Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian–Early Carboniferous magmatism in SW Gondwana (27–32°LS): an example of geodynamic switching

Abstract

We report a study integrating 13 new U–Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian–Early Carboniferous granite samples were collected along a transect of ~ 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian–Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for ~ 57 Ma. Hf TDM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian–Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alasino PH, Dahquist JA, Galindo C, Casquet C (2006) Plutón La Costa, una expresión de magmatismo tipo-S en el sector noreste de la sierra de Velasco, Sierras Pampeanas. Argent Revista de la Asoc Geol Arg 61:161–170

    Google Scholar 

  2. Alasino PH, Dahlquist JA, Pankhurst RJ, Galindo C, Casquet C, Rapela CW, Larrovere M, Fanning CM (2012) Early Carboniferous sub- to mid-alkaline magmatism in the Eastern Sierras Pampeanas. NW Argentina: a record of crustal growth by the incorporation of mantle-derived material in an extensional setting. Gondwana Res 22:992–1008

    Article  Google Scholar 

  3. Alasino PH, Casquet C, Larrovere MA, Pankhurst RJ, Galindo C, Dahlquist JA, Baldo EG, Rapela CW (2014) The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina. Lithos 190–191:154–172

    Article  Google Scholar 

  4. Alasino PH, Larrovere MA, Rocher S, Dahlquist JA, Basei MAS, Memeti V, Paterson SR, Galindo C, Macchioli Grande M, Costa Campos Neto M da (2017) Incremental growth of an upper crustal, A-type pluton, Argentina: evidence of a re-used magma pathway. Lithos 284–285:347–366

    Article  Google Scholar 

  5. Armstrong RL (1988) Mesozoic and early Cenozoic magmatic evolution of the Canadian Cordillera. In: Clark SP, Burchfiel BC, Supper J (eds) Processes in continental lithospheric deformation: a symposium to honor John Rodgers. Geol Soc of Am Spec Papers, vol 218, pp 55–91

  6. Astini R, Martina F, Ezpeleta M, Dávila F, Cawood P (2009) Chronology from rifting to foreland basin in the Paganzo Basin (Argentina), and a reappraisal on the “Eo- and Neohercynian” tectonics along Western Gondwana. 12 Congreso Geológico Chileno, Santiago, Actas, pp 22–26

  7. Astini RA, Martina F, Dávila FM (2011) The Los Llantenes Formation in the Precordillera of Jagüé (La Rioja Province) and the recognition of a rifting stage in the early evolution of the late Paleozoic basins in western Argentina. Andean Geol 38:245–267

    Article  Google Scholar 

  8. Bahlburg H, Vervoort JD, Du Frane SA, Bock B, Augustsson C, Reimann RC (2009) Timing of crust formation and recycling in accretionary orogens: insights learned from the western margin of South America. Earth Sci Rev 97:215–241

    Article  Google Scholar 

  9. Basei MAS, da Costa Campos Neto M, Pacheco Lopes A, Nutman AP, Liu D, Sato K (2013) Polycyclic evolution of Camboriú Complex migmatites, Santa Catarina, Southern Brazil: integrated Hf isotopic and U–Pb age zircon evidence of episodic reworking of a Mesoarchean juvenile crust. Braz J Geol 43:427–443

    Article  Google Scholar 

  10. Blichert-Toft J, Albarede F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  11. Boedo FL, Willner AP, Vujovich GI, Massonne HJ (2016) High pressure/low temperature metamorphism in the collision zone between the Chilenia and Cuyania microcontinents (western Precordillera, Argentina). J South Am Earth Sci 72:227–240

    Article  Google Scholar 

  12. Boynton WV (1984) Geochemistry of the rare earth elements: meteorites studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  13. Casquet C, Rapela C, Pankhurst R, Baldo E, Galindo C, Verdeccia S, Dahlquist JA, Murra J, Fanning M (2012) A post Pampean Middle to Late Cambrian siliciclastic platform on the proto-Andean margin of Gondwana and its paleogeographical implications. Simposio de Geología de la Cordillera de Los Andes y su antepaís. In: 8 Congreso Geológico de España, Geo-Temas, vol 13, pp 1852–1855

  14. Casquet C, Hervé F, Pankhurst R, Baldo E, Calderón M, Fanning C, Rapela C, Dahlquist J (2014) The Mejillonia suspect terrane (Northern Chile): Late Triassic fast burial and metamorphism of sediments in a magmatic arc environment extending into the Early Jurassic. Gondwana Res 25:1272–1286

    Article  Google Scholar 

  15. Casquet C, Dahlquist JA, Verdecchia SO, Baldo EG, Galindo C, Rapela CW, Pankhurst RJ, Morales MM, Murra JA, Fanning CM (2018) Review of the Cambrian Pampean orogeny of Argentina; a displaced orogeny formerly attached to the Saldania Belt of South Africa? Earth Sci Rev 177:209–225

    Article  Google Scholar 

  16. Cawood PA (2005) Terra Australis orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279

    Article  Google Scholar 

  17. Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. Geol Soc Lond Spec Publ 318:1–36

    Article  Google Scholar 

  18. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan fold belt. Trans R Soc Edinb Earth Sci 83:1–26

    Article  Google Scholar 

  19. Chen YX, Gao P, Zheng YF (2015) The anatectic effect on the zircon Hf isotope composition of migmatites and associated granites. Lithos 238:174–184

    Article  Google Scholar 

  20. Cingolani C, Varela R, Dalla Salda L, Kawashita K (1993) Los granitoides del Cerro Veladero, Río de la Troya, provincia de La Rioja: estudio geocronológico e implicancias tectónicas. In: 12 Congreso Geológico Argentino y 2 Congreso de Exploración de Hidrocarburos Actas, vol 4, pp 68–74

  21. Coira B, Cisterna CE, Ulbrich HH, Cordani UG (2016) Extensional Carboniferous magmatism at the western margin of Gondwana: Las Lozas valley, Catamarca, Argentina. Andean Geol 43:105–126

    Article  Google Scholar 

  22. Collins WJ (2002) Hot orogens, tectonic switching, and creation of continental crust. Geology 30:535–538

    Article  Google Scholar 

  23. Dahlquist JA, Rapela CW, Pankhurst RJ, Baldo E, Saavedra J, Alasino PH (2005) Los granitoides de la sierra de Chepes y su comparación con granitoides paleozoicos de las Sierras Pampeanas: implicancias para el orógeno famatiniano. In: Dahlquist JA, Baldo EG, Alasino PH (eds) Geología de la provincia de La Rioja—Precámbrico–Paleozoico Inferior, Asociación Geológica Argentina, Serie D, Publicación Especial, vol 8, pp 87–108

  24. Dahlquist JA, Pankhurst RJ, Rapela CW, Casquet C, Fanning CM, Alasino P, Baez FM (2006) The San Blas Pluton: an example of Carboniferous plutonism in the Sierras Pampeanas, Argentina. J S Am Earth Sci 2:341–350

    Article  Google Scholar 

  25. Dahlquist JA, Pankhurst RJ, Rapela CW, Galindo C, Alasino P, Fanning CM, Saavedra J, Baldo E (2008) New SHRIMP U–Pb data from the Famatina complex: constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geol Acta 6:319–333

    Google Scholar 

  26. Dahlquist JA, Alasino PH, Eby GN, Galindo C, Casquet C (2010a) Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis. Lithos 115:65–81

    Article  Google Scholar 

  27. Dahlquist JA, Colombo F, Murra JA, Locati F, Alasino PH, Baldo EG, Verdecchia SO (2010b) El stock álcali-feldespático El Pilón (Sierra Brava, La Rioja): un ejemplo de magmatismo granítico turmalinífero. Revista de la Asoc Geol Argent 67(3):369–382

    Google Scholar 

  28. Dahlquist JA, Pankhurst RJ, Gaschnig RM, Rapela CW, Casquet C, Alasino PH, Galindo C, Baldo E (2013) Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Res 23:1617–1630

    Article  Google Scholar 

  29. Dahlquist JA, Alasino PH, Bello C (2014) Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Miner Petrol 108:391–417

    Article  Google Scholar 

  30. Dahlquist JA, Morales Cámera MM, Alasino PH (2015) Petrografía, química mineral y geoquímica comparada de los plutones Potrerillos y Cerro La Gloria: magmatismo de arco y retroarco en el carbonífero inferior. Revista de la Asoc Geol Argent 72(2):167–181

    Google Scholar 

  31. Dahlquist JA, Pankhurst RJ, Rapela CW, Basei MA, Alasino PH, Saavedra J, Baldo EG, Murra JA, Costa Campos Neto M da (2016) The Capilla del Monte pluton, Sierras de Córdoba, Argentina: the easternmost Early Carboniferous magmatism in the pre-Andean SW Gondwana margin. Int J Earth Sci 105:1287–1305

    Article  Google Scholar 

  32. Dall’Agnol R, Oliveira DC (2007) Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites. Lithos 93:215–233

    Article  Google Scholar 

  33. de La Roche H (1992) Un homologue cationique du triangle Q-A-P (quartz–feldspath alcalin–plagioclase), figure majeure de la pétrologie des roches plutoniques. Comptes Rendus de l’Académie des Sciences, París Série II 315:1687–1693

    Google Scholar 

  34. del Rey A, Deckart K, Arriagada C, Martínez F (2016) Resolving the paradigm of the late Paleozoic–Triassic Chilean magmatism: Isotopic approach. Gondwana Res 7:172–181

    Google Scholar 

  35. Domeier M, Torsvik TH (2014) Plate tectonics in the late Paleozoic. Geosci Front 5:303–350

    Article  Google Scholar 

  36. Ducea MN, Paterson SR, DeCelles PG (2015) High-volume magmatic events in subduction systems. Elements 11:99–104

    Article  Google Scholar 

  37. Farina F, Stevens G, Gerdes A, Frei D (2014) Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): the processes that control inheritance of source 176Hf/177Hf diversity in S-type granites. Contrib Miner Petrol 168:1–18

    Article  Google Scholar 

  38. Frigerio PV, Cingolani CA, Chemale FJr (2012) El granito Potrerillos, Precordillera de Jagüé, La Rioja: características petrológicas, geoquímicas y edades isotópicas. Serie de Correlación Geológica 28(2):107–138

    Google Scholar 

  39. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  40. Gallastegui G, González-Menéndez L, Rubio-Ordóñez A, Cuesta A, Gerdes A (2014) Origin and provenance of igneous clasts from late Palaeozoic conglomerate formations (Del Ratón and El Planchón) in the Andean Precordillera of San Juan, Argentina. J Iberian Geol 40:261–282

    Google Scholar 

  41. García Larrecharte M (2015) Caracterización petrológica y geoquímica de las rocas graníticas del stock Veladero, Sierras Pampeanas Occidentales-Precordillera, provincia de La Rioja. Undergraduate thesis, Fac. de Cs. Exactas Fís. y Nat., Universidad Nacional de Córdoba

  42. Gómez GM (2003) El plutón de Serrezuela: Evento magmático del Carbonífero en el sector norte de la Sierra de Pocho, Córdoba, República Argentina. Revista de la Asoc Geol Argent 58(3):283–297

    Google Scholar 

  43. Goodge JW, Vervoort JD (2006) Origin of mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. Earth Planet Sci Lett 243:711–731

    Article  Google Scholar 

  44. Gregori DA, Fernández-Turiel JL, López-Soler A, Petford N (1996) Geochemistry of upper palaeozoic-lower triassic granitoids of the central Frontal Cordillera (33°10′–33°45′), Argentina. J South Am Earth Sci 9:141–151

    Article  Google Scholar 

  45. Griffin WL, Belousova EA, Shee SR, Pearson NJ, O´Reilly SY (2004) Archean crust evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambr Res 131:231–282

    Article  Google Scholar 

  46. Grosse P, Söllner F, BaézMA Toselli AJ, Rossi JN, de la Rosa JD (2009) Lower carboniferous post-orogenic granites in central eastern Sierra de Velasco, Sierras Pampeanas, Argentina: U–Pb monazite geochronology and Sr–Nd isotopes. Int J Earth Sci 98:1001–1025

    Article  Google Scholar 

  47. Hervé F, Calderón M, Fanning CM, Pankhurst RJ, Godoy E (2013) Provenance variations in the Late Paleozoic accretionary complex of central Chile as indicated by detrital zircons. Gondwana Res 23:1122–1135

    Article  Google Scholar 

  48. Hervé F, Calderon M, Fanning CM, Pankhurst RJ, Fuentes F, Rapela CW, Correa J, Quezada P, Marambio C (2016) Devonian magmatism in the accretionary complex of southern Chile. J Geol Soc 173:587–602

    Article  Google Scholar 

  49. Indri DA, Barber LE (1987) Características geológicas y químicas del Granito San Ignacio—Los Pinos, Provincia de Tucumán y Catamarca, Argentina. Congreso Geológico Argentino. Tucumán Actas 4:135–138

    Google Scholar 

  50. Jiang YH, Zaho P, Zhou Q, Liao SY, Jin GD (2011) Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China. Lithos 121:55–73

    Article  Google Scholar 

  51. Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li tetraborate fused bead. Adv X-ray Anal 41:843–867

    Google Scholar 

  52. Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky mountain foreland deformation. Am J Sci 286:737–764

    Article  Google Scholar 

  53. Kemp AIS, Hawkesworth CJ, Foster GL, Paterson GA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315:980–983

    Article  Google Scholar 

  54. Larrovere MA, de los Hoyos CR, Toselli AJ, Rossi JN, Basei MAS, Belmar ME (2011) High T/P evolution and metamorphic ages of the migmatitic basement of northern Sierras Pampeanas, Argentina: Characterization of a mid-crustal segment of the Famatinian belt. J S Am Earth Sci 31:279–297

    Article  Google Scholar 

  55. Lazarte JE (2013) Granitoides peraluminosos de mina San Antonio (tungsteno), Sierra de Vinquis norte, Sierras Pampeanas. Revista de la Asoc Geol Argent 70(3):427–435

    Google Scholar 

  56. Lazarte JE, Ávila JC, Fogliata AS, Gianfrancisco M (1999) Granitos Evolucionados Relacionados a Mineralización Estanno-Wolframífera en Sierras Pampeanas Occidentales. INSUGEO, Serie de Correlación Geológica 21:75–104

    Google Scholar 

  57. Ledesma J (2015) Caracterización petrológica y geoquímica de las rocas graníticas del Complejo Granítico Quimivil—Río Rodeo del sector norte de la sierra de Zapata, Sierras Pampeanas, provincia de Catamarca. Undergraduate thesis, Fac. de Cs. Exactas Fís. y Nat., Universidad Nacional de Córdoba

  58. Li ZX, Li XH (2007) Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35:179–182

    Article  Google Scholar 

  59. Li ZX, Li XH, Chung SL, Lo CH, Xu X, Li WX (2012) Magmatic switch-on and switch-off along the South China continental margin since the Permian: transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics 532–535:271–290

    Article  Google Scholar 

  60. Limarino C, Tripaldi A, Marenssi S, Fauqué L (2006) Tectonic, sea level, and climatic controls on Late Paleozoic sedimentation in the western basins of Argentina. J S Am Earth Sci 22:205–226

    Article  Google Scholar 

  61. Lira R, Sfragulla J (2014) El magmatismo devónico-carbonífero: el batolito de Achala y plutones menores al norte del cerro Champaquí. Relatorio del 19 Congreso Geológico Argentino: Geología y Recursos Naturales de la provincia de Córdoba, pp 293–348

  62. Lister G, Forster M (2009) Tectonic mode switches and the nature of orogenesis. Lithos 113:274–291

    Article  Google Scholar 

  63. Llambías EJ (1999) Las rocas ígneas gondwánicas. 1. El magmatismo gondwánico durante el Paleozoico Superior-Triásico. In: En Caminos RN (ed) Geología Argentina. Anales, vol 29. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires, pp 349–363

    Google Scholar 

  64. Llambías EJ, Sato AM (1995) El batolito de Colangüil: transición entre orogénesis y anorogénesis. Revista de la Asoc Geol Argent 50(1–4):111–131

    Google Scholar 

  65. López de Luchi M, Siegesmund S, Wemmer K, Steenken A, Naumann R (2007) Geochemical constraints on the petrogenesis of the Paleozoic granitoids of the Sierra de San Luis, Sierras Pampeanas, Argentina. J S Am Earth Sci 24:138–166

    Article  Google Scholar 

  66. Ludwig KR (2003) Isoplot/ex version 3.0: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, Berkeley, USA

  67. Maksaev V, Munizaga F, Tassinari C (2014) Timing of the magmatism of the paleo-Pacific border of Gondwana: U–Pb geochronology of Late Paleozoic to Early Mesozoic igneous rocks of the north Chilean Andes between 20° and 31°S. Andean Geol 41:447–506

    Google Scholar 

  68. Martina F, Astini RA, Becker TP, Thomas WA (2005) Granitos grenvillianos milonitizados en la faja de deformación de Jagüé, noroeste de La Rioja. Actas 16 Congreso Geol Argent 4:591–594

    Google Scholar 

  69. Martina F, Viramonte JM, Astini RA, Pimentel MM, Dantas E (2011) Mississippian volcanism in the south-central Andes: new U–Pb SHRIMP zircon geochronology and whole-rock geochemistry. Gondwana Res 19:524–534

    Article  Google Scholar 

  70. Matthews KJ, Seton M, Müller RD (2012) A global-scale plate reorganization event at 105–100 Ma. Earth Planet Sci Lett 355–356:283–298

    Article  Google Scholar 

  71. Morales Cámera MM, Dahlquist JA, Basei MAS, Galindo C, da Costa Campos Neto M, Facetti N (2017) F-rich strongly peraluminous A-type magmatism in the pre-Andean foreland Sierras Pampeanas, Argentina: geochemical, geochronological, isotopic constraints and petrogenesis. Lithos 277:210–227

    Article  Google Scholar 

  72. Nakamura N (1974) Determination of REE, Ba, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–773

    Article  Google Scholar 

  73. Nasi C, Mpodozis C, Cornejo P, Moscoso R, Maksaev V (1985) El Batolito Elqui-Limarí (Paleozoico Superior-Triásico): características petrográficas, geoquímicas y significado tectónico. Revista Geol de Chile 25–26:77–111

    Google Scholar 

  74. Ouyang H, Mao J, Zhou Z, Su H (2015) Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondwana Res 27:1153–1172

    Article  Google Scholar 

  75. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib Miner Petrol 58:63–81

    Article  Google Scholar 

  76. Pankhurst RJ, Rapela CW (1998) The proto-Andean margin of Gondwana: an introduction. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana, vol 142. Geology Society, London, Special Publications, London, pp 1–9

    Google Scholar 

  77. Pankhurst RJ, Rapela CW, Saavedra J, Baldo E, Dahlquist J, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the southern Sierras Pampeanas. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana, vol 142. Geology Society, London, Special Publications, London, pp 343–367

    Google Scholar 

  78. Paterson SR, Ducea MN (2015) Arc magmatic tempos: gathering the evidence. Elements 11:91–98

    Article  Google Scholar 

  79. Pepper M, Gehrels G, Pullen A, Ibañez-Mejia M, Ward KM, Kapp P (2016) Magmatic history and crustal genesis of western South America: constraints from U–Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere 12(5):1–24

    Article  Google Scholar 

  80. Raineri NI, Báez M, Fogliata A, Campos F, Hagemann S (2014) Nuevos aportes a la caracterización geoquímica del granito San Ignacio—Los Pinos, provincias de Catamarca y Tucumán. Acta Geológica lilloana 26(2):111–122

    Google Scholar 

  81. Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas: shallow subduction, Plateau Uplift, vol 204. Geol Soc of Am Memoir, pp 31–65

  82. Ramos VA, Cristallini EO, Pérez DJ (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15:59–78

    Article  Google Scholar 

  83. Rapela CW, Llambías EJ (1999) El magmatismo Gondwánico y los ciclos Fanerozoicos. In: Caminos R (Ed) Geología Argentina. Instituto de Geología y Recursos Minerales, vol 29. Buenos Aires Anales, pp 373–376

  84. Rapela CW, Baldo EG, Pankhurst RJ, Fanning CM (2008) The Devonian Achala batholith in the Sierras Pampeanas: F-rich aluminous A-type granites. In: 6 South American Symposium on Isotope Geology, San Carlos de Bariloche, Argentina, Proceedings in CD-ROM, paper 53

  85. Rapela CW, Verdecchia SO, Casquet C, Pankhurst RJ, Baldo EG, Galindo C, Murra JA, Dahlquist JA, Fanning CM (2016) Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Res 32:193–212

    Article  Google Scholar 

  86. Rittmann A (1957) On the serial character of igneous rocks. Egypt J Geol 1:23–48

    Google Scholar 

  87. Rogers JJW, Greenberg JK (1981) Trace elements in continental margin magmatism: Part 3. Alkali granites and their relationship to cratonization: summary. Geol Soc Am Bull 92(Part 1):6–9

    Article  Google Scholar 

  88. Sato K, Siga O Jr, Silva JA, McReath I, Liu D, Iizuka T, Rino S, Hirata T, Sproesser WM, Basei MAS (2009) In situ isotopic analyses of U and Pb in zircon by remotely operated SHRIMP II, and Hf by LA-ICP-MS: an example of dating and genetic evolution of zircon by 176Hf/177Hf from the Ita Quarry in the Atuba Complex, SE Brazil. Geologia Universidade São Paulo, Série Cientifica São Paulo 9:61–69

    Google Scholar 

  89. Sato K, Basei MAS, Ferreira CM, Vlach SRF, Ivanuch W, Siga O Jr, Onoi AT (2010) In situ U–Th–Pb isotopic analyses by Excimer laser ablation/ICP–MS on Brazilian xenotime megacrystal: first U–Pb results at CPGeo-IG-USP. In: 7 South American Symposium on Isotope Geology, Brasília, DF, CD Rom

  90. Sato K, Basei MAS, Ferreira CM, Sproesser WM, Vlach SRF, Ivanuch W, Onoi AT (2011) U–Th–Pb analyses by excimer laser ablation/ICP-MS on MG Brazilian xenotime. Goldschmidt Conference Abstracts. Miner Mag 1801

  91. Sato AM, Llambías EJ, Basei MAS, Castro CE (2015) Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. J South Am Earth Sci 63:48–69

    Article  Google Scholar 

  92. Shand SJ (1927) The eruptive rocks. Wiley, New York

    Google Scholar 

  93. Siegesmund S, Steenken A, López de Luchi MG, Wemmer K, Hoffmann A, Mosch S (2004) The Las Chacras-Potrerillos batholith (Pampean Ranges, Argentina): structural evidence, emplacement and timing of the intrusion. Int J Earth Sci 93:23–43

    Article  Google Scholar 

  94. Sims JP, Ireland TR, Camacho A, Lyons P, Pieters PE, Skirrow RG, Stuart-Smith PG, (1998) U–Pb, Th–Pb and Ar–Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana, vol 142. Geology Society, London, Special Publications, London, pp 259–281

    Google Scholar 

  95. Söderlund U, Patchett JP, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  96. Stipanicic PN, Linares E (1975) Catálogo de edades radimétricas determinadas para la República Argentina I. Años 1960–1974. Asociación Geológica Argentina. Serie B. (Didáctica y Complementaria) 3:1–42

    Google Scholar 

  97. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geology Society, London, Special Publications, London, pp 313–345

    Google Scholar 

  98. Tang M, Wang XL, Shu XJ, Wang D, Yang T, Gopon P (2014) Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modeling of “zircon effect” in crustal anatexis. Earth Planet Sci Lett 389:188–199

    Article  Google Scholar 

  99. Toselli AI, Reissinger M, Durand ER (1983) Rocas graniticas. In: Acenolaza EG, Miller HY, Toselli AI (eds) Geologia de la Sierra de Ancasti, vol 59. Mtinstersche Forschungen zur Geologie Palaontologie, pp 79–100

  100. Toselli AJ, Rossi JN, Basei MAS, Passarelli CR (2011a) Petrogenesis of Upper Paleozoic post-collisional peraluminous leucogranites, Sierra de Ancasti, northwest Argentina. Neues Jahrbuch für Geologie Paläontologie Abhandlungen 261(2):151–164

    Article  Google Scholar 

  101. Toselli AJ, Rossi JN, Basei MAS, Larrovere MA (2011b) Controles geoquímicos e isotópicos en la petrogénesis de los granitos Devónico-Carboníferos Santa Cruz y Asha: Sierra de Velasco, Argentina. Serie de Correlación Geológica 27:77–98

    Google Scholar 

  102. Varela R, Cingolani C, López de Luchi M, Dalla Salda L (1996) Geocronología de gneises y granitoides de la sierra de Umango, La Rioja. Implicancias tectónicas. In: 13 Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos Actas 4, pp 68–74

  103. Varela R, Basei MAS, Sato AM, Passarelli CR, Cavarozzi CE, González PD (2004) Nuevos datos isotópicos en la Sierra de Umango, antepaís andino a los 29°S: edad del granito Los Guandacolinos. 40 Anos de Geocronología no Brasil, Sao Paulo. Boletim de Resumos 40 Anos de Geocronología no Brasil: Universidade de Sao Paulo, Instituto de Geociências 1:84

  104. Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  105. Vervoort JD, Kemp AIS (2016) Clarifying the zircon Hf isotope record of crust-mantle evolution. Chem Geol 425:65–75

    Article  Google Scholar 

  106. Villaros A, Buick IS, Stevens G (2012) Isotopic variations in S-type granites: an inheritance from a heterogeneous source? Contrib Miner Petrol 163:243–257

    Article  Google Scholar 

  107. von Gosen W, McClelland WC, Loske W, Martínez JC, Prozzi C (2014) Geochronology of igneous rocks in the Sierra Norte de Córdoba (Argentina): implications for the Pampean evolution at the western Gondwana margin. Lithosphere 6:277–300

    Article  Google Scholar 

  108. Wells ML, Hoisch TD, Cruz-Uribe AM, Vervoort JD (2012) Geodynamics of synconvergent extension and tectonic mode switching: Constraints from the Sevier–Laramide orogeny. Tectonics 31:TC1002

    Google Scholar 

  109. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419

    Article  Google Scholar 

  110. Whitney DL, Evans BW (2010) Abbreviations for names of rock forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  111. Willner AP, Gerdes A, Massonne H-J, Schmidt A, Sudo M, Thomson SN, Vujovich G (2011) The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure–temperature–time evolution within part of a collisional belt (Guarguaraz Complex, W Argentina). Contrib Miner Petrol 162:303–327

    Article  Google Scholar 

  112. Wilson M (1989) Igneous petrogenesis, a global tectonic approach. Springer, Netherlands. https://doi.org/10.1007/978-1-4020-6788-4

    Google Scholar 

  113. Wright JB (1969) A simple alkalinity ratio and its application to questions of nonorogenic granite genesis. Geol Mag 106:370–384

    Article  Google Scholar 

  114. Zhang L, Ellis DJ, Arculus RJ, Jiang W, Wei C (2003) “Forbidden zone” subduction of sediments to 150 km depth—the reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan, China. J Metamorph Geol 21:523–529

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this paper was provided by Argentine public grants FONCYT PICT 2013 0226, PIP 11220150100178 CONICET, and SECyT—UNC 5/I809. We greatly appreciate the endeavor as well as the detailed and very constructive revision of an anonymous reviewer and the revision of Pavlina Hasalova, which have enabled us to greatly improve the manuscript. We are very grateful to Wolf-Christian Dullo (Editor in Chief) and Karel Schulman (Topic Editor) for his efficient and helpful editorial handling as well as for his careful and comprehensive editorial work. We greatly appreciate English revision of the manuscript as well as editorial suggestions by R.J. Pankhurst.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan A. Dahlquist.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahlquist, J.A., Alasino, P.H., Basei, M.A.S. et al. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian–Early Carboniferous magmatism in SW Gondwana (27–32°LS): an example of geodynamic switching. Int J Earth Sci (Geol Rundsch) 107, 2575–2603 (2018). https://doi.org/10.1007/s00531-018-1615-9

Download citation

Keywords

  • Geodynamics switching model
  • Devonian–Carboniferous time
  • Calc-alkaline, metaluminous and strongly peraluminous A-type granites
  • Pre-Andean margin of SW Gondwana