Skip to main content
Log in

Development of the Inland Sea and its evaporites in the Jordan-Dead Sea Transform based on hydrogeochemical considerations and the geological consequences

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Differences in the distribution of Na/Cl, Br/Cl and Mg/Ca equivalent values suggest a morphotectonic barrier at Marma Feiyad dividing the Tertiary Inland Sea into two basins covering the region of the Jordan Valley, Middle East. Depending on the Tethys sea level, three phases of evaporation are distinguishable that are related to three sections of the drilling log of Zemah 1. In phase 1 and 3 only the northern basin was flooded. During phase 2 both basins were inundated, but halite mainly precipitated in the southern one. The halite deposition in one or the other basin by evaporation is estimated by applying a two-box model. The results are constrained by the average subduction rate of 700–875 m/Ma and characteristic Na/Cl values of 0.52 and 0.12 in the northern and southern basin, respectively. In different scenarios the sedimentation rates of halite and non-halite components are varied due to assumed halokinesis, reshuffling of salt and erosion of non-halite sediments. These simulations suggest that periods of 450–600 and 100–170 ka in the southern and northern basin were needed, until the Na/Cl values of 0.12 and 0.52 were, respectively, attained. The Inland Sea most probably existed for 2.2 ± 0.3 Ma between 8.5 and 6.3 Ma ago (Tortonian). It was terminated at the beginning of the Messinian crisis. In all simulations the drainage flux into the southern basin exceeded that into the northern basin, suggesting that the proto-Jordan River either did not exist at that time or did not discharge into the northern basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ASR:

Average subsidence rate

CGC:

Carbonates–gypsum–clay minerals

LSR:

Apparent local subsidence rate

R e :

Evaporation rate

R p :

Precipitation rate

R halite :

Halite deposition rate

R CGC :

Sedimentation rate of carbonates–gypsum–clay minerals

t app :

Time interval for approaching the steady state of selected Na/Cl values

t P :

Time period of the Inland Sea

YHBS:

Yizre’el–Harod–Bet She’an valley

References

  • Anati DA, Stiller M, Shasha S, Gat JR (1987) Changes in the thermo-haline structure of the Dead Sea, 1979–1984. Earth Planet Sci Lett 84:109–121

    Article  Google Scholar 

  • Bandel K, Alhejoj I, Salameh E (2016) Geologic evolution of the Tertiary–Quaternary Jordan Valley with introduction of the Bakura Formation. Freib Forsch C550:103–135

    Google Scholar 

  • Belmaker R, Lazar B, Christl M, Tepelyakov N, Stein M (2013) 10Be dating of Neogene halite. Geochim Cosmochim Acta 122:418–429

    Article  Google Scholar 

  • Ben-Avraham Z (2014) Geophysical studies of the crustal structure along the Southern Dead Sea Fault. In: Garfunkel Z, Ben-Avraham Z, Kagan E (eds) Dead Sea Transform fault system: reviews, pp 1–27

    Google Scholar 

  • Bergelson G, Nati R, Bein A (1999) Salinisation and dilution history of groundwater discharging into the Sea of Galilee, the Dead Sea Transform, Israel. Appl Geochem 14:91–118

    Article  Google Scholar 

  • Buchbinder B, Zilberman E (1997) Sequence stratigraphy of Miocene–Pliocene carbonate–silicates shelf deposits in the eastern Mediterranean margin (Israel)—effects of eustasy and tectonics. Sedim Geol 112:7–32

    Article  Google Scholar 

  • Colacino M, Dell’Osso L (1977) Monthly mean evaporation over the Mediterranean Sea. Arch Met Geophys Bioklimat Ser A 26:283–293

    Article  Google Scholar 

  • Eckert W, Trüper HG (1993) Microbially-related redox changes in a subtropical lake 1. In situ monitoring of the annual redox cycle. Biogeochemistry 21:1–19

    Article  Google Scholar 

  • Exact (1998) Overview of the Middle East water resources. ISBN 0-607-91785-7, p 44

  • Fleischer L, Gafsou R (2003) Top Judea Group—digital structural map of Israel, 1:200,000 scale, 2 sheets. The Geophysical Institute of Israel, Rep. 753/312/03

  • Fleischer L, Varshavsky A (2002) A lithostratigraphic data base of oil and gas wells drilled in Israel. The Geophysical Institute of Israel, Rep. 874/202/02

  • Flexer A, Yellin-Dror A (2009) Geology and tectonic setting. In: Hoetzl H, Möller P, Rosenthal E (eds) The water of the Jordan Valley. Springer, Berlin, pp 15–54

    Chapter  Google Scholar 

  • Flexer A, Yellin-Dror A, Kronfeld E, Rosenthal E, Ben Avraham Z, Artzstein PP, Davidson L (2000) A Neogene salt body as the primary source of the salinity in Lake Kinneret. Arch Hydrobiol Spec Issue Adv Limnol 55:69–85

    Google Scholar 

  • Frieslander U (2000) The structure of the Dead Sea Transform emphasizing the Arava using new geophysical data. Ph.D. Thesis Hebrew University of Jerusalem, p 101

  • Garcia-Veigas J, Rosell L, Zak I, Playa E, Ayora C, Starinsky A (2009) Evidence of potash salt formation in the Pliocene Lagoon. Chem Geol 265:499–511

    Article  Google Scholar 

  • Gardosh M, Shulman H, Salhov S (1995) Findings from Amiaz East-1 and Sedom Deep-1 wells and their implications on the geology of the southern Dead Sea Basin. Isr Geol Soc Ann Meet, Zikhron Ya’aqov, p 36

  • Gardosh M, Kashai E, Salhov S, Shulman H, Tannenbaum E (1997) Hydrocarbon exploration in the Dead Sea area. In: Niemi TM, Ben-Avraham Z, Gat JR (eds), The Dead Sea, pp 57–72

  • Garfunkel Z (1997) The history of the formation of the Dead Sea basin. In: Niemi TM, Ben-Avraham Z, Gat JR (eds) The Dead Sea, pp 36–56

  • Garfunkel Z (2014) Lateral movement and deformation along the Dead Sea Transform. In: Garfunkel Z, Ben-Avraham Z, Kagan E (eds) Dead Sea Transform fault system: reviews, pp 109–150

  • Garfunkel Z, Ben-Avraham Z (2001) Basins along the Dead Sea Transform. In: Ziegler P, CavassaW, Robertson AHW, Crasqin-Soleau S (eds) Tethyan Rift/wrench basins and passive margins. Mem Museum National d’Histoire Naturelle 186, pp 607–627

  • Gat JR, Mazor E, Tzur Y (1969) The stable isotope composition of mineral water in the Jordan Rift Valley. J Hydrol 16:177–211

    Article  Google Scholar 

  • Gvirtzman Z, Steinberg J, Buchbinder B, Zilberman E, Siman-Tov R, Calvo R, Grossovicz L (2011) Retreating Late Tertiary shorelines in Israel: implications for the exposure of north Arabia and Levant during Neotethys closure. Lithosphere 3:95–109

    Article  Google Scholar 

  • Herut B (1992) The chemical composition and sources of dissolved salts in rainwater in Israel. PhD-Thesis, Hebrew University of Jerusalem (in Hebrew, English Abstract)

  • Hirsch F (2005) The Oligocene–Pliocene of Israel. In: Hall J, Krasheninnikov VA, Hirsch F, Benjamini C, Flexer A (eds) Geological framework of the Levant, vol II: the Levantine Basin and Israel. Art Plus, Jerusalem, pp 459–488

    Google Scholar 

  • Horita J, Zimmermann H, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporates. Geochim Cosmochim Acta 66:3733–3756

    Article  Google Scholar 

  • Inbar N (2012) The evaporitic subsurface body of Kinnarot basin: Stratigraphy, Structure, Geohydrology. PhD Thesis. English. Tel Aviv University, Israel

  • Katz A, Starinsky A (2009) Geochemical history of the Dead Sea. Aquat Geochem 15:159–194

    Article  Google Scholar 

  • Kiro Y, Goldstein SL, Lazar B, Stein M (2015) Environmental implications of salt facies in the Dead Sea. GSA Bull. https://doi.org/10.1130/B31357.1

    Article  Google Scholar 

  • Klein-BenDavid O, Sass E, Katz A (2004) The evolution of marine evaporitic brines in inland basins: the Jordan-Dead Sea Rift valley. Geochim Cosmochim Acta 68:1763–1775

    Article  Google Scholar 

  • Knorr G, Butzin M, Micheels A, Lohmann G (2011) A warm Miocene climate at low atmospheric CO2 levels. Geophys Res Lett 39:L20701. https://doi.org/10.1029/2011GL048873

    Article  Google Scholar 

  • Magaritz M, Nadler A (1980) Re-interpretation of 18O and D isotopic composition of the Tiberias subgroup hot waters. Proc. Geol. Isr. Ann Meet Southern Sinai and the Gulf of Elat, Ophira, Sinai, Feb 1980, pp 1–26

  • Marcus E, Slager J (1985) The sedimentary-magmatic sequence of the Zemah 1 well (Jordan-Dead Sea Rift, Israel) and its emplacement in time and space. Isr J Earth Sci 34:1–10

    Google Scholar 

  • Mazor E, Mero F (1969) Origin of the Kinneret-Noit water association in the Kinneret-Dead Sea Valley. Isr J Hydrol 7:318–333

    Article  Google Scholar 

  • McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br and K+ with halite. J Sedim Petrol 57:928–937

    Google Scholar 

  • Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) A late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data. Paleogeogr Paleoclimat Paleoecol 253:251–270

    Article  Google Scholar 

  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Sci 310:1293–1298

    Article  Google Scholar 

  • Mittlefehldt DW, Slager Y (1986) Petrology of the basalts and gabbros from the Zemah-1 drill hole, Jordan Rift Valley. Isr J Earth Sci 35:10–22

    Google Scholar 

  • Möller P, Rosenthal E, Geyer S, Guttman J (2003) Rare earths and yttrium hydrostratigraphy along the Lake Tiberias-Dead Sea-Arava transform fault, Israel and adjoining territories. Appl Geochem 18:1613–1623

    Article  Google Scholar 

  • Möller P, Rosenthal E, Geyer S (2009) Characterization of aquifer environments by major and minor elements and stable isotopes of sulfate. In: Hötzel H, Möller P, Rosenthal E (eds) The water of the Jordan Valley. Springer, Berlin, pp 83–121

    Chapter  Google Scholar 

  • Möller P, Siebert C, Geyer S, Inbar N, Rosenthal E, Flexer A, Zilberbrand M (2012) Relationship of brines in the Kinnarot Basin, Jordan-Dead Sea Rift Valley. Geofluids 12:166–181

    Article  Google Scholar 

  • Möller P, Rosenthal E, Flexer A (2014) The hydrogeochemistry of subsurface brines in and west of the Jordan-Dead Sea Transform fault. Geofluids 14:291–309

    Article  Google Scholar 

  • Möller P, Rosenthal E, Inbar N, Magri F (2016) Hydrochemical considerations for identifying water from basaltic aquifers: the Israeli experience. J Hydrol Region Stud 5:33–47

    Article  Google Scholar 

  • Neev D (1960) A pre Neogene erosion channel in the southern Coastal Plain of Israel. Isr Geol Surv Bull 25:1–21

    Google Scholar 

  • Picard L (1932) Zur Geologie des Mittleren Jordantales (zwischen Wadi Oschsche und Tiberiassee). Ztschr Dtsch Palest Ver 55:169–236

    Google Scholar 

  • Picard L (1933) Zur postmiozänen Entwicklungsgeschichte der Kontinentalbecken Nord-Palästinas. Neues Jb Miner 70:93–115

    Google Scholar 

  • Picard L (1934) Geologischer Beitrag. Zur Geologie des Gebietes zwischen Gilboa und Wadi Fara. Centralbl Miner 1:27–32

    Google Scholar 

  • Raab M (1996) The origin of evaporates in the Jordan-Arava valley in view of the evolution of brines and evaporates during seawater evaporation. PhD thesis, The Hebrew University of Jerusalem (in Hebrew, English summary), p 114

  • Rosenthal E (1988a) Hydrogeochemistry of groundwater at unique outlets of the Bet Shean multiple aquifer system. Isr J Hydrol 97:75–87

    Article  Google Scholar 

  • Rosenthal E (1988b) Ca-chloride brines at common outlets of the Bet Shean-Harod multiple aquifer system. Isr J Hydrol 97:89–106

    Article  Google Scholar 

  • Rouchy JM, Caruso A (2006) The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sedim Geol 188–189:35–67

    Article  Google Scholar 

  • Rozenbaum AG, Shaked-Geband M, Zilberman E, Sandler A, Stein M, Starinsky A (2016) Depositional environment of the Bira and Gesher Formations of the lower Galilee and Jordan Valley during the Tortonian-Zanclean ages. Geol Soc Isr Ann Meet, Eilat, January 19–21, 2016, Abstract p 171

  • Salameh E, Al Farajat M (2007) The role of volcanic eruptions in blocking the drainage leading to the Dead Sea formation. Environ Geol 52:519–527

    Article  Google Scholar 

  • Salameh E, Rimawi O (1988) Hydrochemistry of precipitation of northern Jordan. Intern J Environ Stud 32:203–216

    Article  Google Scholar 

  • Sandler A, Rozenbaum AG, Zilberman E, Stein M, Jicha BR, Singer BS (2015) Updated 40Ar–39Ar chronology for top Lower Basalt, base Cover Basalt, and related units, Northern Valley, Israel. Isr. Geol Soc Ann Meet Kinar, Israel, 24–26 March 2015, p 124

  • Schulman N (1962) The Geology of the Central Jordan Valley. PhD Thesis, Hebrew University Jerusalem (in Hebrew, English abstract), p 103

  • Schulman N, Rosenthal E (1968) Neogene and Quaternary of the Marma Feiyad area, south of Bet She’an. Isr J Earth Sci 17:54–62

    Google Scholar 

  • Shalev E, Yechieli Y (2007) The effect of Dead Sea level fluctuations on the discharge of thermal springs. Isr J Earth Sci 56:19–27

    Article  Google Scholar 

  • Shaliv G (1991) Stages in the tectonic and volcanic development of the Neogene basin in northern Israel. PhD Thesis, Hebrew Univ. Jerusalem, English Abstract; Geol Surv Isr Rep GSI/11/91

  • Shiftan Z, Rosenthal E (1964) Exploratory borehole Hula 2: completion report and comments on regional implications. Geol Surv Isr Rep Hyd/64/3(Hebrew):32

  • Siebert C, Rosenthal E, Möller P, Rödiger T, Meiler M (2012) The hydrochemical identification of groundwater flowing in the Bet She’an-Harod multiaquifer system (Lower Jordan Valley) by rare earth elements, yttrium, stable isotopes (H, O) and Tritium. Appl Geochem 27:703–714

    Article  Google Scholar 

  • Siebert C, Möller P, Geyer S, Kraushaar S, Dulski P, Guttman J (2014) Thermal water in the Lower Yarmouk Gorge and their relation to surrounding aquifers. Chem Erde Geochem 74:425–441

    Article  Google Scholar 

  • Siemann MG, Schramm M (2002) Henry’s and non-Henry’s law behavior of Br in simple marine systems. Geochim Cosmochim Acta 68:1387–1399

    Article  Google Scholar 

  • Sneh A, Bartov Y, Weissbrod T, Rosensaft M (1998) Geological Map of Israel 1:200,000. Geol. Surv. Isr., Jerusalem, 4 sheets

  • Starinsky A (1974) Relationships between Ca-chloride brines and sedimentary rocks in Israel. PhD Thesis, Department of Geology, Hebrew University, Jerusalem

  • Stein M (2014) The evolution of Neogene-Quaternary water-bodies in the Dead Sea Rift Valley. In: Gafunkel Z, Ben-Avraham Z, Kagan E (eds) Dead Sea Transform fault system: reviews. Springer, Dordrecht, pp 279–316

    Google Scholar 

  • ten Haven HL, De Lange GJ, Klaver GT (1985) The chemical composition and origin of the Tyro brine, Eastern Mediterranean, a tentative model. Mar Geol 64:337–342

    Article  Google Scholar 

  • Warren KC (2008) Salt as sediment in the Central European Basin: system seen as from a deep time perspective. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. Springer, Berlin, pp 249–276

    Google Scholar 

  • Zak Y (1967) The Geology of Mt. Sdom. PhD Thesis, Department of Geology, Hebrew University Jerusalem, (in Hebrew, English abstract)

Download references

Acknowledgements

The authors greatly acknowledge many fruitful discussions with Prof. A. Flexer, Prof. K. Bandel, Dr. Y. Greitzer, and Dr. Y. Kiro who helped by their critical comments to elucidate the geological issues in the Rift. The comments of an anonymous reviewer were gratefully accepted. This study was partially supported by the DFG project MA 4450/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Möller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möller, P., Rosenthal, E., Inbar, N. et al. Development of the Inland Sea and its evaporites in the Jordan-Dead Sea Transform based on hydrogeochemical considerations and the geological consequences. Int J Earth Sci (Geol Rundsch) 107, 2409–2431 (2018). https://doi.org/10.1007/s00531-018-1605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-018-1605-y

Keywords

Navigation