SHRIMP U–Pb detrital zircon dating to check subdivisions in metamorphic complexes: a case of study in the Nevado–Filábride complex (Betic Cordillera, Spain)

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

U–Pb dating on inherited detrital zircons has been applied to obtain the probable maximum age of deposition of the detrital protolith of the Nevado–Filábride complex (Betic Cordillera, Spain). Five of eight samples correspond to the lower part of the lithologic sequence of this complex, where radiometric dating of metasediments has not been presented till the present. The youngest age populations in the majority of samples are Carboniferous. The estimation of the maximum age of deposition in the lower and upper units is 349.1 ± 1.6 and 334.6 ± 2.9 Ma, respectively. In addition, samples show common age populations at ca. 490–630 and ca. 910–1010 Ma. Observations agree with the Carboniferous to early Permian U–Pb ages previously obtained in orthogneisses levels which are situated in the upper part of the complex. Combination of the minimum age of deposition deducible from the orthogneisses studies and the maximum ages of deposition obtained from the detrital zircons of this work, allow establishing the deposition of de studied lithological succession comprised between ca. 282 and 349 Ma or a shorter period.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:3–4, 249–270

    Article  Google Scholar 

  2. Andriessen PAM, Hebeda EH, Simon OJ, Verschure RH (1991) Tourmaline K–Ar ages compared to other radiometric dating systems in Alpine anatectic leucosomes and metamorphic rocks (Cyclades and Southern Spain). Chem Geol 91:33–48

    Article  Google Scholar 

  3. Augier R, Booth-Rea G, Agard P, Martínez-Martínez JM, Jolivet L, Azañón JM (2005) Exhumation constraints for the lower Nevado–Filabride Complex (Betic Cordillera, SE Spain): a Raman thermometry and Tweequ multiequilibrium thermobarometry approach. B Soc Geol Fr 176(5):403–416

    Article  Google Scholar 

  4. Behr WM, Platt JP (2012) Kinematic and thermal evolution during two-stage exhumation of a Mediterranean subduction complex. Tectonics 31:4

    Article  Google Scholar 

  5. Belousova EA, Griffin WL, O´Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian Granitoids. J Petrol 47:329–353

    Article  Google Scholar 

  6. Booth-Rea G, Martínez-Martínez JM, Giaconia F (2015) Continental subduction, intracrustal shortening and coeval upper-crustal extension: P-T evolution of subducted south-Iberian paleomargin metapelites (Betics, SE Spain). Tectonophysics 663:122–139

    Article  Google Scholar 

  7. Brouwer HA (1926) Zur Tektonik der betischen Kordilleren. Geol Rundsch 17:332–336

    Article  Google Scholar 

  8. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineralogical Society of America, Washington DC, pp 469–500

    Google Scholar 

  9. Davis DW, Williams IS, Krogh TE (2003) Historical development of U–Pb geochronology. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineralogical Society of America, Washington DC, pp 145–181

    Google Scholar 

  10. de Jong K (1991) Tectonometamorphic studies and radiometric dating in the Betic Cordilleras (SE Spain) - with implications for the dynamics of extension and compression in the western Mediterranean area. Thesis Vrije Universiteit Amsterdam, p 204

  11. de Jong K (1993) The tectonometamorphic evolution of the Veleta Complex and the development of the contact with the Mulhacén Complex (Betic Zone, SE Spain). Geol Mijnbouw 71:227–237

    Google Scholar 

  12. de Jong K, Bakker H (1991) The Mulhacen and Alpujarride Complex in the eastern Sierra de los Filabres, SE Spain: litho-stratigraphy. Geol Mijnbouw 70:93–103

    Google Scholar 

  13. Dickinson WR, Gehrels G (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125

    Article  Google Scholar 

  14. Díez Fernández R, Martínez Catalán JR, Gerdes A, Abati J, Arenas R, Fernández-Suárez J (2010) U–Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Res 8(2–3):385–399

    Article  Google Scholar 

  15. Egeler CG (1963) On the tectonics of the eastern Betic Cordilleras. Geol Rundsch 53:260–269

    Article  Google Scholar 

  16. Egeler CG, Simon OJ (1969) Orogenic evolution of the Betic zone (Betic cordilleras, Spain), with emphasis on the nappe structures. Geol Mijnbouw 48:296–305

    Google Scholar 

  17. Ewing R, Meldrum A, Wang L, Weber W, Corrales L (2003) Radiation effects in zircon. Rev Mineral Geochem 53:387–425

    Article  Google Scholar 

  18. Fallot P (1948) Les Cordillères bétiques. Estud Geol 4:83–173

    Google Scholar 

  19. Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem 53:277–303

    Article  Google Scholar 

  20. Galindo-Zaldívar J (1993) Geometría de las deformaciones neógenas en Sierra Nevada (Cordilleras Béticas). Monografía Tierras del Sur, Granada

    Google Scholar 

  21. Gärtner A, Linnemann U, Sagawe A, Hofmann M, Ullrich B, Kleber A (2013) Morphology of zircon crystal grains in sediments-characteristics, classifications, definitions. J Central Eur Geol 59:65–73

    Google Scholar 

  22. Gehrels G (2012) Detrital zircon U–Pb geochronology: current methods and new opportunities. In: Busby C, Azor A (eds) Tectonics of sedimentary basins: recent advances. Wiley-Blackwel, Chichester, pp 47–62

    Google Scholar 

  23. Gehrels G (2014) Detrital zircon U–Pb geochronology applied to tectonics. Annu Rev Earth Planet Sci 42:127–149

    Article  Google Scholar 

  24. Gómez-Pugnaire MT, Chacón J, Mitrofanov F, Timofeev V (1982) First report on pre-Cambrian rocks in the graphite-bearing series of the Nevado–Filábride Complex (Betic Cordilleras, Spain). N Jb Geol Paliíont Mh 3:176–180

    Google Scholar 

  25. Gómez-Pugnaire MT, Braga JC, Martín JM, Sassi FP, Del Moro A (2000) Regional implications of a Palaeozoic age for the Nevado–Filabride cover of the Betic Cordillera, Spain. Schweiz Miner Petrogr Mitt 80:45–52

    Google Scholar 

  26. Gómez-Pugnaire MT, Galindo-Zaldívar J, Rubato D, González-Lodeiro F, López Sánchez-Vizcaino V, Jabaloy A (2004) A reinterpretation of the Nevado–Filábride and Alpujárride Complexes (Betic Cordillera): field, petrography and U–Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Miner Petrogr Mitt 84:303–322

    Google Scholar 

  27. Gómez-Pugnaire MT, Rubatto D, Fernández-Soler JM, Jabaloy A, López-Sánchez-Vizcaíno V, González-Lodeiro F, Galindo-Zaldívar J, Padrón-Navarta JA (2012) Late Variscan magmatism in the Nevado–Filábride Complex: U–Pb geochronologic evidence for the pre-Mesozoic nature of the deepest Betic complex (SE Spain). Lithos 146–147:93–111

    Article  Google Scholar 

  28. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon: rev mineral geochem, vol 53. Mineralogical Society of America, Washington DC, pp 27–62

    Google Scholar 

  29. Kirkland CL, Strachan RA, Prave AR (2008) Detrital zircon signature of the Moine Supergroup, Scotland: contrasts and comparisons with other Neoproterozoic successions within the circum-North Atlantic region. Precambrian Res 163:332–350

    Article  Google Scholar 

  30. Kosler J, Sylvester PJ (2003) Present trends and the future of zircon in U–Pb geochronology: laser ablation ICPMS. In: Hanchar JM, Hoskin PWO (eds) Zircon: rev mineral geochem, vol 53. Mineralogical Society of America, Washington DC, pp 243–275

    Google Scholar 

  31. Laborda-López C, Aguirre J, Stephen K, Donovan SK, Navas-Parejo P, Rodríguez S (2015) Fossil assemblages and biostratigraphy of metamorphic rocks of Nevado–Filábride Complex from the Águilas tectonic arc (SE Spain). Span J Palaeontol 30(2):275–292

    Google Scholar 

  32. Lafuste MLJ, Pavillon MJ (1976) Mise en évidence d´Eifélien daté au sein des terrains métamorphiques des zones internes des Cordillères bétiques. Intérêt de ce nouveau repére stratigraphique. CR Acad Sci Paris 283(2):1015–1018

    Google Scholar 

  33. Litty C, Lanari P, Burn M, Schlunegger F (2017) Climate-controlled shifts in sediment provenance inferred from detrital zircon ages, Western Peruvian Andes. Geology 45:59–62

    Article  Google Scholar 

  34. López-Sánchez-Vizcaíno V, Rubatto D, Gómez-Pugnaire MT, Trommsdorff V, Müntener O (2001) Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado–Filábride Complex, SE Spain. Terra Nova 13:327–332

    Article  Google Scholar 

  35. Ludwig K (2008) User’s manual for Isoplot 3.6: a geochronological toolkit for Microsoft Excel, Berkeley Geochronology Centre. Spec Pub 4:1–71

    Google Scholar 

  36. Martínez-Martínez JM, Soto JI, Balanyá JC (2002) Orthogonal folding of extensional detachments: structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain). Tectonics 21:1–22

    Article  Google Scholar 

  37. Martínez-Martínez JM, Torres-Ruiz J, Pesquera A, Gil-Crespo PP (2010) Geological relationships and U–Pb zircon and 40 Ar/39Ar tourmaline geochronology of gneisses and tourmalinites from the Nevado–Filabride Complex (western Sierra Nevada, Spain): tectonic implications. Lithos 119:238–250

    Article  Google Scholar 

  38. Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res 23(2):661–665

    Article  Google Scholar 

  39. Monié P, Galindo-Zaldívar J, González-Lodeiro F, Goffé B, Jabaloy A (1991) 40Ar/39Ar geochronology of Alpine tectonism in the Betic Cordilleras (southern Spain). J Geol Soc Lond 148:288–297

    Article  Google Scholar 

  40. Nieto JM (1996) Petrología y geoquímica de los ortogneises del complejo del Mulhacén, Cordilleras Béticas. Universidad de Granada, Granada

    Google Scholar 

  41. Nieto JM, Puga E, Monié P, Díaz de Federico A, Jagoutz E (1997) High-pressure metamorphism in metagranites and orthogneisses from the Mulhacén Complex (Betic Cordillera, Spain). Terra Nova 9(Supl):22–23 (abstract 1)

    Google Scholar 

  42. Pérez-Cáceres I, Martínez Poyatos D, Simancas JF, Azor A (2017) Testing the Avalonian affinity of the South Portuguese Zone and the Neoproterozoic evolution of SW Iberia through detrital zircon populations. Gondwana Res 42:177–192

    Article  Google Scholar 

  43. Priem HNA, Boelrijk NAJM., Hebeda EH, Verschure RM (1966) Isotopic age determinations on tourmaline granite-gneiss and a metagranite in the Eastern Betic Cordilleras, SE Spain. Geol Mijnbouw 45:184–187

    Google Scholar 

  44. Puga E (1976) Investigaciones petrológicas en Sierra Nevada Occidental. Ph. D. Thesis, Universidad de Granada, p 279

  45. Puga E, Díaz de Federico A, Nieto JM (2002) Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: a review. Geodin Acta 15:23–43

    Article  Google Scholar 

  46. Rodríguez R, Jabaloy A, Navas P, Martín-Algarra A (2017) Lower Bashkirian conodonts from the Nevado-Filabride complex (Betic Cordilleras, Spain): tectonic and palaeogeographic implications. Geophys Res Abstr 19:13925

    Google Scholar 

  47. Rónadh C, Coleman DS, Chokel CB, DeOreo SB, Wooden JL, Collins AS, De Waele B, Kröner A (2004) Proterozoic tectonostratigraphy and paleogeography of Central Madagascar derived from detrital zircon U–Pb age populations. J Geol 112(4):379–399

    Article  Google Scholar 

  48. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184(1–2):123–138

    Article  Google Scholar 

  49. Rubatto D (2017) Zircon: the metamorphic mineral. Rev Mineral Geochem 83:261–295

    Article  Google Scholar 

  50. Rubatto D, Scambelluri M (2003) U–Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps). Contrib Mineral Petrol 146(3):341–355

    Article  Google Scholar 

  51. Rubatto D, Schaltegger U, Lombardo B, Colombo F, Compagnoni R (2001) Complex Paleozoic magmatic and metamorphic evolution in the Argenteramassif (Western Alps), resolved with U–Pb dating. Schweiz Mineral Petrogr Mitt 81:213–228

    Google Scholar 

  52. Ruiz-Cruz MD, Sanz de Galdeano C (2017) Genetic significance of zircon in orthogneisses from Sierra Nevada (Betic Cordillera, Spain). Mineral Mag 81(1):77–101

    Article  Google Scholar 

  53. Sanz de Galdeano C, López-Garrido AC (2016) The Nevado–Filábride Complex in the western part of Sierra de los Filabres (Betic Internal Zone). Structure and lithological succession. Boletín Geológico y Minero 127(4):823–836

    Article  Google Scholar 

  54. Sanz de Galdeano C, López-Garrido AC, Santamaría-López A (2016) Major scale structure of the marbles situated between Cóbdar and Macael (Nevado-Filabride Complex, Betic Cordillera, Almería province, Spain), and general stratigraphic arrangement. J Geol Soc Spain 29(2):107–116

    Google Scholar 

  55. Schoene B (2014) U–Th–Pb geochronology. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Oxford, pp 341–378

    Google Scholar 

  56. Tendero JA, Martín-Algarra A, Puga E, Díaz de Federico A (1993) Lithostratigraphie des métasédiments de l’association ophiolitique Nevado–Filábride (SE Espagne) et mise en évidence d’objets ankéritiques évocant des foraminifères planctoniques du Crétacé: conséquences paléogéographiques. CR Acad Sci Paris 316:1115–1122

    Google Scholar 

  57. Thomson KD, Stockli DF, Clark JD, Puigdefàbrega C, Fildani A (2017) Detrital zircon (U–Th)/(He–Pb) double-dating constraints on provenance and foreland basin evolution of the Ainsa Basin, south-central Pyrenees, Spain. Tectonics 36:1352–1375

    Article  Google Scholar 

  58. Vermeesch P (2012) On the visualization of detrital age distributions. Chem Geol 312–313:190–194

    Article  Google Scholar 

  59. Wu Y, Zheng Y (2004) Genesis of zircon and its constraints on interpretation of U–Pb age. Chinese Sci Bull 49(15):1554–1569

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Urs Klötzli and Jesús Galindo, whose inestimable reviews have been of great help to improve the work. They would also like to express our gratitude to María Dolores Ruiz Cruz for the revision of the manuscript; Pierre Lanari (Institute of Geological Sciences, University of Bern) and Irene Pérez (Facultad de Ciencias, Universidad de Granada) for their useful comments on the manuscript; Pilar Montero and Fernando Bea (Facultad de Ciencias, Universidad de Granada) for gathering and processing the SHRIMP data; Isabel Nieto for extracting and separating the zircons; and Isabel Sánchez of CIC (Facultad de Ciencias, Universidad de Granada) for her help in gathering the SEM data. This study was supported by the Ministerio de Economía y Competitividad (Spain) (Project CGL 2012–31872), and by the project DAMAGE (AEI/FEDER CGL2016-80687-R). This is the IBERSIMS contribution number 53.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ángel Santamaría-López.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santamaría-López, Á., Sanz de Galdeano, C. SHRIMP U–Pb detrital zircon dating to check subdivisions in metamorphic complexes: a case of study in the Nevado–Filábride complex (Betic Cordillera, Spain). Int J Earth Sci (Geol Rundsch) 107, 2539–2552 (2018). https://doi.org/10.1007/s00531-018-1613-y

Download citation

Keywords

  • U–Pb geochronology
  • Detrital zircons
  • SHRIMP
  • Nevado–Filábride complex
  • Betic Cordillera