Advertisement

A new U–Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest

  • Ludwig Luthardt
  • Mandy Hofmann
  • Ulf Linnemann
  • Axel Gerdes
  • Linda Marko
  • Ronny Rößler
Original Paper

Abstract

The Chemnitz Fossil Forest depicts one of the most completely preserved forest ecosystems in late Paleozoic Northern Hemisphere of tropical Pangaea. Fossil biota was preserved as a T0 taphocoenosis resulting from the instantaneous entombment by volcanic ashes of the Zeisigwald Tuff. The eruption depicts one of the late magmatic events of post-variscan rhyolitic volcanism in Central Europe. This study represents a multi-method evaluation of the pyroclastic ejecta encompassing sedimentological and (isotope) geochemical approaches to shed light on magmatic and volcanic processes, and their role in preserving the fossil assemblage. The Zeisigwald Tuff pyroclastics (ZTP) reveal a radiometric age of 291 ± 2 Ma, pointing to a late Sakmarian/early Artinskian (early Permian) stratigraphic position for the Chemnitz Fossil Forest. The initial eruption was of phreatomagmatic style producing deposits of cool, wet ashes, which deposited from pyroclastic fall out and density currents. Culmination of the eruption is reflected by massive hot and dry ignimbrites. Whole-rock geochemistry and zircon grain analysis show that pyroclastic deposits originated from a felsic, highly specialised magma, which underwent advanced fractionation, and is probably related to post-Carboniferous magmatism in the Western Erzgebirge. The ascending magma recycled old cadomic crust of the Saxo-thuringian zone, likely induced by a mantle-derived heat flow during a phase of post-variscan crustal delamination. Geochemical trends within the succession of the basal pyroclastic horizons reflect inverse zonation of the magma chamber and provide evidence for the continuous eruption and thus a simultaneous burial of the diverse ecosystem.

Keywords

T0 assemblage Early Permian Rhyolitic volcanism Phreatomagmatic eruption U–Pb zircon age Hf isotopes 

Notes

Acknowledgements

We highly acknowledge manifold support by our excavation team, especially Ralph Kretzschmar, Volker Annacker, Mathias Merbitz for technical support and Thorid Zierold for dedicated project management. Further we are indebted to Marion Tichomirowa, Christoph Breitkreuz, Alexander Repstock, Klaus-Peter Stanek and Jörg W. Schneider, Freiberg, Sven Eulenberger and Bernd Tunger, Chemnitz and Frank Löcse, St. Egidien for fruitful scientific discussion. We are particularly grateful for financial support by the Deutsche Forschungsgemeinschaft (DFG grant RO 1273/3-1 to RR).

Supplementary material

531_2018_1608_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 KB)
531_2018_1608_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 23 KB)
531_2018_1608_MOESM3_ESM.docx (40 kb)
Supplementary material 3 (DOCX 39 KB)
531_2018_1608_MOESM4_ESM.docx (21 kb)
Supplementary material 4 (DOCX 21 KB)

References

  1. Allen SR, Cas RAF (1998) Rhyolitic fallout and pyroclastic density current deposits from a phreatoplinian eruption in the eastern Aegean Sea, Greece. J Volcanol Geotherm Res 86:219–251CrossRefGoogle Scholar
  2. Babrauskas V (2001) Ignition of wood: a review of the state of the art. Interflam 2001. Interscience Communications Ltd, London, pp 71–88Google Scholar
  3. Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body batholith. J Petrol 43, no.8: pp 1469–1503Google Scholar
  4. Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333CrossRefGoogle Scholar
  5. Bouvier A, Vervoort JD, Patchet PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273(1–2):48–57CrossRefGoogle Scholar
  6. Breiter K, Novák JK, Chlupáčová M, Republic C (2001) Chemical Evolution of Volcanic Rocks in the Altenberg – Teplice Caldera (Eastern Krušné Hory Mts. Germany) GeoLines 13:17–22Google Scholar
  7. Brown RJ, Barry TL, Branney MJ, Pringle MS, Bryan SE (2003) The Quaternary pyroclastic succession of southeast Tenerife, Canary Islands: explosive eruptions, related caldera subsidence, and sector collapse. Geol Mag 140(3):265–288CrossRefGoogle Scholar
  8. Brown RJ, Branney MJ, Maher C, Dávila-Harris P (2009) Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. GSA Bulletin 122:305–320CrossRefGoogle Scholar
  9. Brown RJ, Bonadonna C, Durant AJ (2012) A review of volcanic ash aggregation. Phys Chem Earth 45–46:65–78CrossRefGoogle Scholar
  10. Carey SN, Sigurdsson H, Sparks RSJ (1988) Experimental studies of particle-laden plumes. J Geophys Res 93(15):15314–28.CrossRefGoogle Scholar
  11. Cas RAF, Wright JV (1987) Volcanic successions—modern and ancient. Chapman and Hall, London, p. 528CrossRefGoogle Scholar
  12. Chauvel C, Levin E, Carpentier M, Arndt NT, Marini J-C (2008) Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat Geosci 1:64–67CrossRefGoogle Scholar
  13. Cohen KM, Finney SC, Gibbard PL, Fan J-X (2013) updated) The ICS International Chronostratigraphic Chart. Episodes 36:199–204Google Scholar
  14. Corfu F, Hanchar JH, Hoskin PWO, Kinny P (2003) Atlas of Zircon Textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in Mineralogy & Geochemistry 53: pp 469–500Google Scholar
  15. Cotta B (1832) Die Dendrolithen in Bezug auf ihren inneren Bau. Arnoldische Buchhandlung, Leipzig und Dresden, p. 89Google Scholar
  16. Dhuime B, Hawkesworth C, Cawood P (2011) When continents formed. Science 331:154–155CrossRefGoogle Scholar
  17. DiMichele WA, Falcon-Lang HJ (2011) Pennsylvanian ‘fossil forests’ in growth position (T0 assemblages): Origin, taphonomic bias and palaeoecological insights. J Geol Soc London 168:585–605CrossRefGoogle Scholar
  18. DiMichele WA, Tabor NJ, Chaney DS, Nelson WJ (2006) From wetlands to wet spots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. In: Greb SF, DiMichele WA (eds) Wetlands through Time. Geol Soc Spec Pap 399: 223–248Google Scholar
  19. Döring H, Fischer F, Rößler R (1999) Sporostratigraphische Korrelation des Rotliegend im Erzgebirge-Becken mit dem Permprofil des Donezk-Beckens. Veröff Mus Naturk Chemnitz 22:29–56Google Scholar
  20. Dunlop JA, Rößler R (2013) The youngest trigonotarbid from the Permian of Chemnitz in Germany. Foss Rec 16(2):229–243CrossRefGoogle Scholar
  21. Dunlop JA, Legg DA, Selden PA, Fet V, Schneider JW, Rößler R (2016) Permian scorpions from the Petrified Forest of Chemnitz, Germany. BMC evol biol 16(1):72.  https://doi.org/10.1186/s12862-016-0634 CrossRefGoogle Scholar
  22. Eulenberger S, Tunger B, Fischer F (1995) Neue Erkenntnisse zur Geologie des Zeisigwaldes bei Chemnitz. Veröff Mus Naturk Chemnitz 18:25–34Google Scholar
  23. Eulenberger S, Schneider JW, Rößler R (2010) Die Kernbohrung KB 6 im basalen Zeisigwald-Tuff von Chemnitz-Hilbersdorf. Veröff Mus Naturk Chemnitz 33:113–122Google Scholar
  24. Feng Z, Zierold T, Rößler R (2012) When horsetails became giants. Sci Bull 57:18: 2285–2288CrossRefGoogle Scholar
  25. Feng Z, Rößler R, Annacker V, Ji-Yuan Y (2014) Micro-CT investigation of a seed fern (probable medullosan) fertile pinna from the Early Permian Petrified Forest in Chemnitz, Germany. Gondw Res 26:1208–1215CrossRefGoogle Scholar
  26. Fischer F (1990) Lithologie und Genese des Zeisigwald-Tuffs (Rotliegendes, Vorerzgebirgs-Senke). Veröff Mus Naturk Chemnitz 14:61–74Google Scholar
  27. Fischer F (1991) Das Rotliegende des ostthüringisch-westsächsischen Raumes (Vorerzgebirgs-Senke, Nordwestsächsischer Vulkanitkomplex, Geraer Becken). Dissertation, Bergakademie Freiberg, unpublGoogle Scholar
  28. Fisher RV (1979) Models of pyroclastic surges and pyroclastic flows. J Volcanol Geotherm Res 6:305–318CrossRefGoogle Scholar
  29. Förster HJ, Rhede D (2006) The Be–Ta-rich granite of Seiffen (eastern Erzgebirge, Germany): accessory-mineral chemistry, composition, and age of a late-Variscan Li–F granite of A-type affinity. N Jb Miner Abh 182(3):307–321CrossRefGoogle Scholar
  30. Förster HJ, Tischendorf G, Trumbull RB (1997) An evaluation of the Rb vs. (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos 40:261–293CrossRefGoogle Scholar
  31. Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:no 11: 1613–1645CrossRefGoogle Scholar
  32. Förster HJ, Gottesmann B, Tischendorf G, Siebel W, Rhede D, Seltmann R, Wasternack J (2007) Permo-Carboniferous subvolcanic rhyolitic dikes in the western Erzgebirge/Vogtland, Germany: a record of source heterogeneity of post-collisional felsic magmatism. N Jb Miner Abh 183(2):123–147CrossRefGoogle Scholar
  33. Frei D, Gerdes A (2009) Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270CrossRefGoogle Scholar
  34. Gastaldo RA, Pfefferkorn HW, DiMichele WA (1995) Characteristics and classification of Carboniferous roof shale floras. Geological Society of America Memoirs 185:341–352CrossRefGoogle Scholar
  35. Gerdes A, Zeh A (2006) Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  36. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U-Pb and Lu-Hf in situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261(3–4):230–243CrossRefGoogle Scholar
  37. Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359CrossRefGoogle Scholar
  38. Heiken G, McCoy F Jr (1984) Caldera development during the Minoan Eruption, Thira, Cyclades, Greece. J Geophys Res 89(B10):8441–8462CrossRefGoogle Scholar
  39. Hildreth EW, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48:951–999CrossRefGoogle Scholar
  40. Hilton J, Wang SJ, Galtier J, Glasspool I, Stevens L (2004) An upper Permian permineralized plant assemblage in volcaniclastic tuff from the Xuanwei Formation, Guizhou Province, southern China, and its palaeofloristic significance. Geol Mag 141:661–674CrossRefGoogle Scholar
  41. Hoblitt RP, Miller CD, Vallance JW (1981) Origin and stratigraphy of the deposit produced by the May 18 directed blast. US Geol Surv Prof Pap 1250:401–419Google Scholar
  42. Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous–Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102(1):73–99CrossRefGoogle Scholar
  43. Kerp H, Noll R, Uhl D (2007) Vegetationsbilder aus dem saarpfälzischen Permokarbon. In: Schindler T, Heidtke UHJ (eds) Kohlesümpfe, Seen und Halbwüsten. Dokumente einer rund 300 Millionen Jahre alten Lebewelt zwischen Saarbrücken und Mainz. Sonderveröffentlichung 10, Pollichia, Bad Dürkheim, pp 76–109Google Scholar
  44. Kretzschmar R, Annacker V, Eulenberger S, Tunger B, Rößler R (2008) Erste wissenschaftliche Grabung im Versteinerten Wald von Chemnitz—ein Zwischenbericht. Freiberger Forschungsheft C 528:25–55Google Scholar
  45. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondw Res 24:298–329CrossRefGoogle Scholar
  46. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  47. Linnemann U, D`Lemos R, Drost K, Jeffries T, Gerdes A, Romer RL, Samson SD, Strachan R (2008) Cadomian tectonics. In: McCann T (ed) The Geology of Central Europe Volume 1: Precambrian and Palaeozoic. Geol Soc London, pp 103–154Google Scholar
  48. Linnemann U, Ouzegane K, Drareni A, Hofmann M, Becker S, Gärtner A, Sagawe A (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions—a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb LA-ICP-MS detrital zircon ages. Lithos 123:188–203CrossRefGoogle Scholar
  49. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precam Res 244:236–278CrossRefGoogle Scholar
  50. Linnemann U, Pidal AP, Hofmann M, Drost D, Quesada C, Gerdes A, Marko L, Gärtner A, Zieger J, Ulrich J, Krause R, Vickers-Rich P, Horak J (2017) A ~ 565 Ma old glaciation in the Ediacaran 1 of peri-Gondwanan West Africa. Int J Earth Sci.  https://doi.org/10.1007/s00531-017-1520-7 Google Scholar
  51. Löcse F, Linnemann U, Schneider G, Annacker V, Zierold T, Rößler R (2015) 200 Jahre Tubicaulis solenites (Sprengel) Cotta. Sammlungsgeschichte, Paläobotanik & Geologie eines oberkarbonischen Baumfarn-Unikats aus dem Schweddey-Ignimbrit vom Gückelsberg bei Flöha. Veröff Mus Naturk Chemnitz 38:5–46Google Scholar
  52. Löcse F, Linnemann U, Schneider G, Merbitz M, Rößler R (under review) First U-Pb LA-ICP-MS zircon ages and zircon morphology investigations assessed from a volcano-sedimentary complex of the mid-European Variscids (Pennsylvanian, Flöha Basin, SE Germany). Int J Earth SciGoogle Scholar
  53. Ludwig KR (2001) Users manual for Isoplot/Ex rev. 2.49. berkeley geochronology center special publication 1a: pp 1–56Google Scholar
  54. Luthardt L, Rößler R (2017) Fossil forest reveals sunspot activity in the early Permian. Geology 45(3):279–282.  https://doi.org/10.1130/G38669.1 CrossRefGoogle Scholar
  55. Luthardt L, Rößler R, Schneider JW (2016) Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz—sedimentological, geochemical and palaeobotanical evidence. Palaeogeogr Palaeoclimatol Palaeoecol 441:627–652.  https://doi.org/10.1016/j.palaeo.2015.10.015 CrossRefGoogle Scholar
  56. Luthardt L, Rößler R, Schneider JW (2017) Tree-ring analysis appraising the fourth dimension of an in situ fossil forest and elucidating the last 80 years of an early Permian ecosystem. Palaeogeogr Palaeoclimatol Palaeoecol 487:278–295.  https://doi.org/10.1016/j.palaeo.2017.09.011 CrossRefGoogle Scholar
  57. Major JJ, Pierson TC, Hoblitt RP, Moreno H (2013) Pyroclastic density currents associated with the 2008–2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics. And Geol 40(2):324–358.  https://doi.org/10.5027/andgeoV40n2-a09 Google Scholar
  58. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66:735–748.  https://doi.org/10.1007/s00445-004-0355-9 CrossRefGoogle Scholar
  59. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  60. Mißbach K (1973) Waldbrand—Verhütung und Bekämpfung. VEB Deutscher Landwirtschaftsverlag, Berlin, pp 16–23Google Scholar
  61. Nasdala L, Götze J, Pidgeon RT, Kempe U, Seifert T (1998) Constraining a SHRIMP U-Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites. Contrib Mineral Petrol 132:300–306CrossRefGoogle Scholar
  62. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  63. Opluštil S, Pšenička J, Bek J, Wang J, Feng Z, Libertin M, Šimůnek Z, Bureš J, Drábková J (2014) T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: a case study from the Middle Pennsylvanian of the Czech Republic. Bull Geosci 89(4):773–818CrossRefGoogle Scholar
  64. Pearce JA (1996) A User’s Guide to Basalt Discrimination Diagrams. In: Wyman DA (ed). Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes 12, pp. 79–113Google Scholar
  65. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  66. Rank G, Pälchen W (1989) Zur Geochemie der sauren postvariszischen Vulkanite im Raum Flöha—Karl-Marx-Stadt. Z geol Wiss Berlin 17:1087–1097Google Scholar
  67. Repstock A, Breitkreuz C, Lapp M, Schulz B (2017) Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization. Int J Earth Sci.  https://doi.org/10.1007/s00531-017-1554-x Google Scholar
  68. Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge. Germany Miner Deposita 42:337–359CrossRefGoogle Scholar
  69. Roscher M, Schneider JW (2006) Permo-Carboniferous climate: Early Pennsylvanian to late Permian climate development of central Europe in a regional and global context. In: Lucas SG, Cassinis G, Schneider JW (eds) Non-marine permian biostratigraphy and biochronology. Geol Soc Lon Spec Publ 265: 95–136CrossRefGoogle Scholar
  70. Rößler R (ed) (2001) Der Versteinerte Wald von Chemnitz. Katalog zur Ausstellung Sterzeleanum. 253 pp., Chemnitz (Museum für Naturkunde)Google Scholar
  71. Rößler R (2002) Study methods for determining the structure of plant organs. In: Dernbach U, Tidwell WD (eds) Geheimnisse versteinerter Pflanzen. D’Oro, HeppenheimGoogle Scholar
  72. Rößler R, Götze J (2000) Kathodolumineszenz-Untersuchungen an Kieselhölzern—I. Silifizierungen aus dem Versteinerten Wald von Chemnitz (Perm, Deutschland). Veröff Mus Naturk Chemnitz 23:35–50Google Scholar
  73. Rößler R, Annacker V, Kretzschmar R, Eulenberger S, Tunger B (2008) Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘08. Veröff Mus Naturk Chemnitz 31:5–44Google Scholar
  74. Rößler R, Kretzschmar R, Annacker V, Mehlhorn S (2009) Auf Schatzsuche in Chemnitz – Wissenschaftliche Grabungen `09. Veröff Mus Naturk Chemnitz 32:25–46Google Scholar
  75. Rößler R, Kretzschmar R, Annacker V, Mehlhorn S, Merbitz M, Schneider JW, Luthardt L (2010) Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘10. Veröff Mus Naturk Chemnitz 33:27–50Google Scholar
  76. Rößler R, Zierold T, Feng Z, Kretzschmar R, Merbitz M, Annacker V, Schneider JW (2012a) A snapshot of an Early Permian ecosystem preserved by explosive volcanism: new results from the petrified forest of Chemnitz. Germany Palaois 27:814–834CrossRefGoogle Scholar
  77. Rößler R, Feng Z, Noll R (2012b) The largest calamite and its growth architecture—arthropitys bistriata from the Permian petrified forest of Chemnitz. Rev Palaeobot Palynol 185:64–78CrossRefGoogle Scholar
  78. Rößler R, Merbitz M, Annacker V, Luthardt L, Noll R, Neregato R, Rohn R (2014) The root systems of Permian arborescent sphenopsids: evidence from the Northern and Southern hemispheres. Palaeontographica B 291(4–6):65–107Google Scholar
  79. Rowley PD, Kuntz MA, Macleod NS (1981) Pyroclastic Flow Deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. USGS Professional Paper 1250: 489–512, Washington, D.C.Google Scholar
  80. San Juan Volcanic Field, Colorado: rejuvenation and eruption of an upper-crustalGoogle Scholar
  81. Scherer E, Münker C, Mezger K (2001) Calibration of the Lutetium-Hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  82. Schmincke H-U, Fisher RV, Waters AC (1973) Antidune and chute and pool structures in base surge deposits of the Laacher See area, Germany. Sedimentology 20:553–574CrossRefGoogle Scholar
  83. Schneider JW (1994) Environment, biotas and taphonomy of the Lower Permian lacustrine Niederhäslich limestone, Döhlen basin, Germany. Trans R Soc Edinburgh 84:453–464CrossRefGoogle Scholar
  84. Schneider JW, Scholze F (2016) Late Pennsylvanian—early triassic conchostracan biostratigraphy: a preliminary approach. In: Lucas SG, Shen SZ (eds) The permian timescale. Geol Soc Lon Spec Publ 450, LondonGoogle Scholar
  85. Schneider JW, Werneburg R (2012) Biostratigraphie des Rotliegend mit Insekten und Amphibien. In: Dt Strat Komm (ed) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe Dt Ges Geowiss 61, Hannover, 110–142Google Scholar
  86. Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens. In: Dt Strat, Komm (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe Dt Ges Geowiss 61, Hannover, 530–588Google Scholar
  87. Schumacher R, Schmincke H-U (1991) Internal structure and occurrence of accretionary lapilli: a case study at Laacher See volcano. Bull Volcanol 53:612–634CrossRefGoogle Scholar
  88. Scott AC, Brown R, Galtier J, Meyer-Berthaud B (1994) Fossil plants from the Viséan of East Kirkton, West Lothian, Scotland. Trans R Soc Edinburgh 84:249–260CrossRefGoogle Scholar
  89. Seckendorff V von (2012) Der Magmatismus in und zwischen den spätvariscischen permokarbonen Sedimentbecken in Deutschland. In: Dt Strat, Komm (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe Dt Ges Geowiss 61, Hannover, 743–860Google Scholar
  90. Seifert T, Baumann L (1994) On the metallogeny of the Central Erzgebirge Anticlinal Area (Marienber District), Saxony, Germany. Monograph Series of Mineral Deposits 31:169–190Google Scholar
  91. Self S (1983) Large-scale phreatomagmatic silicic volcanism: a case study from New Zealand. In: Sheridan MF, Barberi F (eds) Explosive Volcanism. J Volcanol Geotherm Res 17: 433–469Google Scholar
  92. Self S, Rampino MR (1981) The 1883 eruption of Krakatau. Nature 294:699–704CrossRefGoogle Scholar
  93. Self S, Sparks RSJ (1978) Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bull Volcanol 41(3):196–212CrossRefGoogle Scholar
  94. Sircombe KN (2004) AGE DISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31CrossRefGoogle Scholar
  95. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubret MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  96. Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855CrossRefGoogle Scholar
  97. Sparks RSJ, Self S, Walker GPL (1973) Products of ignimbrite eruptions. Geology 4:115–118CrossRefGoogle Scholar
  98. Spicer RA (1989) The formation and interpretation of plant fossil assemblages. Adv Bot Res 16:95–191CrossRefGoogle Scholar
  99. Spindler F, Werneburg R, Schneider JW, Luthardt L, Annacker V, Rößler R (2018) First arboreal ‘pelycosaurs’ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE-Germany. Pal Z (in press)Google Scholar
  100. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  101. Sulpizio R, Mele D, Dellino P, la Volpe L (2007) Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Sedimentology 54:607–635CrossRefGoogle Scholar
  102. Swanson FJ, Jones JA, Crisafulli CM, Lara A (2013) Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. And Geol 40(2):359–391Google Scholar
  103. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312Google Scholar
  104. Tunger B, Eulenberger S (2001) Der Hornstein von Chemnitz-Altendorf im Aufschluss—Lithofazielle Beobachtungen und ihre Interpretation. Veröff Mus Naturk Chemnitz 24:23–30Google Scholar
  105. Waitt RB (1981) Devastating pyroclastic density flow and attendant air fall of May 18 – stratigraphy and sedimentology of deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 Eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250: 439–460Google Scholar
  106. Walker GPL, Heming RF, Sprod TJ, Walker HR (1981) Last major eruptions of Rabaul volcano. Geol Surv Papua New Guinea Mem 10:181–194Google Scholar
  107. Wang X, Griffin WL, Chen J, Huang P, Li X (2011) U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients. Acta Geol Sin 85(1):164–174CrossRefGoogle Scholar
  108. Wang J, Pfefferkorn HW, Zhang YI, Feng Z (2012) Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. PNAS 109(13):4927–4932CrossRefGoogle Scholar
  109. Webster JD, Thomas R, Rhede D, Förster HJ, Seltmann R (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorous-rich residual liquids. Geochim Cosmochim Acta 61(13):2589–2604CrossRefGoogle Scholar
  110. Weinlich FH (1983) Zur Inkohlungsproblematik der Kohlen des Gebietes Karl-Marx-Stadt—Flöha. Zeitschrift für angewandte Geologie 29(8):385–390Google Scholar
  111. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419CrossRefGoogle Scholar
  112. Whitworth MP, Feely M (1988) The geochemistry of selected pegmatites and their host granites from the Galway Granite, western Ireland. Irish J Earth Sci 10(1):89–97Google Scholar
  113. Wilson CJN (1985) The Taupo eruption, New Zealand I. General aspects. Phil Trans R Soc Lond A 314:229–310CrossRefGoogle Scholar
  114. Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J R Astr Soc 63:117–148CrossRefGoogle Scholar
  115. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  116. Winter C, Breitkreuz C, Lapp M (2008) Textural analysis of a Late Palaeozoic coherent-pyroclastic rhyolitic dyke system near Burkersdorf (Erzgebirge, Saxony, Germany). Geol Soc Lon Spec Publ 302:199–221CrossRefGoogle Scholar
  117. Wise MA, Brown CD (2010) Mineral chemistry, petrology and geochemistry of the Sebago granite–pegmatite system, southern Maine, USA. J Geosc 55:3–26.  https://doi.org/10.3190/jgeosci.061 Google Scholar
  118. Wohletz KH, Sheridan MF (1979) A model of pyroclastic surge. GSA Special Papers 180:177–194Google Scholar
  119. Wohletz KH, McGetchin TR, Sandford MT, Jones EM (1984) Hydrodynamic aspects of caldera-forming eruptions: numerical models. J Geophys Res 89:8269–8285CrossRefGoogle Scholar
  120. Wright JV, Walker GPL (1977) The ignimbrite source problem: significance of co-ignimbrite lag-fall deposit. Geology 5:729–732CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Museum für Naturkunde ChemnitzChemnitzGermany
  2. 2.Geologisches Institut, Technische Universität Bergakademie FreibergFreibergGermany
  3. 3.Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion GeochronologieDresdenGermany
  4. 4.Institut für Geowissenschaften, MineralogieGoethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations