Skip to main content
Log in

The Žermanice sill: new insights into the mineralogy, petrology, age, and origin of the teschenite association rocks in the Western Carpathians, Czech Republic

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Žermanice locality represents the best-exposed example of the meta-basaltoid/meta-gabbroic rock type of the teschenite association. It forms a subhorizontal volcanic body (sill) 27–30 m thick. The subvolcanic rock is inhomogeneous and slightly differentiated. The predominant rock type is a basaltoid (diabase-dolerite), medium-grained, speckled, mesocratic rock exhibiting an evident subophitic texture. Miarolitic cavities are abundant in some places. The major rock constituents are albite, microcline, chlorite, and pyroxene, as well as analcime and plagioclase in places. The accessory magmatic phases are biotite, ilmenite, fluorapatite, sulphides, Ti-rich magnetite, Nb-rich baddeleyite, and chevkinite–(Ce) or perrierite–(Ce). A large extent of alteration is evident from the presence of chloritization, albitization of plagioclases, and zeolitization (analcimization). Geochemical analyses reveal an affinity for metaluminous igneous rocks. The best fit is with the within-plate basalts or the within-plate volcanic zones. The classification of this rock is problematic because of the mixed intrusive and extrusive features; the choice is between meta-alkali basalt and metadolerite (meta-microgabbro). 207Pb common lead-corrected U–Pb apatite dating yields a weighted mean age of 120.4 ± 9.6 Ma, which corresponds to the middle Aptian. The igneous body is at most ca. 10 Ma younger than the surrounding late Hauterivian sediments and might have been emplaced into unconsolidated or partly consolidated sediments. According to our research, it is evident that at least some teschenite association rocks are in fact low-grade metamorphic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Akaimoto T, Kinoshita H, Furuta T (1984) Electron probe microanalysis study on processes of low-temperature oxidation of titanomagnetite. Earth Planet Sc Lett 71:263–278. https://doi.org/10.1016/0012-821X(84)90091-8

    Article  Google Scholar 

  • Árkai P, Ghabrial DS (1997) Chlorite crystallinity as an indicator of metamorphic grade of low-temperature meta-igneous rocks: a case study from the Bükk Mountains, northeast Hungary. Clay Miner 32:205–222. https://doi.org/10.1180/claymin.1997.032.2.04

    Article  Google Scholar 

  • Árkai P, Sassi FP, Desmons J (2003) Very low- to low-grade metamorphic rocks. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. https://www.bgs.ac.uk/scmr/docs/papers/paper_5.pdf. Accessed 10 Nov 2016

  • Bagiński B, Macdonald R (2013) The chevkinite group: underestimated accessory phases from a wide range of parageneses. Mineralogia 44:99–114. https://doi.org/10.2478/mipo-2013-0006

    Article  Google Scholar 

  • Bellatreccia F, Ventura Della G, Williams TC, Parodi GC (1998) Baddeleyite from the Vico volcanic complex (Latium, Italy). Rendiconti Lincei 9:27–33. https://doi.org/10.1007/BF02904453

    Article  Google Scholar 

  • Buriánek D, Bubík M (2012) Rocks of teschenite association in the surroundings of Valašského Meziříčí. Acta Mus Morav Sci Geol 97:105–127 (in Czech with English abstract)

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204

    Google Scholar 

  • De Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clay Clay Miner 41:219–239. https://doi.org/10.1346/CCMN.1993.0410210

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (2004) Rock-forming minerals, vol 4B: framework silicates—silica minerals, feldspathoids and zeolites, 2nd edn. Geological Society of London, London

    Google Scholar 

  • Dolezalova M, Hladik I (2005) Viscoplastic flow of soft rock in foundation of Zermanice Dam. In: Konečný P (ed) Eurock 2005—impact of human activity on the geological environment. Taylor & Francis Group, London, pp 230–257

    Google Scholar 

  • Dolezalova M, Hladik I, Zemanova V (2005) Numerical analysis of unusual behavior of Zermanice dam. In: Barla G, Barla M (eds) Proceedings of the Eleventh international conference on computer methods and advances in geomechanics, vol 3. Pàtron Editore, Bologna, pp 403–410

  • Dostal J, Owen JV (1998) Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. Geol Rundsch 87:67–77. https://doi.org/10.1007/s005310050190

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435. https://doi.org/10.1180/minmag.1987.051.361.10

    Article  Google Scholar 

  • Dudek A, Hejtman B (1953) Zpráva o výzkumu těšinitu z nového lomu u Žarmanické přehrady s ohledem na jeho použití jako štěrku do betonu. MS, Archive of the Czech Geological Survey—Geofond (in Czech)

  • EDAX (2003) Genesis spectrum user’s manual. Edax Inc., Mahwah

    Google Scholar 

  • Eliáš M, Skupien P, Vašíček Z (2003) A proposal for the modification of the lithostratigraphical division of the lower part of the Silesian Unit in the Czech area (Outer Western Carpathians). Sbor Věd Prací Vys Šk báň v Ostravě. Ř horn-geol 49:7–13 (in Czech with English summary)

    Google Scholar 

  • Gartner O (1948) Technicko-geologický a petrografický posudek o staveništi projektované přehrady na Lucině u Žermanic. MS, Archive of the Czech Geological Survey—Geofond (in Czech)

  • Gehrels GE, Valencia V, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem Geophy Geosy 9:1–13. https://doi.org/10.1029/2007GC001805

    Article  Google Scholar 

  • Gerke TL, Kilinc AI, Sack RO (2005) Ti-content of high-Ca pyroxenes as a petrographic indicator: an experimental study of Mafic Alkaline Rocks from the Mt. Erebus volcanic region, Antarctica. Contrib Miner Petrol 148:735–745. https://doi.org/10.1007/s00410-004-0636-5

    Article  Google Scholar 

  • Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073. https://doi.org/10.2113/gscanmin.38.5.1065

    Article  Google Scholar 

  • Grabowski J, Krzemiński L, Nescieruk P, Szydło A, Paszkowski M, Pécskay Z, Wójtowicz A (2003) Geochronology of teschenitic intrusions in the Outer Western Carpathians of Poland—constraints from 40K/40Ar ages and biostratigraphy. Geol Carpath 54:385–393

    Google Scholar 

  • Haraňczyk C, Mahmood A, Narebşki W (1971) Titanomaghemite in theralitic teschenite from Pastwiska near Cieszyn (Polish Carpathians). B Pol Acad Sci-Tech 19:223–231

    Google Scholar 

  • Harangi S, Tonarini S, Vaselli O, Manetti P (2003) Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: implications for a long-lived EAR-type mantle component beneath Europe. Acta Geol Hung 46:77–94. https://doi.org/10.1556/AGeol.46.2003.1.6

    Article  Google Scholar 

  • Harrison R, Putnis A (1999) The magnetic properties and crystal chemistry of oxide spinel solid solutions. Surv Geophys 19:461–520. https://doi.org/10.1023/A:1006535023784

    Article  Google Scholar 

  • Heaman LM, LeCheminant AN (1993) Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chem Geol 110:95–126. https://doi.org/10.1016/0009-2541(93)90249-I

    Article  Google Scholar 

  • Hekinian R (1982) Petrology of the ocean floor. Elsevier Oceanography Series, vol 33. Elsevier, New York

    Chapter  Google Scholar 

  • Hohenegger L (1861) Die geognostischen Verhältnisse der Nordkarpaten in Schlesien und den angrenzenden Teilen von Mähren und Galizien als Erläuterung zu der geognostischen Karte der Nordkarpaten. J Perthes, Gotha (in German)

  • Hovorka D, Spišiak J (1988) Mesozoic Volcanism of the Western Carpathians. Veda (in Slovak with English summary)

  • Hovorka D, Spišiak J (1993) Mesozoic volcanic activity of the Western Carpathian segment of the Tethyan Belt: Diversities in space and time. Jb Geol Bundesanst 136:769–782

    Google Scholar 

  • Hubicka-Ptasiňska M, Jasieňska S (1971) Electron microprobe studies on the transformation of titanomagnetite occurring in the Cieszyn Silesia teschenite. Mineral Pol 2:15–24

    Google Scholar 

  • Huraiová M, Konečný P, Hurai V (2007) Chevkinite-(Ce)—REE-Ti silicate from syenite xenoliths in the Pinciná basaltic maar near Lučenec (Southern Slovakia). Mineralia Slovaca 39:255–266 (in Slovak with English abstract)

    Google Scholar 

  • Ivan P, Hovorka D, Méres Š (1999) Riftogenic volcanism in the Western Carpathian geological history: a review. Geolines 9:41–47

    Google Scholar 

  • Ivanyuk GY, Kalashnikov AO, Pakhomorovsky YaA, Mikhailova JA, Yakovenchuk VN, Konopleva NG, Sokharev VA, Bazai AV, Goryainov PM (2016) Economic minerals of the Kovdor baddeleyite-apatite-magnetite deposit, Russia: mineralogy, spatial distribution and ore processing optimization. Ore Geol Rev 77:279–311. https://doi.org/10.1016/j.oregeorev.2016.02.008

    Article  Google Scholar 

  • Jirásek J, Dolníček Z, Matýsek D, Urubek T (2017) Genetic aspects of barite mineralization related to rocks of the teschenite association in the Silesian Unit, Outer Western Carpathians, Czech Republic. AM J Sci 68:119–129. https://doi.org/10.1515/geoca-2017-0010

    Article  Google Scholar 

  • Jones JG (1969) Pillow lavas as depth indicators. Am J Sci 267:181–195. https://doi.org/10.2475/ajs.267.2.181

    Article  Google Scholar 

  • Kapusta J, Włodyka R (1997) The X-ray powder diffraction profile analysis of analcimes from the teschenitic sills of the Outer Carpathians, Poland. Neues Jb Miner Monat 6:241–255

    Google Scholar 

  • Kato M, Hattori T (1998) Ordered distribution of aluminium atoms in analcime. Phys Chem Miner 25:556–565. https://doi.org/10.1007/s002690050148

    Article  Google Scholar 

  • Kim K-T, Burley BJ (1980) A further study of analcime solid solutions in the system NaAlSi3O8–NaAlSiO4–H2O, with particular note of an analcime phase transformations. Mineral Mag 43:1035–1045. https://doi.org/10.1180/minmag.1980.043.332.13

    Article  Google Scholar 

  • Klvaňa J (1897) Tešenity a pikrity na severovýchodní Moravě. Rozpr Čes Akad Věd, Tř. 2 1:1–93 (in Czech)

  • Kohn SC, Henderson CMB, Dupree R (1997) Si-Al ordering in leucite group minerals and ion-exchanged analogues: an MAS NMR study. Am Mineral 82:1133–1140

    Article  Google Scholar 

  • Kranidiotis P, MacLean W (1987) Systematic of chlorite alteration the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:1898–1911. https://doi.org/10.2113/gsecongeo.82.7.1898

    Article  Google Scholar 

  • Kropáč K, Dolníček Z, Uher P, Urubek T (2017) Fluorcaphite from hydrothermally altered teschenite at Tichá, Outer Western Carpathians, Czech Republic: composition variations and origin. Mineral Mag 81:1485–1501. https://doi.org/10.1180/minmag.2017.081.016

    Article  Google Scholar 

  • Kruťa T (1973) Silesian Minerals and Their Literature. Moravské museum, Brno (in Czech with English summary)

    Google Scholar 

  • Kudělásek V, Matýsek D, Klika Z (1987) Datolite occurrences in the area of rocks of the teschenite association (northern Moravia). Čas Mineral Geol 32:169–174 (in Czech with English summary)

    Google Scholar 

  • Kudělásková J (1987) Petrology and geochemistry of selected rock types of teschenite association, Outer Western Carpathians. Geol Carpath 38:545–573

    Google Scholar 

  • Le Maitre RW (ed) (2002) Igneous rocks. A classification and glossary of terms. recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd edn. Cambridge Univerity Press, Cambridge

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Liou JG (1971) Analcime equilibria. Lithos 4:389–402. https://doi.org/10.1016/0024-4937(71)90122-8

    Article  Google Scholar 

  • Lucińska-Anczkiewicz A, Villa IM, Anczkiewicz R, Ślączka A (2002) 40Ar/39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. Geol Carpath 53:45–52

    Google Scholar 

  • Ludwig KR (2008) Isoplot 3.60. Special Publication No. 4. Berkeley Geochronology Center, Berkeley

    Google Scholar 

  • Macdonald R, Marshall AS, Dawson JB, Hinton RW, Hill PG (2002) Chevkinite-group minerals from salic volcanic rocks of the East Africa Rift. Miner Mag 66:287–299. https://doi.org/10.1180/0026461026620029

    Article  Google Scholar 

  • Macdonald R, Belkin HE, Wall F, Bagiński B (2009) Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks. Miner Mag 73:777–796. https://doi.org/10.1180/minmag.2009.073.5.777

    Article  Google Scholar 

  • Machek P, Matýsek D (1994) Mathematical-statistical study of chemical composition of the teschenite association rocks. Sbor Geol Věd Ř Geol 46:125–141

    Google Scholar 

  • Mandour MA (1981) Geochemical and mineralogical studies of the Subbeskydy teschenitic association, Czechoslovakia. Ph.D. thesis, Vysoká škola báňská, Ostrava

  • Matýsek D (1988) Contact metamorphism of rocks of the teschenite association. Čas Slez Muz Ser A 37:77–86 (in Czech with English and Russian summary)

    Google Scholar 

  • Matýsek D (1992) Contact metamorphism connected with the intrusion of teschenite association rocks in Krmelín locality, Northern Moravia, Czechoslovakia. Acta Mus Morav Sci Nat 77:29–39 (in Czech with English abstract)

    Google Scholar 

  • Matýsek D, Jirásek J (2016) Occurrences of slawsonite in rocks of the teschenite association in the Podbeskydí piedmont area (Czech Republic) and their petrological significance. Can Miner 54:1129–1146. https://doi.org/10.3749/canmin.1500101

    Article  Google Scholar 

  • Mazzi F, Galli E (1978) Is each analcime different? Am Miner 63:448–460

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, Jurková A, Hanzlíková E, Houša V, Peslová H, Rybářová L, Šmíd B, Šebesta J, Tyráček J, Vašíček Z (1983) Geology of the Moravskoslezské Beskydy Mts. and the Podbeskydská Pahorkanina Upland. Ústřední ústav geologický, Praha (in Czech with English summary)

    Google Scholar 

  • Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Ac 66:1185–1196. https://doi.org/10.1016/S0016-7037(01)00849-3

    Article  Google Scholar 

  • Morimoto N, Fabres J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Miner 73:1123–1133

    Google Scholar 

  • Narebşki W (1990) Early rift stage in the evolution of western part of the Carpathians: geochemical evidence from limburgite and teschenite rock series. Geol Carpath 41:521–528

    Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Miner 77:1242–1249

    Google Scholar 

  • Oszczypko N (2006) Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geol Q 50:169–194

    Google Scholar 

  • Pacák O (1926) Sopečné horniny na severním úpatí Bezkyd Moravských. Česká akademie věd a umění, Praha (in Czech)

  • Pearce JA (1996) A User’s Guide to Basalt Discrimination Diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, vol 12, pp 79–113

  • Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Shiva Press, Nantwich, pp 373–403. https://doi.org/10.1144/GSL.SP.1993.076.01.19

    Chapter  Google Scholar 

  • Picha F, Stráník Z, Krejčí O (2006) Geology and hydrocarbon resources of the Outer Western Carpathians and their foreland, Czech Republic. In: Golonka J, Picha J (eds) The Carpathians and their foreland: geology and hydrocarbon resources. AAPG Memoir, vol 84, Tulsa, pp 49–175. https://doi.org/10.1306/985607M843067

  • Poprawa P, Malata T, Oszczypko N (2002) Tectonic evolution of the Polish part of the Outer Carpathianʼs sedimentary basins—constraints from subsidence analysis. Prz Geol 50:1092–1108 (in Polish with English abstract)

    Google Scholar 

  • Price GD (1981) Subsolidus phase relationship in the titanomagnetite solid solution series. Am Mineral 66:731–758

    Google Scholar 

  • Price GD (1982) Exsolution in titanomagnetites as an indicator of cooling rates. Miner Mag 46:19–25. https://doi.org/10.1180/minmag.1982.046.338.04

    Article  Google Scholar 

  • Rosenbusch H (1887) Mikroskopische Physiographie der massigen Gesteine, 2. Aufl. E. Schweizerbart, Stuttgart (in German)

    Google Scholar 

  • Sabine PA, Harrison RK, Lawson RI (1985) Classification of volcanic rocks of the British Isles on the total alkali oxide-silica diagram, and the significance of alteration. Br Geol Survey Rep 17:1–9

    Google Scholar 

  • Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine crystallization. Lithos 10:113–120. https://doi.org/10.1016/0024-4937(77)90037-8

    Article  Google Scholar 

  • Skupien P, Pavluš J (2013) A contribution to the knowledge of stratigraphic position of magmatic rocks of teschenite association in the Silesian Unit. Geol Výzk Mor Slez 20:96–99 (in Czech with English abstract)

    Google Scholar 

  • Skupien P, Matýsek D, Jirásek J, Stelmach P (2017) Palynostratigraphy and mineralogy of the black shales accompanying teschenite association rocks in the Žermanice Quarry. Geosci Res Rep 50:263–267 (in Czech with English abstract)

    Google Scholar 

  • Šmíd B (1976) Výzkum vyvřelých hornin těšínitové asociace v oblasti mezi Jasenicí u Valašského Meziříčí a Bludovicemi u Nového Jičína. MS, Česká geologická služba, Praha (in Czech)

    Google Scholar 

  • Smith PPK (1980) Spinodal decomposition in a titanomagnetite. Am Miner 65:1038–1043. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Smulikowski K (1930) Les roches éruptives de la zone subbeskidique en Silésie et Moravie. Kosmos 54:749–850 (in French)

    Google Scholar 

  • Smulikowski K (1980) Comments on the Cieszyn magmatic province (West Carpathian Flysch). Ann Soc Geol Pol 50:41–54 (in Polish with English abstract)

    Google Scholar 

  • Smulikowski W, Desmons J, Fettes DJ, Harte B, Sassi FP, Schmid R (2003) Types, grade and facies of metamorphism. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. https://www.bgs.ac.uk/scmr/docs/papers/paper_2.pdf. Accessed 8 Nov 2016

  • Snyder GL, Fraser GD (1963) Pillowed lavas, I: Intrusive layered lava pods and pillowed lavas Unalaska Island, Alaska and Pillowed lavas, II: A review of selected recent literature. Geological Survey Professional Papers 454-B,C. United States government printing office, Washington

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a twostage model. Earth Planet Sc Lett 26:207–221. https://doi.org/10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society of London, London, pp 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Chapter  Google Scholar 

  • Szopa K, Włodyka R, Chew D (2014) LA-ICP-MS U–Pb apatite datting of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geol Carpath 65:273–284. https://doi.org/10.2478/geoca-2014-0018

    Article  Google Scholar 

  • Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R (2012) Routine low-damage apatite U–Pb dating using laser ablation–multicollector–ICPMS. Geochem Geophy Geosy 13:1–23. https://doi.org/10.1029/2011GC003928

    Article  Google Scholar 

  • Tischendorf G, Förster H-J, Gottesmann B, Rieder M (2007) True and brittle micas: composition and solid-solution series. Miner Mag 73:285–320. https://doi.org/10.1180/minmag.2007.071.3.285

    Article  Google Scholar 

  • Tschermak G (1866) Felsarten von ungewöhnlicher Zusammensetzung in der Umgebungen von Teschen und Neutitschein. Sitz-Ber K Akad Wiss. math-naturwiss Kl 53:260–287 (in German)

    Google Scholar 

  • Urubek T, Dolníček Z, Kropáč K (2014) Genesis of syntectonic hydrothermal veins in the igneous rocks of the teschenite association (Outer Western Carpathians, Czech Republic): growth mechanism and origin of fluids. Geol Carpath 65:419–431. https://doi.org/10.1515/geoca-2015-0003

    Article  Google Scholar 

  • Vašíček Z (1972) Report on the macropaleontological research of the Silesian Unit in 1971. Sbor Věd Prací Vys Šk báň v Ostravě. Ř horn-geol 18:97–115 (in Czech with English summary)

    Google Scholar 

  • Velikoslavinskii SD, Krylov DP (2014) Geochemical discrimination of basalts formed in major geodynamic settings. Geotectonics 48:427–439. https://doi.org/10.1134/S0016852114060077

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibbon MA, Shanks WC III, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

  • Włodyka R (2010) The evolution of mineral composition of the Cieszyn magma province rocks. Wydawnictvo Universitetu Šląskiego, Katowice (in Polish with English summary)

    Google Scholar 

  • Yavuz F, Kumral M, Karakaya N, Karakaya MC, Yildirim DK (2015) A Windows program for chlorite calculation and classification. Comput Geosci 81:101–113. https://doi.org/10.1016/j.cageo.2015.04.011

    Article  Google Scholar 

  • Zhang D, Zhang Z, Santosh M, Cheng Z, Huang H, Kang J (2013) Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth Planet Sc Lett 361:238–248. https://doi.org/10.1016/j.epsl.2012.10.034

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the Ministry of Education, Youth and Sports of the Czech Republic (Grant number SGS2018/33). Some of the analytical work was performed using equipment that was financed by the project “Institute of Clean Technologies for Mining and Utilisation of Raw Materials for Energy”, reg. no. LO1406, and supported by the “Research and Development for Innovations Operational Programme”, which is financed by structural funds from the European Union and the state budget of the Czech Republic. The authors are grateful to V. Rapprich and a second (anonymous) reviewer, whose comments and suggestions helped to improve the scientific content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Jirásek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1662 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matýsek, D., Jirásek, J., Skupien, P. et al. The Žermanice sill: new insights into the mineralogy, petrology, age, and origin of the teschenite association rocks in the Western Carpathians, Czech Republic. Int J Earth Sci (Geol Rundsch) 107, 2553–2574 (2018). https://doi.org/10.1007/s00531-018-1614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-018-1614-x

Keywords

Navigation