The Žermanice sill: new insights into the mineralogy, petrology, age, and origin of the teschenite association rocks in the Western Carpathians, Czech Republic

Abstract

The Žermanice locality represents the best-exposed example of the meta-basaltoid/meta-gabbroic rock type of the teschenite association. It forms a subhorizontal volcanic body (sill) 27–30 m thick. The subvolcanic rock is inhomogeneous and slightly differentiated. The predominant rock type is a basaltoid (diabase-dolerite), medium-grained, speckled, mesocratic rock exhibiting an evident subophitic texture. Miarolitic cavities are abundant in some places. The major rock constituents are albite, microcline, chlorite, and pyroxene, as well as analcime and plagioclase in places. The accessory magmatic phases are biotite, ilmenite, fluorapatite, sulphides, Ti-rich magnetite, Nb-rich baddeleyite, and chevkinite–(Ce) or perrierite–(Ce). A large extent of alteration is evident from the presence of chloritization, albitization of plagioclases, and zeolitization (analcimization). Geochemical analyses reveal an affinity for metaluminous igneous rocks. The best fit is with the within-plate basalts or the within-plate volcanic zones. The classification of this rock is problematic because of the mixed intrusive and extrusive features; the choice is between meta-alkali basalt and metadolerite (meta-microgabbro). 207Pb common lead-corrected U–Pb apatite dating yields a weighted mean age of 120.4 ± 9.6 Ma, which corresponds to the middle Aptian. The igneous body is at most ca. 10 Ma younger than the surrounding late Hauterivian sediments and might have been emplaced into unconsolidated or partly consolidated sediments. According to our research, it is evident that at least some teschenite association rocks are in fact low-grade metamorphic rocks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Akaimoto T, Kinoshita H, Furuta T (1984) Electron probe microanalysis study on processes of low-temperature oxidation of titanomagnetite. Earth Planet Sc Lett 71:263–278. https://doi.org/10.1016/0012-821X(84)90091-8

    Article  Google Scholar 

  2. Árkai P, Ghabrial DS (1997) Chlorite crystallinity as an indicator of metamorphic grade of low-temperature meta-igneous rocks: a case study from the Bükk Mountains, northeast Hungary. Clay Miner 32:205–222. https://doi.org/10.1180/claymin.1997.032.2.04

    Article  Google Scholar 

  3. Árkai P, Sassi FP, Desmons J (2003) Very low- to low-grade metamorphic rocks. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. https://www.bgs.ac.uk/scmr/docs/papers/paper_5.pdf. Accessed 10 Nov 2016

  4. Bagiński B, Macdonald R (2013) The chevkinite group: underestimated accessory phases from a wide range of parageneses. Mineralogia 44:99–114. https://doi.org/10.2478/mipo-2013-0006

    Article  Google Scholar 

  5. Bellatreccia F, Ventura Della G, Williams TC, Parodi GC (1998) Baddeleyite from the Vico volcanic complex (Latium, Italy). Rendiconti Lincei 9:27–33. https://doi.org/10.1007/BF02904453

    Article  Google Scholar 

  6. Buriánek D, Bubík M (2012) Rocks of teschenite association in the surroundings of Valašského Meziříčí. Acta Mus Morav Sci Geol 97:105–127 (in Czech with English abstract)

    Google Scholar 

  7. Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204

    Google Scholar 

  8. De Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clay Clay Miner 41:219–239. https://doi.org/10.1346/CCMN.1993.0410210

    Article  Google Scholar 

  9. Deer WA, Howie RA, Zussman J (2004) Rock-forming minerals, vol 4B: framework silicates—silica minerals, feldspathoids and zeolites, 2nd edn. Geological Society of London, London

    Google Scholar 

  10. Dolezalova M, Hladik I (2005) Viscoplastic flow of soft rock in foundation of Zermanice Dam. In: Konečný P (ed) Eurock 2005—impact of human activity on the geological environment. Taylor & Francis Group, London, pp 230–257

    Google Scholar 

  11. Dolezalova M, Hladik I, Zemanova V (2005) Numerical analysis of unusual behavior of Zermanice dam. In: Barla G, Barla M (eds) Proceedings of the Eleventh international conference on computer methods and advances in geomechanics, vol 3. Pàtron Editore, Bologna, pp 403–410

  12. Dostal J, Owen JV (1998) Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. Geol Rundsch 87:67–77. https://doi.org/10.1007/s005310050190

    Article  Google Scholar 

  13. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435. https://doi.org/10.1180/minmag.1987.051.361.10

    Article  Google Scholar 

  14. Dudek A, Hejtman B (1953) Zpráva o výzkumu těšinitu z nového lomu u Žarmanické přehrady s ohledem na jeho použití jako štěrku do betonu. MS, Archive of the Czech Geological Survey—Geofond (in Czech)

  15. EDAX (2003) Genesis spectrum user’s manual. Edax Inc., Mahwah

    Google Scholar 

  16. Eliáš M, Skupien P, Vašíček Z (2003) A proposal for the modification of the lithostratigraphical division of the lower part of the Silesian Unit in the Czech area (Outer Western Carpathians). Sbor Věd Prací Vys Šk báň v Ostravě. Ř horn-geol 49:7–13 (in Czech with English summary)

    Google Scholar 

  17. Gartner O (1948) Technicko-geologický a petrografický posudek o staveništi projektované přehrady na Lucině u Žermanic. MS, Archive of the Czech Geological Survey—Geofond (in Czech)

  18. Gehrels GE, Valencia V, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem Geophy Geosy 9:1–13. https://doi.org/10.1029/2007GC001805

    Article  Google Scholar 

  19. Gerke TL, Kilinc AI, Sack RO (2005) Ti-content of high-Ca pyroxenes as a petrographic indicator: an experimental study of Mafic Alkaline Rocks from the Mt. Erebus volcanic region, Antarctica. Contrib Miner Petrol 148:735–745. https://doi.org/10.1007/s00410-004-0636-5

    Article  Google Scholar 

  20. Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073. https://doi.org/10.2113/gscanmin.38.5.1065

    Article  Google Scholar 

  21. Grabowski J, Krzemiński L, Nescieruk P, Szydło A, Paszkowski M, Pécskay Z, Wójtowicz A (2003) Geochronology of teschenitic intrusions in the Outer Western Carpathians of Poland—constraints from 40K/40Ar ages and biostratigraphy. Geol Carpath 54:385–393

    Google Scholar 

  22. Haraňczyk C, Mahmood A, Narebşki W (1971) Titanomaghemite in theralitic teschenite from Pastwiska near Cieszyn (Polish Carpathians). B Pol Acad Sci-Tech 19:223–231

    Google Scholar 

  23. Harangi S, Tonarini S, Vaselli O, Manetti P (2003) Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: implications for a long-lived EAR-type mantle component beneath Europe. Acta Geol Hung 46:77–94. https://doi.org/10.1556/AGeol.46.2003.1.6

    Article  Google Scholar 

  24. Harrison R, Putnis A (1999) The magnetic properties and crystal chemistry of oxide spinel solid solutions. Surv Geophys 19:461–520. https://doi.org/10.1023/A:1006535023784

    Article  Google Scholar 

  25. Heaman LM, LeCheminant AN (1993) Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chem Geol 110:95–126. https://doi.org/10.1016/0009-2541(93)90249-I

    Article  Google Scholar 

  26. Hekinian R (1982) Petrology of the ocean floor. Elsevier Oceanography Series, vol 33. Elsevier, New York

    Google Scholar 

  27. Hohenegger L (1861) Die geognostischen Verhältnisse der Nordkarpaten in Schlesien und den angrenzenden Teilen von Mähren und Galizien als Erläuterung zu der geognostischen Karte der Nordkarpaten. J Perthes, Gotha (in German)

  28. Hovorka D, Spišiak J (1988) Mesozoic Volcanism of the Western Carpathians. Veda (in Slovak with English summary)

  29. Hovorka D, Spišiak J (1993) Mesozoic volcanic activity of the Western Carpathian segment of the Tethyan Belt: Diversities in space and time. Jb Geol Bundesanst 136:769–782

    Google Scholar 

  30. Hubicka-Ptasiňska M, Jasieňska S (1971) Electron microprobe studies on the transformation of titanomagnetite occurring in the Cieszyn Silesia teschenite. Mineral Pol 2:15–24

    Google Scholar 

  31. Huraiová M, Konečný P, Hurai V (2007) Chevkinite-(Ce)—REE-Ti silicate from syenite xenoliths in the Pinciná basaltic maar near Lučenec (Southern Slovakia). Mineralia Slovaca 39:255–266 (in Slovak with English abstract)

    Google Scholar 

  32. Ivan P, Hovorka D, Méres Š (1999) Riftogenic volcanism in the Western Carpathian geological history: a review. Geolines 9:41–47

    Google Scholar 

  33. Ivanyuk GY, Kalashnikov AO, Pakhomorovsky YaA, Mikhailova JA, Yakovenchuk VN, Konopleva NG, Sokharev VA, Bazai AV, Goryainov PM (2016) Economic minerals of the Kovdor baddeleyite-apatite-magnetite deposit, Russia: mineralogy, spatial distribution and ore processing optimization. Ore Geol Rev 77:279–311. https://doi.org/10.1016/j.oregeorev.2016.02.008

    Article  Google Scholar 

  34. Jirásek J, Dolníček Z, Matýsek D, Urubek T (2017) Genetic aspects of barite mineralization related to rocks of the teschenite association in the Silesian Unit, Outer Western Carpathians, Czech Republic. AM J Sci 68:119–129. https://doi.org/10.1515/geoca-2017-0010

    Article  Google Scholar 

  35. Jones JG (1969) Pillow lavas as depth indicators. Am J Sci 267:181–195. https://doi.org/10.2475/ajs.267.2.181

    Article  Google Scholar 

  36. Kapusta J, Włodyka R (1997) The X-ray powder diffraction profile analysis of analcimes from the teschenitic sills of the Outer Carpathians, Poland. Neues Jb Miner Monat 6:241–255

    Google Scholar 

  37. Kato M, Hattori T (1998) Ordered distribution of aluminium atoms in analcime. Phys Chem Miner 25:556–565. https://doi.org/10.1007/s002690050148

    Article  Google Scholar 

  38. Kim K-T, Burley BJ (1980) A further study of analcime solid solutions in the system NaAlSi3O8–NaAlSiO4–H2O, with particular note of an analcime phase transformations. Mineral Mag 43:1035–1045. https://doi.org/10.1180/minmag.1980.043.332.13

    Article  Google Scholar 

  39. Klvaňa J (1897) Tešenity a pikrity na severovýchodní Moravě. Rozpr Čes Akad Věd, Tř. 2 1:1–93 (in Czech)

  40. Kohn SC, Henderson CMB, Dupree R (1997) Si-Al ordering in leucite group minerals and ion-exchanged analogues: an MAS NMR study. Am Mineral 82:1133–1140

    Article  Google Scholar 

  41. Kranidiotis P, MacLean W (1987) Systematic of chlorite alteration the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:1898–1911. https://doi.org/10.2113/gsecongeo.82.7.1898

    Article  Google Scholar 

  42. Kropáč K, Dolníček Z, Uher P, Urubek T (2017) Fluorcaphite from hydrothermally altered teschenite at Tichá, Outer Western Carpathians, Czech Republic: composition variations and origin. Mineral Mag 81:1485–1501. https://doi.org/10.1180/minmag.2017.081.016

    Article  Google Scholar 

  43. Kruťa T (1973) Silesian Minerals and Their Literature. Moravské museum, Brno (in Czech with English summary)

    Google Scholar 

  44. Kudělásek V, Matýsek D, Klika Z (1987) Datolite occurrences in the area of rocks of the teschenite association (northern Moravia). Čas Mineral Geol 32:169–174 (in Czech with English summary)

    Google Scholar 

  45. Kudělásková J (1987) Petrology and geochemistry of selected rock types of teschenite association, Outer Western Carpathians. Geol Carpath 38:545–573

    Google Scholar 

  46. Le Maitre RW (ed) (2002) Igneous rocks. A classification and glossary of terms. recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd edn. Cambridge Univerity Press, Cambridge

    Google Scholar 

  47. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  48. Liou JG (1971) Analcime equilibria. Lithos 4:389–402. https://doi.org/10.1016/0024-4937(71)90122-8

    Article  Google Scholar 

  49. Lucińska-Anczkiewicz A, Villa IM, Anczkiewicz R, Ślączka A (2002) 40Ar/39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. Geol Carpath 53:45–52

    Google Scholar 

  50. Ludwig KR (2008) Isoplot 3.60. Special Publication No. 4. Berkeley Geochronology Center, Berkeley

    Google Scholar 

  51. Macdonald R, Marshall AS, Dawson JB, Hinton RW, Hill PG (2002) Chevkinite-group minerals from salic volcanic rocks of the East Africa Rift. Miner Mag 66:287–299. https://doi.org/10.1180/0026461026620029

    Article  Google Scholar 

  52. Macdonald R, Belkin HE, Wall F, Bagiński B (2009) Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks. Miner Mag 73:777–796. https://doi.org/10.1180/minmag.2009.073.5.777

    Article  Google Scholar 

  53. Machek P, Matýsek D (1994) Mathematical-statistical study of chemical composition of the teschenite association rocks. Sbor Geol Věd Ř Geol 46:125–141

    Google Scholar 

  54. Mandour MA (1981) Geochemical and mineralogical studies of the Subbeskydy teschenitic association, Czechoslovakia. Ph.D. thesis, Vysoká škola báňská, Ostrava

  55. Matýsek D (1988) Contact metamorphism of rocks of the teschenite association. Čas Slez Muz Ser A 37:77–86 (in Czech with English and Russian summary)

    Google Scholar 

  56. Matýsek D (1992) Contact metamorphism connected with the intrusion of teschenite association rocks in Krmelín locality, Northern Moravia, Czechoslovakia. Acta Mus Morav Sci Nat 77:29–39 (in Czech with English abstract)

    Google Scholar 

  57. Matýsek D, Jirásek J (2016) Occurrences of slawsonite in rocks of the teschenite association in the Podbeskydí piedmont area (Czech Republic) and their petrological significance. Can Miner 54:1129–1146. https://doi.org/10.3749/canmin.1500101

    Article  Google Scholar 

  58. Mazzi F, Galli E (1978) Is each analcime different? Am Miner 63:448–460

    Google Scholar 

  59. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  60. Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, Jurková A, Hanzlíková E, Houša V, Peslová H, Rybářová L, Šmíd B, Šebesta J, Tyráček J, Vašíček Z (1983) Geology of the Moravskoslezské Beskydy Mts. and the Podbeskydská Pahorkanina Upland. Ústřední ústav geologický, Praha (in Czech with English summary)

    Google Scholar 

  61. Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Ac 66:1185–1196. https://doi.org/10.1016/S0016-7037(01)00849-3

    Article  Google Scholar 

  62. Morimoto N, Fabres J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Miner 73:1123–1133

    Google Scholar 

  63. Narebşki W (1990) Early rift stage in the evolution of western part of the Carpathians: geochemical evidence from limburgite and teschenite rock series. Geol Carpath 41:521–528

    Google Scholar 

  64. Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Miner 77:1242–1249

    Google Scholar 

  65. Oszczypko N (2006) Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geol Q 50:169–194

    Google Scholar 

  66. Pacák O (1926) Sopečné horniny na severním úpatí Bezkyd Moravských. Česká akademie věd a umění, Praha (in Czech)

  67. Pearce JA (1996) A User’s Guide to Basalt Discrimination Diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, vol 12, pp 79–113

  68. Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Shiva Press, Nantwich, pp 373–403. https://doi.org/10.1144/GSL.SP.1993.076.01.19

    Google Scholar 

  69. Picha F, Stráník Z, Krejčí O (2006) Geology and hydrocarbon resources of the Outer Western Carpathians and their foreland, Czech Republic. In: Golonka J, Picha J (eds) The Carpathians and their foreland: geology and hydrocarbon resources. AAPG Memoir, vol 84, Tulsa, pp 49–175. https://doi.org/10.1306/985607M843067

  70. Poprawa P, Malata T, Oszczypko N (2002) Tectonic evolution of the Polish part of the Outer Carpathianʼs sedimentary basins—constraints from subsidence analysis. Prz Geol 50:1092–1108 (in Polish with English abstract)

    Google Scholar 

  71. Price GD (1981) Subsolidus phase relationship in the titanomagnetite solid solution series. Am Mineral 66:731–758

    Google Scholar 

  72. Price GD (1982) Exsolution in titanomagnetites as an indicator of cooling rates. Miner Mag 46:19–25. https://doi.org/10.1180/minmag.1982.046.338.04

    Article  Google Scholar 

  73. Rosenbusch H (1887) Mikroskopische Physiographie der massigen Gesteine, 2. Aufl. E. Schweizerbart, Stuttgart (in German)

    Google Scholar 

  74. Sabine PA, Harrison RK, Lawson RI (1985) Classification of volcanic rocks of the British Isles on the total alkali oxide-silica diagram, and the significance of alteration. Br Geol Survey Rep 17:1–9

    Google Scholar 

  75. Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine crystallization. Lithos 10:113–120. https://doi.org/10.1016/0024-4937(77)90037-8

    Article  Google Scholar 

  76. Skupien P, Pavluš J (2013) A contribution to the knowledge of stratigraphic position of magmatic rocks of teschenite association in the Silesian Unit. Geol Výzk Mor Slez 20:96–99 (in Czech with English abstract)

    Google Scholar 

  77. Skupien P, Matýsek D, Jirásek J, Stelmach P (2017) Palynostratigraphy and mineralogy of the black shales accompanying teschenite association rocks in the Žermanice Quarry. Geosci Res Rep 50:263–267 (in Czech with English abstract)

    Google Scholar 

  78. Šmíd B (1976) Výzkum vyvřelých hornin těšínitové asociace v oblasti mezi Jasenicí u Valašského Meziříčí a Bludovicemi u Nového Jičína. MS, Česká geologická služba, Praha (in Czech)

    Google Scholar 

  79. Smith PPK (1980) Spinodal decomposition in a titanomagnetite. Am Miner 65:1038–1043. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  80. Smulikowski K (1930) Les roches éruptives de la zone subbeskidique en Silésie et Moravie. Kosmos 54:749–850 (in French)

    Google Scholar 

  81. Smulikowski K (1980) Comments on the Cieszyn magmatic province (West Carpathian Flysch). Ann Soc Geol Pol 50:41–54 (in Polish with English abstract)

    Google Scholar 

  82. Smulikowski W, Desmons J, Fettes DJ, Harte B, Sassi FP, Schmid R (2003) Types, grade and facies of metamorphism. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. https://www.bgs.ac.uk/scmr/docs/papers/paper_2.pdf. Accessed 8 Nov 2016

  83. Snyder GL, Fraser GD (1963) Pillowed lavas, I: Intrusive layered lava pods and pillowed lavas Unalaska Island, Alaska and Pillowed lavas, II: A review of selected recent literature. Geological Survey Professional Papers 454-B,C. United States government printing office, Washington

  84. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a twostage model. Earth Planet Sc Lett 26:207–221. https://doi.org/10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  85. Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society of London, London, pp 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Google Scholar 

  86. Szopa K, Włodyka R, Chew D (2014) LA-ICP-MS U–Pb apatite datting of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geol Carpath 65:273–284. https://doi.org/10.2478/geoca-2014-0018

    Article  Google Scholar 

  87. Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R (2012) Routine low-damage apatite U–Pb dating using laser ablation–multicollector–ICPMS. Geochem Geophy Geosy 13:1–23. https://doi.org/10.1029/2011GC003928

    Article  Google Scholar 

  88. Tischendorf G, Förster H-J, Gottesmann B, Rieder M (2007) True and brittle micas: composition and solid-solution series. Miner Mag 73:285–320. https://doi.org/10.1180/minmag.2007.071.3.285

    Article  Google Scholar 

  89. Tschermak G (1866) Felsarten von ungewöhnlicher Zusammensetzung in der Umgebungen von Teschen und Neutitschein. Sitz-Ber K Akad Wiss. math-naturwiss Kl 53:260–287 (in German)

    Google Scholar 

  90. Urubek T, Dolníček Z, Kropáč K (2014) Genesis of syntectonic hydrothermal veins in the igneous rocks of the teschenite association (Outer Western Carpathians, Czech Republic): growth mechanism and origin of fluids. Geol Carpath 65:419–431. https://doi.org/10.1515/geoca-2015-0003

    Article  Google Scholar 

  91. Vašíček Z (1972) Report on the macropaleontological research of the Silesian Unit in 1971. Sbor Věd Prací Vys Šk báň v Ostravě. Ř horn-geol 18:97–115 (in Czech with English summary)

    Google Scholar 

  92. Velikoslavinskii SD, Krylov DP (2014) Geochemical discrimination of basalts formed in major geodynamic settings. Geotectonics 48:427–439. https://doi.org/10.1134/S0016852114060077

    Article  Google Scholar 

  93. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  94. Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibbon MA, Shanks WC III, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

  95. Włodyka R (2010) The evolution of mineral composition of the Cieszyn magma province rocks. Wydawnictvo Universitetu Šląskiego, Katowice (in Polish with English summary)

    Google Scholar 

  96. Yavuz F, Kumral M, Karakaya N, Karakaya MC, Yildirim DK (2015) A Windows program for chlorite calculation and classification. Comput Geosci 81:101–113. https://doi.org/10.1016/j.cageo.2015.04.011

    Article  Google Scholar 

  97. Zhang D, Zhang Z, Santosh M, Cheng Z, Huang H, Kang J (2013) Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth Planet Sc Lett 361:238–248. https://doi.org/10.1016/j.epsl.2012.10.034

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the Ministry of Education, Youth and Sports of the Czech Republic (Grant number SGS2018/33). Some of the analytical work was performed using equipment that was financed by the project “Institute of Clean Technologies for Mining and Utilisation of Raw Materials for Energy”, reg. no. LO1406, and supported by the “Research and Development for Innovations Operational Programme”, which is financed by structural funds from the European Union and the state budget of the Czech Republic. The authors are grateful to V. Rapprich and a second (anonymous) reviewer, whose comments and suggestions helped to improve the scientific content of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jakub Jirásek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1662 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matýsek, D., Jirásek, J., Skupien, P. et al. The Žermanice sill: new insights into the mineralogy, petrology, age, and origin of the teschenite association rocks in the Western Carpathians, Czech Republic. Int J Earth Sci (Geol Rundsch) 107, 2553–2574 (2018). https://doi.org/10.1007/s00531-018-1614-x

Download citation

Keywords

  • Teschenite
  • Meta-basalt
  • Cretaceous
  • Silesian Basin
  • Western Carpathians