A Cambrian mixed carbonate–siliciclastic platform in SW Gondwana: evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin

Abstract

The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to the early Paleozoic tectonic evolution of SW Gondwana. Two well-known orogenies took place at the proto-Andean margin of Gondwana in the Cambrian and the Ordovician, i.e., the Pampean (545–520 Ma) and Famatinian (490–440 Ma) orogenies, respectively. Between them, an extensive continental platform was developed, where mixed carbonate–siliciclastic sedimentation occurred. This platform was later involved in the Famatinian orogeny when it underwent penetrative deformation and metamorphism. The platform apparently extended from Patagonia to northwestern Argentina and the Eastern Sierras Pampeanas, and has probable equivalents in SW Africa, Peru, and Bolivia. The WSP record the outer (deepest) part of the platform, where carbonates were deposited in addition to siliciclastic sediments. Detrital zircon U–Pb SHRIMP ages from clastic metasedimentary successions and Sr-isotope compositions of marbles from the WSP suggest depositional ages between ca. 525 and 490 Ma. The detrital zircon age patterns further suggest that clastic sedimentation took place in two stages. The first was sourced mainly from re-working of the underlying Neoproterozoic metasedimentary rocks and the uplifted core of the early Cambrian Pampean orogen, without input from the Paleoproterozoic Río de la Plata craton. Sediments of the second stage resulted from the erosion of the still emerged Pampean belt and the Neoproterozoic Brasiliano orogen in the NE with some contribution from the Río de la Plata craton. An important conclusion is that the WSP basement was already part of SW Gondwana in the early Cambrian, and not part of the exotic Precordillera/Cuyania terrane, as was previously thought.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(modified from Mulcahy et al. 2014), d Geological map of Pan de Azúcar, after Peralta and Castro de Machuca (2010)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aceñolaza GF (2003) The Cambrian System in Northwestern Argentina: stratigraphical and palaeontological framework. Geol Acta 1:23–39

    Google Scholar 

  2. Aceñolaza GF, Toselli AJ (2009) The Pampean orogen: Ediacaran-Lower Cambrian evolutionary history of Central and northwest region of Argentina. In: Gaucher C, Sial AN, Halverson GP, Frimel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution. Elsevier, Amsterdam, pp 239–254

    Google Scholar 

  3. Adams CJ, Miller H, Aceñolaza FG, Toselli AJ, Griffin WL (2011) The Pacific Gondwana margin in the late Neoproterozoic-early Paleozoic: Detrital zircon U-Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Res 19:71–83. https://doi.org/10.1016/j.gr.2010.05.002

    Article  Google Scholar 

  4. Amato JM, Mack GH (2012) Detrital zircon geochronology from the Cambrian-Ordovician Bliss Sandstone, New Mexico: evidence for contrasting grenville-age and cambrian sources on opposite sides of the Transcontinental Arch. Geol Soc Am Bull 124:1826–1840. https://doi.org/10.1130/B30657.1

    Article  Google Scholar 

  5. Astini RA, Dávila FM (2004) Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion. Tectonics 23:1–19. https://doi.org/10.1029/2003TC001620

    Article  Google Scholar 

  6. Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: a geodynamic model. Geol Soc Am Bull 107:253–273. https://doi.org/10.1130/0016-7606(1995)107<0253:TEPEOT>2.3.CO;2

    Article  Google Scholar 

  7. Augustsson C, Rusing T, Adams CJ, Chmiel H, Kocabayoglu M, Buld M, Zimmermann U, Berndt J, Kooijman E (2011) Detrital quartz and zircon combined: the production of mature sand with short transportation paths along the Cambrian West Gondwana Margin, Northwestern Argentina. J Sediment Res 81:284–298. https://doi.org/10.2110/jsr.2011.23

    Article  Google Scholar 

  8. Bahlburg H, Berndt J, Gerdes A (2016) The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NW Argentina. Lithos 256–257:41–54. https://doi.org/10.1016/j.lithos.2016.03.018

    Article  Google Scholar 

  9. Baldo EG, Casquet C, Galindo C (1998) Datos preliminares sobre el metamorfismo de la Sierra de Pie de Palo. Geogaceta 24:39–43

    Google Scholar 

  10. Barnett W, Armstong RA, De Wit MJ (1997) Stratigraphy of the upper Neoproterozoic Kango and lower Palaeozoic table mountain groups of the Cape Fold Belt revisited. South Afr J Geol 100:237–250

    Google Scholar 

  11. Bastías H, Baraldo J, Pina L (1984) Afloramientos calcáreos en el borde oriental del valle del Bermejo, provincia de San Juan. Revista de la Asociación Geológica Argentina 39:153–155

    Google Scholar 

  12. Benedetto JL (2004) The allochthony of the Argentine Precordillera ten years later (1993–2003): a new Paleobiogeographic test of the microcontinental model. Gondwana Res 7:1027–1039. https://doi.org/10.1016/S1342-937X(05)71082-0

    Article  Google Scholar 

  13. Blanco G, Germs GJB, Rajesh HM, Chemale F, Dussin IA, Justino D (2011) Provenance and paleogeography of the Nama Group (Ediacaran to early Palaeozoic, Namibia): petrography, geochemistry and U-Pb detrital zircon geochronology. Precambrian Res 187:15–32. https://doi.org/10.1016/j.precamres.2011.02.002

    Article  Google Scholar 

  14. Cardona A, Cordani UG, Ruiz J, Valencia VA, Armstrong R, Chew D, Nutman A, Sanchez AW (2009) U-Pb zircon geochronology and Nd isotopic signatures of the pre-mesozoic metamorphic basement of the Eastern Peruvian Andes: growth and provenance of a late Neoproterozoic to Carboniferous accretionary orogen on the Northwest Margin of Gondwana. J Geol 117:285–305. https://doi.org/10.1086/597472

    Article  Google Scholar 

  15. Casquet C, Baldo EG, Pankhurst RJ, Rapela CW, Galindo C, Fanning CM, Saavedra J (2001) Involvement of the Argentine Precordillera terrane in the Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de Pie de Palo. Geology 29:703–706. https://doi.org/10.1130/0091-7613(2001)029<0703:IOTAPT>2.0.CO;2

    Article  Google Scholar 

  16. Casquet C, Rapela CW, Pankhurst RJ, Baldo EG, Galindo C, Fanning CM, Dahlquist JA, Saavedra J (2012a) A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana. Geosci Front 3:137–145. https://doi.org/10.1016/j.gsf.2011.11.004

    Article  Google Scholar 

  17. Casquet C, Rapela CW, Pankhurst RJ, Baldo EG, Galindo C, Verdecchia S, Dahlquist JA, Murra J, Fanning CM (2012b) A post-Pampean middle to late Cambrian siliciclastic platform on the proto-Andean margin of Gondwana and its paleogeographical implications. In: Fernández LP, Fernández A, Cuesta A, Bahamonde JR (eds) VIII Congreso Geológico de España, Oviedo, vol 13, pp 1852–1855

  18. Casquet C, Rapela CW, Pankhurst RJ, Baldo EG, Galindo C, Fanning CM, Dahlquist JA (2012c) Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina. Gondwana Res 22:664–673. https://doi.org/10.1016/j.gr.2012.05.001

    Article  Google Scholar 

  19. Casquet C, Dahlquist JA, Verdecchia SO, Baldo EG, Galindo C, Rapela CW, Pankhurst RJ, Morales MM, Murra JA, Fanning CM (2018) Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? Earth-Sci Rev 177:209–225. https://doi.org/10.1016/j.earscirev.2017.11.013

    Article  Google Scholar 

  20. Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Sci Rev 69:249–279. https://doi.org/10.1016/j.earscirev.2004.09.001

    Article  Google Scholar 

  21. Cawood PA, Kroner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. Geol Soc, Lond, Spec Publ 318:1–36. https://doi.org/10.1144/SP318.1

    Article  Google Scholar 

  22. Chew DM, Schaltegger U, Košler J, Whitehouse MJ, Gutjahr M, Spikings RA, Miškovic A (2007) U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. J Geol Soc Lond 119:697–711. https://doi.org/10.1130/B26080.1

    Article  Google Scholar 

  23. Chew DM, Magna T, Kirkland CL, Mišković A, Cardona A, Spikings R, Schaltegger U (2008) Detrital zircon fingerprint of the Proto-Andes: evidence for a Neoproterozoic active margin? Precambrian Res 167:186–200. https://doi.org/10.1016/j.precamres.2008.08.002

    Article  Google Scholar 

  24. Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS International Chronostratigraphic chart. Episodes 36:199–204

    Google Scholar 

  25. Collo G, Astini RA, Cawood PA, Buchan C, Pimentel M (2009) U-Pb detrital zircon ages and Sm-Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: implications for late Neoproterozoic-early Palaeozoic evolution of the proto-Andean margin of Gondwana. J Geol Soc Lond 166:303–319. https://doi.org/10.1144/0016-76492008-051

    Article  Google Scholar 

  26. Cristofolini EA, Otamendi JE, Ducea MN, Pearson DM, Tibaldi AM, Baliani I (2012) Detrital zircon U-Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc. J South Am Earth Sci 37:77–94. https://doi.org/10.1016/j.jsames.2012.02.001

    Article  Google Scholar 

  27. D´el-Rey Silva LJH, Walde DHG, Saldanha DO (2016) The Neoproterozoic–Cambrian Paraguay Belt, central Brazil: Part I—new structural data and a new approach on the regional implications. Tectonophysics 676:20–41. https://doi.org/10.1016/j.tecto.2016.03.019

    Article  Google Scholar 

  28. Da Silva LC, Gresse PG, Scheepers R, McNaughton NJ, Hartmann LA, Fletcher I (2000) U-Pb SHRIMP and Sm-Nd age constraints on the timing and sources of the Pan-African Cape Granite Suite, South Africa. J Afr Earth Sci 30:795–815. https://doi.org/10.1016/S0899-5362(00)00053-1

    Article  Google Scholar 

  29. Dalziel IWD (1997) Neoproterozoic-paleozoic geography and tectonics: review, hypothesis, environmental speculation. Bull Geol Soc Am 109:16–42. https://doi.org/10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2

    Article  Google Scholar 

  30. Drobe M, López de Luchi MG, Steenken A, Frei R, Naumann R, Siegesmund S, Wemmer K (2009) Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. J South Am Earth Sci 28:239–262. https://doi.org/10.1016/j.jsames.2009.06.005

    Article  Google Scholar 

  31. Drobe M, López de Luchi M, Steenken A, Wemmer K, Naumann R, Frei R, Siegesmund S (2011) Geodynamic evolution of the Eastern Sierras Pampeanas (Central Argentina) based on geochemical, Sm-Nd, Pb-Pb and SHRIMP data. Int J Earth Sci 100:631–657. https://doi.org/10.1007/s00531-010-0593-3

    Article  Google Scholar 

  32. Escayola MP, Pimentel MM, Armstrong R (2007, Neoproterozoic backarc basin: sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. Geology 35:495–498. https://doi.org/10.1130/G23549A.1

    Article  Google Scholar 

  33. Escayola MP, van Staal CR, Davis WJ (2011) The age and tectonic setting of the Puncoviscana formation in northwestern Argentina: an accretionary complex related to early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. J South Am Earth Sci 32:438–459. https://doi.org/10.1016/j.jsames.2011.04.013

    Article  Google Scholar 

  34. Finney SC (2007) The parautochthonous Gondwanan origin of the Cuyania (greater Precordillera) terrane of Argentina: a re-evaluation of evidence used to support an allochthonous Laurentian origin. Geola Acta 5:127–158

    Google Scholar 

  35. Fonseca MA, Oliveira CG, Evangelista HJ (2004) The Araguaia Belt, Brazil: part of a Neoproterozoic continental-scale strike-slip fault system. J Virtual Explor 17:1–16. https://doi.org/10.3809/jvirtex.2004.00107

    Article  Google Scholar 

  36. Frimmel HE, Basei MS, Gaucher C (2011) Neoproterozoic geodynamic evolution of SW-Gondwana: a southern African perspective. Int J Earth Sci 100:323–354. https://doi.org/10.1007/s00531-010-0571-9

    Article  Google Scholar 

  37. Fuenlabrada JM, Galindo C (2001) Comportamiento de la relación 87Sr/86Sr en disoluciones de carbonatos impuros en función de la concentración ácida y en disoluciones de sulfatos en función del tiempo. In: Actas III Congreso Ibérico de Geología, pp 591–595

  38. Galindo C, Casquet C, Rapela CW, Pankhurst RJ, Baldo EG, Saavedra J (2004) Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina. Tecton implications. Precambrian Res 131:55–71. https://doi.org/10.1016/j.precamres.2003.12.007

    Article  Google Scholar 

  39. Gallien F, Mogessie A, Bjerg E, Delpino S, Castro de Machuca B, Thöni M, Klötzli U (2010) Timing and rate of granulite facies metamorphism and cooling from multi-mineral chronology on migmatitic gneisses, Sierras de La Huerta and Valle Fértil, NW Argentina. Lithos 114:229–252. https://doi.org/10.1016/j.lithos.2009.08.011

    Article  Google Scholar 

  40. Germs GJB (1974) The Nama Group in South West Africa and its relationship to the Pan-African Geosyncline. J Geol 82:301–317. https://doi.org/10.1086/627966

    Article  Google Scholar 

  41. Germs GJB (1983) Implications of sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa/Namibia. Geol Soc South Afr. Spec Publ 11:89–114

    Google Scholar 

  42. Geyer G (2005) The Fish River Subgroup in Namibia: stratigraphy, depositional environments and the Proterozoic–Cambrian boundary problem revisited. Geol Mag 142:465. https://doi.org/10.1017/S0016756805000956

    Article  Google Scholar 

  43. Grant ML, Wilde SA, Wu F, Yang J (2009) The application of zircon cathodoluminescence imaging, Th–U–Pb chemistry and U–Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chem Geol 261:155–171. https://doi.org/10.1016/j.chemgeo.2008.11.002

    Article  Google Scholar 

  44. Greco GA, González SN, Sato AM, González PD, Basei MAS, Llambías EJ, Varela R (2017) The Nahuel Niyeu basin: a Cambrian forearc basin in the eastern North Patagonian Massif. J South Am Earth Sci 79:111–136. https://doi.org/10.1016/j.jsames.2017.07.009

    Article  Google Scholar 

  45. Halverson GP, Wade BP, Hurtgen MT, Barovich KM (2010) Neoproterozoic chemostratigraphy. Precambrian Res 182:337–350. https://doi.org/10.1016/j.precamres.2010.04.007

    Article  Google Scholar 

  46. Iannizzotto NF, Rapela CW, Baldo EG, Galindo C, Fanning CM, Pankhurst RJ (2013) The Sierra Norte-Ambargasta batholith: Late Ediacaran-early Cambrian magmatism associated with Pampean transpressional tectonics. J South Am Earth Sci 42:127–143. https://doi.org/10.1016/j.jsames.2012.07.009

    Article  Google Scholar 

  47. Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764. https://doi.org/10.2475/ajs.286.10.737

    Article  Google Scholar 

  48. Keller M (1999) Argentine Precordillera: sedimentary and plate tectonic history of a Laurentian crustal fragment in South America. Geol Soc Am Spec Pap 341:131

    Google Scholar 

  49. Kristoffersen M, Andersen T, Elburg MA, Watkeys MK (2016) Detrital zircon in a supercontinental setting: locally derived and far-transported components in the Ordovician Natal Group, South Africa. J Geol Soc 173:203–215. https://doi.org/10.1144/jgs2015-012

    Article  Google Scholar 

  50. Larrovere MA, de los Hoyos CR, Toselli AJ, Rossi JN, Basei MAS, Belmar ME (2011) High T/P evolution and metamorphic ages of the migmatitic basement of northern Sierras Pampeanas, Argentina: Characterization of a mid-crustal segment of the Famatinian belt. J South Am Earth Sci 31:279–297. https://doi.org/10.1016/j.jsames.2010.11.006

    Article  Google Scholar 

  51. Le Roux JP, Gresse PG (1983) The sedimentary-tectonic realm of the Kango Group. In: Söhnge APG, Halbich IW (eds) Geodynamics of the Cape fold belt, Geological Society of South Africa, Special Publication, No 12, pp 33–46

  52. Ludwig KR (2003) Isoplot/Ex version 3.0: a geochronological toolkit for Microsoft Excel: Berkeley, California, Berkeley Geochronology Center, Special Publication No. 4

  53. Marshall V, Knesel K, Bryan SE (2011) Zircon chronochemistry of high heat-producing granites in Queensland and Europe. In: Budd A (ed) Australian Geothermal Energy Conference, Sydney, Australia, pp 157–164

  54. McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale, pp 127–144

  55. Melezhik VA, Gorokhov IM, Kuznetsov AB, Fallick AE (2001) Chemostratigraphy of neoproterozoic carbonates: implications for ‘blind dating’. Terra Nova 13:1–11

    Article  Google Scholar 

  56. Mulcahy SR, Roeske SM, McClelland WC, Nomade S, Renne PR (2007) Cambrian initiation of the Las Pirquitas thrust of the western Sierras Pampeans, Argentina: Implications for the tectonic evolution of the proto-Andean margin of South America. Geology 35:443–446. https://doi.org/10.1130/G23436A.1

    Article  Google Scholar 

  57. Mulcahy SR, Roeske SM, McClelland WC, Jourdan F, Iriondo A, Renne PR, Vervoort JD, Vujovich GI (2011) Structural evolution of a composite middle to lower crustal section: The Sierra de Pie de Palo, northwest Argentina. Tectonics. https://doi.org/10.1029/2009TC002656

    Article  Google Scholar 

  58. Mulcahy SR, Roeske SM, McClelland WC, Ellis JR, Jourdan F, Renne PR, Vervoort JD, Vujovich GI (2014) Multiple migmatite events and cooling from granulite facies metamorphism within the Famatina arc margin of northwest Argentina. Tectonics 33:1–25. https://doi.org/10.1002/2013TC003398

    Article  Google Scholar 

  59. Murra JA, Baldo EG (2006) Evolución tectonotermal ordovícica del borde occidental del arco magmático Famatiniano: metamorfismo de las rocas máficas y ultramáficas de la Sierra de la Huerta-de Las Imanas (Sierras Pampeanas, Argentina). Revista geológica de Chile 33:277–298. https://doi.org/10.4067/S0716-02082006000200004

    Article  Google Scholar 

  60. Murra JA, Casquet C, Locati F, Galindo C, Baldo EG, Pankhurst RJ, Rapela CW (2016) Isotope (Sr, C) and U-Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times. Precambrian Res 281:602–617. https://doi.org/10.1016/j.precamres.2016.06.012

    Article  Google Scholar 

  61. Naipauer M, Cingolani CA, Valencio S, Chemale F, Vujovich GI (2005) Estudios isotopicos en carbonatos marinos del terreno Precordillera- Cuyania: ¿Plataforma común en el Neoproterozoico-Paleozoico Inferior? Latin Am J Sedimentol Basin Anal 12:89–108

    Google Scholar 

  62. Naipauer M, Cingolani CA, Vujovich GI, Chemale F (2010a) Geochemistry of Neoproterozoic-Cambrian metasedimentary rocks of the Caucete Group, Sierra de Pie de Palo, Argentina: Implications for their provenance. J South Am Earth Sci 30:84–96. https://doi.org/10.1016/j.jsames.2010.03.002

    Article  Google Scholar 

  63. Naipauer M, Vujovich GI, Cingolani CA, McClelland WC (2010b) Detrital zircon analysis from the Neoproterozoic-Cambrian sedimentary cover (Cuyania terrane), Sierra de Pie de Palo, Argentina: Evidence of a rift and passive margin system? J South Am Earth Sci 29:306–326. https://doi.org/10.1016/j.jsames.2009.10.001

    Article  Google Scholar 

  64. Pankhurst RJ, Rapela CW, Saavedra J, Baldo EG, Dahlquist JA, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the central Sierras Pampeanas: an Early-to-Middle Ordovician continental arc on the Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The proto-Andean margin of Gondwana, 142. Special Publications, Geological Society, pp 343–367

    Article  Google Scholar 

  65. Pankhurst RJ, Rapela CW, Fanning CM (2000) Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina: Transactions of the Royal Society of Edinburgh. Earth Sci 91:151–168. https://doi.org/10.1017/S0263593300007343

    Article  Google Scholar 

  66. Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth-Sci Rev 76:235–257. https://doi.org/10.1016/j.earscirev.2006.02.001

    Article  Google Scholar 

  67. Peralta H, Castro de Machuca B (2010) Los estromatolitos del cerro Pan de Azúcar, Sierras Pampeanas Occidentales, San Juan, Argentina. Serie Correlación Geológica 26:65–74

    Google Scholar 

  68. Ramacciotti CD (2016) Petrología, geoquímica y geocronología del sector sureste de la Sierra de Pie de Palo, San Juan, Argentina (PhD Thesis): Universidad Nacional de Córdoba, p 205

  69. Ramacciotti CD, Baldo EG, Casquet C (2015a) U-Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): Provenance and paleogeographic implications. Precambrian Res 270:39–49. https://doi.org/10.1016/j.precamres.2015.09.008

    Article  Google Scholar 

  70. Ramacciotti CD, Casquet C, Baldo EG, Galindo C (2015b) The Difunta Correa metasedimentary sequence (NW Argentina): relict of a Neoproterozoic platform?—elemental and Sr-Nd isotope evidence. Revista Mexicana de Ciencias Geologicas 32:395–414

    Google Scholar 

  71. Ramos VA (1988) Late Proterozoic-early Paleozoic of the South America—a collisional history. Episodes 11:168–174

    Google Scholar 

  72. Ramos VA (2004) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res 7:1009–1026. https://doi.org/10.1016/S1342-937X(05)71081-9

    Article  Google Scholar 

  73. Ramos VA, Vujovich GI (2000) Hoja Geológica 3169-VI. San Juan, vol 243. Servicio Geológico Minero Argentino, Boletín, Buenos Aires. pp 1–82

  74. Ramos VA, Chemale F, Naipauer M, Pazos PJ (2014) A provenance study of the Paleozoic Ventania System (Argentina): transient complex sources from Western and Eastern Gondwana. Gondwana Res 26:719–740. https://doi.org/10.1016/j.gr.2013.07.008

    Article  Google Scholar 

  75. Ramos VA, Escayola M, Leal P, Pimentel MM, Santos JOS (2015) The late stages of the Pampean Orogeny, Córdoba (Argentina): evidence of postcollisional early Cambrian slab break-off magmatism. J South Am Earth Sci 64:351–364. https://doi.org/10.1016/j.jsames.2015.08.002

    Article  Google Scholar 

  76. Rapela CW, Pankhurst RJ, Casquet C, Baldo EG, Saavedra J, Galindo C (1998) Early evoution of the Proto-Andean margin of South America. Geology 26:707–710. https://doi.org/10.1130/0091-7613(1998)026<0707:EEOTPA>2.3.CO

    Article  Google Scholar 

  77. Rapela CW, Pankhurst RJ, Fanning CM, Grecco LE (2003) Basement evolution of the Sierra de la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. J Geol Soc Lond 160:613–628

    Article  Google Scholar 

  78. Rapela CW, Pankhurst RJ, Casquet C, Fanning CM, Galindo C, Baldo EG (2005) Datación U-Pb SHRIMP de circones detríticos en paranfibolitas neoproterozoicas de la secuencia Difunta Correa (Sierras Pampeanas Occidentales, Argentina). Geogaceta 38:227–230

    Google Scholar 

  79. Rapela CW, Pankhurst RJ, Casquet C, Fanning CM, Baldo EG, González-Casado JM, Galindo C, Dahlquist JA (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth-Sci Rev 83:49–82. https://doi.org/10.1016/j.earscirev.2007.03.004

    Article  Google Scholar 

  80. Rapela CW, Pankhurst RJ, Casquet C, Baldo EG, Galindo C, Fanning CM, Dahlquist JA (2010) The Western Sierras Pampeanas: Protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction-accretion at continental-edge and AMCG intraplate magmatism. J South Am Earth Sci 29:105–127. https://doi.org/10.1016/j.jsames.2009.08.004

    Article  Google Scholar 

  81. Rapela CW, Fanning CM, Casquet C, Pankhurst RJ, Spalletti L, Poiré D, Baldo EG (2011) The Rio de la Plata craton and the adjoining Pan-African/brasiliano terranes: their origins and incorporation into south-west Gondwana. Gondwana Res 20:673–690. https://doi.org/10.1016/j.gr.2011.05.001

    Article  Google Scholar 

  82. Rapela CW, Verdecchia SO, Casquet C, Pankhurst RJ, Baldo EG, Galindo C, Murra JA, Dahlquist JA, Fanning CM (2016, Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Res 32:193–212. https://doi.org/10.1016/j.gr.2015.02.010

    Article  Google Scholar 

  83. Reimann CR, Bahlburg H, Kooijman E, Berndt J, Gerdes A, Carlotto V, López S (2010) Geodynamic evolution of the early Paleozoic Western Gondwana margin 14°–17°S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia. Gondwana Res 18:370–384. https://doi.org/10.1016/j.gr.2010.02.002

    Article  Google Scholar 

  84. Rozendaal A, Gresse PG, Scheepers R, Le Roux JP (1999) Neoproterozoic to Early Cambrian Crustal Evolution of the Pan-African Saldania Belt, South Africa. Precambrian Res 97:303–323

    Article  Google Scholar 

  85. Rubatto D (2002) Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  86. Rubatto D (2017) Zircon: the metamorphic mineral. In: Kohn MJ, Engi M, Lanari P (eds) Petrochronology: methods and applications. Reviews in Mineralogy and Geochemistry, vol 83, pp 261–295

  87. Sánchez MC, Salfity JA (1999) La cuenca cámbrica del Grupo Mesón en el Noroeste Argentino: desarrollo estratigráfico y paleogeográfico. Acta Geológica Hispánica 34:123–139

    Google Scholar 

  88. Schwartz JJ, Gromet LP, Miro R (2008) Timing and duration of the calc-alkaline arc of the Pampean Orogeny: implications for the late Neoproterozoic to Cambrian Evolution of Western Gondwana. J Geol 116:39–61. https://doi.org/10.1086/524122

    Article  Google Scholar 

  89. Sims JP, Ireland TR, Camacho A, Lyons P, Pieters PE, Skirrow RG, Stuart-Smith PG, Miró R (1998) U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Paleozoic tectonic evolution of the western Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The proto-Andean margin of Gondwana, Geological Society of London Special Publication, vol 142, pp 259–281

    Article  Google Scholar 

  90. Steenken A, López de Luchi MG, Dopico CM, Drobe M, Wemmer K, Siegesmund S (2011) The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: An overview. Int J Earth Sc 100:465–488. https://doi.org/10.1007/s00531-010-0624-0

    Article  Google Scholar 

  91. Thomas WA, Tucker RD, Astini RA, Denison RE (2012) Ages of pre-rift basement and synrift rocks along the conjugate rift and transform margins of the argentine precordillera and laurentia. Geosphere 8:1366–1383. https://doi.org/10.1130/GES00800.1

    Article  Google Scholar 

  92. Tibaldi AM, Otamendi JE, Cristofolini EA, Baliani I, Walker BA, Bergantz GW (2013) Reconstruction of the early Ordovician Famatinian arc through thermobarometry in lower and middle crustal exposures, Sierra de Valle Fértil, Argentina. Tectonophysics 589:151–166. https://doi.org/10.1016/j.tecto.2012.12.032

    Article  Google Scholar 

  93. Tohver E, D’Agrella-Filho MS, Trindade RIF (2006) Paleomagnetic record of Africa and South America for the 1200–500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Res 147:193–222. https://doi.org/10.1016/j.precamres.2006.01.015

    Article  Google Scholar 

  94. Torsvik TH, Cocks LRM (2011) The Palaeozoic palaeogeography of central Gondwana. Geol Soc Lond Spec Publ 357:137–166. https://doi.org/10.1144/SP357.8

    Article  Google Scholar 

  95. Torsvik TH, Cocks LRM (2013) Gondwana from top to base in space and time. Gondwana Res 24:999–1030. https://doi.org/10.1016/j.gr.2013.06.012

    Article  Google Scholar 

  96. Trindade RIF, D’Agrella-Filho MS, Epof I, Neves B (2006) Paleomagnetism of early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth Planet Sci Lett 244:361–377. https://doi.org/10.1016/j.epsl.2005.12.039

    Article  Google Scholar 

  97. Varela R, Valencio S, Ramos A, Sato K, González P, Panarello H, Rovenaro D (2001) Isotopic strontium, carbon and oxygen study on Neoproterozoic marbles from sierra de Umango, Andean Foreland, Argentina. In: South American Symposium on Isotope Geology, no 3, Santiago, p 121

  98. Varela R, Basei MAS, González PD, Sato AM, Naipauer M, Neto C, Cingolani M, Meira CA (2011) Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina. Int J Earth Sci 100:243–272. https://doi.org/10.1007/s00531-010-0614-2

    Article  Google Scholar 

  99. Varela R, González PD, Philipp R, Sato AM, González S, Greco G, Naipauer M (2014) Isótopos de estroncio en calcáreos del noreste patagónico: Resultados preliminares. Revista de la Asociacion Geologica Argentina 71:526–536

    Google Scholar 

  100. Vaughan APM, Pankhurst RJ (2008) Tectonic overview of the West Gondwana margin. Gondwana Res 13:150–162. https://doi.org/10.1016/j.gr.2007.07.004

    Article  Google Scholar 

  101. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG et al (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88. https://doi.org/10.1016/S0009-2541(99)00081-9

    Article  Google Scholar 

  102. Verdecchia SO, Casquet C, Baldo EG, Pankhurst RJ, Rapela CW, Fanning CM, Galindo C (2011) Mid- to late Cambrian docking of the Río de la Plata craton to southwestern Gondwana: age constraints from U-Pb SHRIMP detrital zircon ages from Sierra de Ambato and Velasco (Sierras Pampeanas, Argentina). J Geol Soc Lond 168:1061–1071. https://doi.org/10.1144/0016-76492010-143

    Article  Google Scholar 

  103. von Gosen W, Prozzi C (2010) Pampean deformation in the Sierra Norte de Córdoba, Argentina: implications for the collisional history at the western pre-Andean Gondwana margin. Tectonics 29:1–33. https://doi.org/10.1029/2009TC002580

    Article  Google Scholar 

  104. von Gosen W, McClelland WC, Loske W, Martinez JC, Prozzi C (2014) Geochronology of igneous rocks in the Sierra Norte de Cordoba (Argentina): Implications for the Pampean evolution at the western Gondwana margin. Lithosphere 6:277–300. https://doi.org/10.1130/L344.1

    Article  Google Scholar 

  105. Vujovich GI (1994) Geología del basamento ígneo-metamórfico de la loma de Las Chacras. sierra de La Huerta 49. Revista de la Asociacion Geologica Argentina, San Juan, pp 321–336

  106. Vujovich GI, van Staal CR, Davis W (2004) Age constraints on the tectonic evolution and provenance of the Pie de Palo complex, Cuyania composite terrane, and the Famatinian Orogeny in the Sierra de Pie de Palo, San Juan. Gondwana Res 7:1041–1056. https://doi.org/10.1016/S1342-937X(05)71083-2

    Article  Google Scholar 

  107. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  108. Williams IS (1998) U-Th-Pb geochronology by ion microprobe. Rev Econ Geol 7:1–35

    Article  Google Scholar 

  109. Yancey TE (1991) Controls on carbonate and siliciclastic sediment deposition on a mixed carbonate–siliciclastic shelf (Pennsylvanian Eastern Shelf of north Texas). In: Franseen EK, Watney WL, Kendall CG, Ross W (eds) Sedimentary modeling: computer simulations and methods for improved parameter definition. Kansas Geological Survey, Bulletin, vol 233, pp 263–291

Download references

Acknowledgements

We acknowledge Dr. Martin Keller and an anonymous reviewer for their helpful comments that improved this paper and to Wolf-Christian Dullo for editorial handling. Funding was through Argentine public Grants PUE 2016 CONICET-CICTERRA, CONICET PIP 2015–2018 11220150100901CO, FONCYT PICT 0472, SECyT 2016–2017 Tipo A No. 30720150100517CB, and Spanish grants (CGL2009-07984), GR58/08 UCM-Santander and CGL2016-76439-P of MINECO.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos D. Ramacciotti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 467 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramacciotti, C.D., Casquet, C., Baldo, E.G. et al. A Cambrian mixed carbonate–siliciclastic platform in SW Gondwana: evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin. Int J Earth Sci (Geol Rundsch) 107, 2605–2625 (2018). https://doi.org/10.1007/s00531-018-1617-7

Download citation

Keywords

  • Cambrian clastic metasedimentary rocks
  • Sr-isotope dating of marbles
  • SW Gondwana Cambrian platform
  • SW Gondwana paleogeography
  • Sierras Pampeanas
  • Precordillera/Cuyania terrane