and Mesozoic formations of the Bükkium, NE Hungary. Acta Geol Hung 26:83–101Google Scholar
  4. Árkai P (2001) Alpine regional metamorphism in the main tectonic units of Hungary: a review. Acta Geol Hung 44(2–3):329–344Google Scholar
  5. Árkai P, Balogh K, Dunkl I (1995) Timing of low-temperature metamorphism and cooling of the Paleozoic and Mesozoic formations of the Bükkium, innermost western Carpathians, Hungary. Geologische Rundschau 84(2):334–344CrossRefGoogle Scholar
  6. Árváné Sós E, Balogh K, Ravaszné Baranyai L, Ravasz CS (1987) Mezozoós magmás kőzetek K/Ar kora Magyarország egyes területein (K/Ar age of mesozoic magmatic rock sin Hungary). MÁFI Évi Jelentése az 1985. Évről 295–307 (in Hungarian)Google Scholar
  7. Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos 104:177–198CrossRefGoogle Scholar
  8. Bajwah ZU, Seccombe PK, Offier R (1987) Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral Deposita 22:292–300CrossRefGoogle Scholar
  9. Balla Z (1984) The North Hungarian Mesozoic mafics and ultramafics. Acta Geol Hung 27:341–357Google Scholar
  10. Balogh K, Pécskay Z (2001) K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region. Acta Geol Hung 44:281–299Google Scholar
  11. Bogdanov YA, Lisitzin AP, Sagalevich AM, Gurvich EG (2006) Hydrothermal ore genesis of the ocean floor. Nauka, Moscow, p 527Google Scholar
  12. Borojević S, Palinkaš LA, Bermanec V (2000) Fluid inclusions in Pillow Lavas of Hruškovec, Mt. Kalnik. Proc Croat Geol Congr 123–125Google Scholar
  13. Cathelineau M, Izquierdo G (1988) Temperature—composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contrib Mineral Petrol 100(4):418–428CrossRefGoogle Scholar
  14. Coleman RG (1977) Ophiolites, ancient oceanic lithosphere? Springer, HeidelbergGoogle Scholar
  15. Cortesogno L, Lucchetti G, Spadea P (1984) Pumpellyite in low-grade metamorphic rocks from Ligurian and Lucanian Apennines, Maritime Alps and Calabria (Italy). Contrib Min Petr 85(1):14–24CrossRefGoogle Scholar
  16. Csontos L (1995) Tertiary tectonic evolution of the Intra-Carpathian area: a rewiev. Acta Vulc 7(2):1–13Google Scholar
  17. Csontos L (2000) A Bükk hegység mezozoós rétegtani újraértékelése (Re-evaluation of the mesozoic stratigraphy of the Bükk Mts). Földt Közl 130(1):95–131 (in Hungarian)Google Scholar
  18. Dosztály L, Gulácsi Z, Kovács S (1998) Az észak-magyarországi jura képződmények rétegtana (Stratigraphy of the N-Hungarian Jurassic rocks). In: Bérczi I, Jámbor Á (eds) Magyarország geológiai képződményeinek rétegtana, pp 309–318 (in Hungarian)Google Scholar
  19. Goto Y, McPhie J (1998) Endogenous growth of a Miocene submarine dacite cryptodome, Rebun Island, Hokkaido, Japan. J Volc Geotherm Res 84(3–4):273–286CrossRefGoogle Scholar
  20. Goto Y, McPhie J (2004) Morphology and propagation styles of Miocene submarine basanite lavas at Stanley, northwestern Tasmania, Australia. J Volc Geotherm Res 130(3–4):307–328CrossRefGoogle Scholar
  21. Goto Y, Tsuchiya N (2004) Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan. J Volc Geotherm Res 134(4):255–275CrossRefGoogle Scholar
  22. Haas J, Kovács S (2001) The Dinaric-Alpine connection—as seen from Hungary. Acta Geol Hung 44(2–3):345–362Google Scholar
  23. Haas J, Kovács S, Pelikán P, Kövér S, Görög Á, Ozsvárt P, Józsa S, Németh N (2011) A Neotethys-óceán akkréciós komplexumának maradványai Észak-Magyarországon (Remnants of the Neotethyan accretionary complexes in N-Hungary). Földt Közl 141(2):167–196 (in Hungarian, with English abstract)Google Scholar
  24. Honnorez J, Kirst P (1975) Petrology of rodingites from the equatorial Mid-Atlantic fracture zones and their geotectonic significance. Contr Min Petr 49(3):233–257CrossRefGoogle Scholar
  25. Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite: comparison with δ38S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196CrossRefGoogle Scholar
  26. Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol Rev 72:728–745CrossRefGoogle Scholar
  27. Kiss G, Molnár F, Koller F, Péntek A (2011) Triassic rifting and Jurassic ophiolite-like magmatic rocks in the Bükk Unit, NE-Hungary—an overview. Mitt Österr Mineral Ges 157:43–69Google Scholar
  28. Kiss G, Molnár F, Zaccarini F (2012) Fluid inclusion studies in datolite of low grade metamorphic origin from a Jurassic pillow basalt series in northeastern Hungary. Centr Eur J Geosci 4(2):261–274Google Scholar
  29. Kiss GB, Molnár F, Palinkaš LA (2016) Hydrothermal processes related to some Triassic and Jurassic submarine basaltic complexes in northeastern Hungary, the Dinarides and Hellenides. Geol Croat 69(1):39–64. CrossRefGoogle Scholar
  30. Kohút M, Kiss G (2013) Plagiogranites from Szarvaskő (Bükk Unit, NE-Hungary): A monazite EMP dating. Occasional Papers of the Geological and Geophysical Institute of Hungary. Geol Croat 1:28–29Google Scholar
  31. Less Gy, Mello J (Eds) Elečko M, Kovács S, Pelikán P, Pentelényi L, Peregi ZS, Pristaš J, Radócz Gy, Szentpétery I, Vass D, Vozár J, Vozárová A (2004) Geological map of the Gemer-Bükk area 1:100 000. Geological Institute of HungaryGoogle Scholar
  32. Luchetti G, Cabella R, Cortesogno L (1990) Pumpellyites and coexisting minerals in different low-grade metamorphic facies of Liguria, Italy. J Metamorph Geol 8(5):539–550CrossRefGoogle Scholar
  33. Mitchell RH (1968) A semiquantitative study of trace elements in pyrite by spark source mass spectrography. Norsk Geol Tidsskr 48(1–2):65–80Google Scholar
  34. Nehlig P (1991) Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Planet Sci Letters 102:310–325CrossRefGoogle Scholar
  35. Németh K (1999) A víz alatti vulkanizmus jelenségei és üledékképződési folyamatai, kapcsolatai a szárazföldi vulkáni folyamatokkal: áttekintés. Földt Közl 129(3):419–443Google Scholar
  36. Palinkaš AL, Bermanec V, Borojević Šoštarić S, Kolar Jurkovšek T, Palinkaš S, Molnár F, Kniewald G (2008) Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia-evidence of advanced rifting in the Tethyan domain. J Volc Geotherm Res 178:644–656CrossRefGoogle Scholar
  37. Panseri M, Fontana E, Tartarotti P (2008) Evolution of rodingitic dykes: metasomatism and metamorphism in the Mount Avic serpentinites. Ofioliti 33(2):165–185Google Scholar
  38. Pelikán P (ed) (2005) A Bükk-hegység földtana (Geology of the Bükk Mts). Magyar Állami Földtani Intézet kiadványa, Budapest, p 284 (in Hungarian)Google Scholar
  39. Péntek A, Molnár F, Watkinson DH (2006) Magmatic fluid segregation and overprinting hydrothermal processes in gabbro pegmatites of the Neotethyan ophiolitic Szarvaskő Complex (Bükk Mountains, NE Hungary). Geol Carpath 57(6):433–446Google Scholar
  40. Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Geological Survey of Western Australia, p 1250Google Scholar
  41. Puschnig AR (2002) Metasomatic alterations at mafic-ultramafic contacts in Valmalenco (Rhetic Alps, N-Italy). Schweiz Mineral Petrogr Mitt 82(3):515–536Google Scholar
  42. Sadek Ghabrial D, Árkai P, Nagy G (1996) Alpine polyphase metamorphism of the ophiolitic Szarvaskő Complex, Bükk Mountains, Hungary. Acta Mineral Petrol 37:99–128Google Scholar
  43. Schiffman P, Day HW (eds) (1995) Low-Grade Metamorphism of Mafic Rocks. Geol Soc Am special paper 296:187 pGoogle Scholar
  44. Schmid MS, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101(1):139–183. CrossRefGoogle Scholar
  45. Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J of Volc Geotherm Res 117:1–17CrossRefGoogle Scholar
  46. Sun Q, Zhao L, Li N, Liu J (2010) Raman spectroscopic study for the determination of Cl—concentration (molarity scale) in aqueous solutions: Application to fluid inclusions. Chem Geol 272:55–61CrossRefGoogle Scholar
  47. Szentpétery Z (1953) A Déli-Bükk-hegység diabáz és gabbrótömegei (The diabase and gabbro bodies of the Southern Bükk Mts). Magyar Állami Földtani Intézet Évkönyve. 41(1):1–102 (in Hungarian)Google Scholar
  48. Tsikouras B, Karipi S, Rigopoluos I, Perraki M, Pomonis P, Hatzipanagiotou K (2009) Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos 113(3–4):540–554CrossRefGoogle Scholar
  49. Vine FJ, Moores EM (1972) A model for the gross structure, petrology, and magnetic properties of oceanic crust, vol 132. Geological Society of America, Memoirs, pp 195–208Google Scholar
  50. Zane A, Weiss Z (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rend Linc Sci Fis Nat Ser 9.9:51–56CrossRefGoogle Scholar
  51. Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineral Dep 30:30–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MineralogyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Applied Geosciences and GeophysicsMontanuniversität LeobenLeobenAustria

Personalised recommendations