Advertisement

International Journal of Earth Sciences

, Volume 107, Issue 7, pp 2393–2408 | Cite as

A new look on Imperial Porphyry: a famous ancient dimension stone from the Eastern Desert of Egypt—petrogenesis and cultural relevance

  • Mahrous M. Abu El-Enen
  • Joachim Lorenz
  • Kamal A. Ali
  • Volker von Seckendorff
  • Martin Okrusch
  • Ulrich Schüssler
  • Helene Brätz
  • Ralf-Thomas Schmitt
Original Paper
  • 140 Downloads

Abstract

Imperial Porphyry, a famous dimension stone of spectacular purple color, was quarried in the Mons Porphyrites area north of Jabal Dokhan in the Eastern Desert of Egypt, from the beginning of the first until the middle of the fifth century AD. During this period, the valuable material was processed as decorative stone and was used for objects of art, reserved exclusively for the Imperial court of the Roman Empire. Later on, only antique spoils of smaller or bigger size have been re-used for these purposes. The Imperial Porphyry is a porphyritic rock of trachyandesitic to dacitic composition that occurs in the uppermost levels of shallow subvolcanic sill-like intrusions, forming a member of the Dokhan Volcanic Suite. Its purple color is mainly due to dispersed flakes of hematite, resulting from hydrothermal alteration of a dark green Common Porphyry of similar composition, underlying the Imperial Porphyry. Both, the Common Porphyry and the purple Imperial Porphyry’, are extensively exposed in the Roman quarries. Contacts between Common and Imperial Porphyry are irregular and gradational. In both rock types, intrusive breccias are frequent, indicating a complex intrusion history. U–Th–Pb zircon geochronology on two samples of Imperial Porphyry and one sample of the Common Porphyry yielded an age range of 609–600 Ma, thus confirming earlier results of radiometric dating. Geochemical evidence indicates that both the Imperial and the Common Porphyry are of medium- to high-K calc-alkaline affinity. The magmas have formed by partial melting of a subduction-modified upper mantle. The subsequent intrusion took place within a highly extended terrane (HET).

Keywords

Eastern Desert Dokhan Volcanics Imperial Porphyry Petrogenesis Cultural relevance U–Pb zircon age dating 

Notes

Acknowledgements

The authors thank Hesham Sallam and Hassan Eliwa for their field assistance. Sample DKK from Mons Porphyrites was collected and kindly provided to this study by Rosemarie and Dietrich D. Klemm (Dießen, Germany). Thanks to Martin Whitehouse, Kerstin Lindén and Lev Ilyinsky, Swedish Museum of Natural History Stockholm, for their help with CL-images and zircon isotope analyses. Field work was partially supported by the Mansoura University, Egypt, which is gratefully acknowledged. We highly appreciate the useful suggestions of the editor and two reviewers Peter Johnson and Ghaleb Jarrar.

Supplementary material

531_2018_1604_MOESM1_ESM.doc (114 kb)
Supplementary material 1 (DOC 113 KB)
531_2018_1604_MOESM2_ESM.jpg (1.2 mb)
Supplementary material 2 (JPG 1198 KB)
531_2018_1604_MOESM3_ESM.jpg (1.9 mb)
Supplementary material 3 (JPG 1953 KB)
531_2018_1604_MOESM4_ESM.jpg (1.7 mb)
Supplementary material 4 (JPG 1757 KB)
531_2018_1604_MOESM5_ESM.jpg (1.5 mb)
Supplementary material 5 (JPG 1535 KB)
531_2018_1604_MOESM6_ESM.jpg (2.1 mb)
Supplementary material 6 (JPG 2121 KB)
531_2018_1604_MOESM7_ESM.jpg (1.2 mb)
Supplementary material 7 (JPG 1252 KB)
531_2018_1604_MOESM8_ESM.jpg (2.4 mb)
Supplementary material 8 (JPG 2444 KB)
531_2018_1604_MOESM9_ESM.jpg (550 kb)
Supplementary material 9 (JPG 549 KB)
531_2018_1604_MOESM10_ESM.jpg (310 kb)
Supplementary material 10 (JPG 309 KB)
531_2018_1604_MOESM11_ESM.docx (45 kb)
Supplementary material 11 (DOCX 44 KB)
531_2018_1604_MOESM12_ESM.xls (42 kb)
Supplementary material 12 (XLS 42 KB)

References

  1. Abdel-Rahman AM (1996) Pan-African volcanism: petrology and geochemistry of the Dokhan volcanic suite in the northern Nubian Shield. Geol Mag 133:17–31CrossRefGoogle Scholar
  2. Abu El-Enen MM, Whitehouse MJ (2013) The Feiran–Solaf metamorphic complex, Sinai, Egypt: geochronological and geochemical constraints on its evolution. Precambr Res 239:106–125CrossRefGoogle Scholar
  3. Abu El-Enen MM, Abu Alam T, Whitehouse M, Ali K, Okrusch M (2016) P-T path and age of crustal thickening during the collision of East and West Gondwana: a case study from the Hafafit Metamorphic Complex, Eastern Desert of Egypt. Lithos 263:213–238CrossRefGoogle Scholar
  4. Ali K, Andresen A, Manton WI, Stern RJ, Omar SA, Maurice AE (2012) U–Pb zircon dating and Sr–Nd–Hf isotopic evidence to support a juvenile origin of the ~ 634 Ma El Shalul granitic gneiss dome, Arabian–Nubian Shield. Geol Mag 149:783–797CrossRefGoogle Scholar
  5. Arculus RJ (2003) Use and abuse of the terms calcalkaline and calcalkalic. J Petrol 44:929–935CrossRefGoogle Scholar
  6. Barz D, Okrusch M, Lorenz J (2012) Porfido rosso antico von der Burgruine Schlössel bei Klingenmünster (Pfalz). In: Lorenz JA (ed) Porphyre, vol 26. Mitteilungen Naturwissenschaftliches Museum Aschaffenburg, Aschaffenburg, pp 94–111Google Scholar
  7. Basta EZ, Kotb H, Awadallah MF (1978) Petrochemical and geochemical characteristics of the Dokhan Formation at the type locality, Jabal Dokhan, Eastern Desert, Egypt. In: Al-Shanti AMS (ed) Evolution and Mineralisation of the Arabian–Nubian Shield. Pergamon pp 122–140Google Scholar
  8. Bates RL, Jackson JA (1997) Glossary of Geology, 4th edn. American Geological Institute, Alexandria, p 769Google Scholar
  9. Breitkreuz C, Eliwa H, Khalaf I, El Gameel K, Bühler B, Sergeev S, Larionov A, Murata M (2010) Neoproterozoic SHRIMP U–Pb zircon ages of silica-rich Dokhan Volcanics in the North Eastern Desert, Egypt. Precambr Res 182:163–174CrossRefGoogle Scholar
  10. Brown VM, Harrell JA (1995) Topographical and petrological survey of ancient Roman quarries in the Eastern Desert of Egypt. In: Maniatis Y, Herz N and Bassiaks Y (eds) The Study of Marble and Other Stones Used in Antiquity—ASMOSIA III, Athens, Transactions of the 3rd International Symposium of the Association for the Study of Marble and Other Stones in Antiquity. Archetype Publications, London, pp 221–234Google Scholar
  11. Bühler B, Breitkreuz C, Pfändera JA, Hofmannb M, Beckerb S, Linnemann U, Eliwa HA (2014) New insights into the accretion of the Arabian-Nubian Shield: Depositional setting, composition and geochronology of a Mid-Cryogenian arc succession (North Eastern Desert, Egypt). Precambrian Res 243:149–167CrossRefGoogle Scholar
  12. Burke K (1978) Evolution of continental rift systems in the light of plate tectonics. In: Ramberg IB, Neumann E-R (eds) Tectonics and Geophysics of Continental Rifts. NATO Advanced Study Institutes Series, vol C37. Reidel, Dordrecht, pp 1–9Google Scholar
  13. Campbell IH, Squire RJ (2010) The mountains that triggered the Late Neoproterozoic increase in oxygen: the second great oxidation event. Geochim Cosmochim Acta 74:4187–4206CrossRefGoogle Scholar
  14. Condie KC, Kröner A (2013) The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Res 23:394–402CrossRefGoogle Scholar
  15. Corfu F, Hancher JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500CrossRefGoogle Scholar
  16. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of Igneous Rocks. Allen & Unwin, London, p 450CrossRefGoogle Scholar
  17. Dardir AA, Abu Zeid KM (1972) Geology of the basement rocks between latitudes 27°00′ and 27°30′N, Eastern Desert. Ann Geol Surv Egypt 2:129–159Google Scholar
  18. Del Bufalo D (2013) Porphyry. red Imperial Porpyhry power and religion. Rosso Imperiale Potere e Religione. Umberto Allemandi & C, Torino, p 300Google Scholar
  19. Delbrueck R (1932) Antike Porphyrwerke. Walter De Gruyter Verlag, BerlinGoogle Scholar
  20. Delesse A (1852) Untersuchungen über den rothen Porphyr der Alten und über den rothen egyptischen Syenit. In’s Deutsche übertragen von G Leonhard, J. B. Müller Verlagsbuchhandlung. Stuttgart, p 32Google Scholar
  21. El Gaby S, Khudeir AA, El Taky M (1989) The Dokhan Volcanics of Wadi Queih Area, Central Eastern Desert, Egypt. Proceedings of the 1st Conference on Geochemistry. Alexandria University, Egypt, pp. 42–62Google Scholar
  22. Eliwa HA, Kimura JI, Itaya T (2006) Late Neoproterozoic Dokhan Volcanics, North Eastern Desert, Egypt: geochemistry and petrogenesis. Precambrian Res 151:31–52CrossRefGoogle Scholar
  23. Eliwa H, Breitkreuz C, Khalaf I, El Gameel K (2010) Depositional styles of Early Ediacaran terrestrial volcanosedimentary succession in the Gebel El Urf area, North Eastern Desert, Egypt. J Afr Earth Sci 57:328–344CrossRefGoogle Scholar
  24. Eliwa HA, El-Bialy MZ, Murata M (2014) Edicaran post-collisional volcanism in the Arabian-Nubian Shield: The high-K calc-alkaline Dokhan Volcanics of Gabal Samr El-Qaa (592 ± 5 Ma), North Eastern Desert, Egypt. Precambrian Res 246:180–207CrossRefGoogle Scholar
  25. Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–254CrossRefGoogle Scholar
  26. Ghobrial MG, Lofti M (1967) The geology of Gebel Gattar and Gebel Dokhan areas. Geological Survey of Egypt, Paper No. 40. Cairo, Egypt, p 26Google Scholar
  27. Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073CrossRefGoogle Scholar
  28. Green DH (1971) Compositions of basaltic magmas as indicators of conditions of origin: application to oceanic volcanism. Philos Trans R Soc Lond A 268:707–725CrossRefGoogle Scholar
  29. Gudmundsson A (2012) Magma chambers: formation, local stresses, excess pressures, and compartments. J Volcanol Geoth Res 237–238:19–41CrossRefGoogle Scholar
  30. Harrell JA, Storemyr P (2009) Ancient Egyptian quarries—an illustrated overview. In: Abu-Jaber N, Bloxam EG, Degryse P, Heldal T (eds) Quarry Scapes: ancient stone quarry landscapes in the Eastern Mediterranean, vol 12. Geol Survey Norway Spec Publ, pp 7–50Google Scholar
  31. Horseman E, Tikoff B, Morgan S (2005) Emplacement-related fabric and multiple sheets in the Maiden Creek sill, Henry Mountains, Utah, USA. J Struct Geol 27:1426–1444CrossRefGoogle Scholar
  32. Horseman E, Morgan S, de Saint-Blanquat M, Habert G, Nugent A, Hunter RA, Tikoff B (2010) Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth Environ Sci Trans R Soc Edinb 100:117–132Google Scholar
  33. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  34. Jensen LS (1976) A new cation plot for classifying subalkalic volcanic rocks. Ontario Division of Mines Miscellaneous Paper, vol 66Google Scholar
  35. John T, Scherer EE, Haase K, Schenk V (2004) Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu-Hf-Sm-Nd isotope systematics. Earth Planet Sci Lett 227(3–4):441–456CrossRefGoogle Scholar
  36. Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232CrossRefGoogle Scholar
  37. Klein M (1988) Untersuchungen zu den kaiserzeitlichen Steinbrüchen am Mons Porphyrites und Mons Claudianus in der östlichen Wüste Ägyptens. Habelts Dissertationsdrucke Reihe Alte Geschichte, Verlag Dr. Rudolf Habelt, Bonn, Germany, p 207Google Scholar
  38. Klemm R, Klemm DD (2001a) The building stones of ancient Egypt—a gift of its geology. J Afr Earth Sci 33:631–642CrossRefGoogle Scholar
  39. Klemm R, Klemm DD (2001b) Steine und Steinbrüche im Alten Ägypten. Springer, Berlin, Heidelberg, New York, p 465Google Scholar
  40. Klemm R, Klemm DD (2008) Stones and quarries in ancient Egypt. British Museum Press, London, p 354Google Scholar
  41. LeMaitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous Rocks, a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, p 236CrossRefGoogle Scholar
  42. Lorenz JA (2012) Rom—die Stadt der Porphyre in Kirchen, antiken Ausgrabungsstätten und Museen. In: Lorenz JA (ed) Porphyre. Mitteilungen Naturwissenschaftliches Museum Aschaffenburg, vol 26. Aschaffenburg, pp 82–93Google Scholar
  43. Ludwig KR (2001) Using Isoplot/EX, v2. 49, a geochronological toolkit for Microsoft Excel. Berkeley Geochron Centre, Spec Publ No 1a. Univ Berkeley, BerkeleyGoogle Scholar
  44. Makovicky E, Frei R, Karup-Møller S, Bailey JC (2016a) Imperial Porphyry from Gebel Abu Dokhan, the Red Sea Mountains, Egypt, Part I. Mineralogy, petrology and occurrence. Neues Jahrbuch für Mineralogie Abhandlungen (J Mineral Geochem) 193:1–27CrossRefGoogle Scholar
  45. Makovicky E, Frei R, Karup-Møller S, Bailey JC (2016b) Imperial Porphyry from Gebel Abu Dokhan, the Red Sea Mountains, Egypt—part II. Geochemistry. Neues Jahrbuch für Mineralogie Abhandlungen (J Mineral Geochem) 193:29–44CrossRefGoogle Scholar
  46. Maxfield V, Peacock D (2001) The Roman imperial quarries: Survey and excavation at Mons Porphyrites 1994–1998, Vol. 1, Topography and quarries., Egypt Exploration Society Excavation Memoir, vol 67. London, p 339Google Scholar
  47. Menand T (2011) Physical controls and depth of emplacement of igneous bodies: A review. Tectonophysics 500:11–19CrossRefGoogle Scholar
  48. Meredith D, Tregenza L (1950) Mons Porphyrites, the North-West Village and quarries. Bulletin of Faculty of Arts, Fuad I University XII 1, Cairo, Egypt, pp 137–147Google Scholar
  49. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355CrossRefGoogle Scholar
  50. Moghazi M (2003) Geochemistry and petrogenesis of a high-K calc-alkaline Dokhan Volcanic suite, South Safaga area, Egypt: the role of late Neoproterozoic crustal extension. Precambrian Res 125:161–178CrossRefGoogle Scholar
  51. Mohamed FH, Moghazi AM, Hassanen MA (2000) Geochemistry, petrogenesis and tectonic setting of late Neoproterozoic Dokhan-type volcanic rocks in the Fatira area, eastern Egypt. Int J Earth Sci 88:764–777CrossRefGoogle Scholar
  52. Olsen KH, Morgan P (1995) Introduction: progress in understanding continental rifts. In: Olsen KH (ed) Continental Rifts: Evolution, Structure, Tectonics. Developments in Geotectonics vol 25, pp 3–26Google Scholar
  53. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites, Orogenic Andesites and Related Rocks. Wiley, New York, pp 525–548Google Scholar
  54. Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic petrogenesis. Geol Soc Lond Spec Publ 76:373–403CrossRefGoogle Scholar
  55. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285CrossRefGoogle Scholar
  56. Pearce JA, Stern RJ (2006) Origin of back-arc Basin magmas: trace element and isotope perspectives. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions, Geophysical Monograph Series, vol 166. American Geophysical Union, pp 63–86Google Scholar
  57. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Miner Petrol 58:63–81CrossRefGoogle Scholar
  58. Ressetar R, Monard JR (1983) Chemical composition and tectonic setting of the Dokhan Volcanic Formation, Eastern Desert, Egypt. J Afr Earth Sci 1:103–112Google Scholar
  59. Rickwood PC (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22:247–263CrossRefGoogle Scholar
  60. Ries AC, Shackleton RM, Graham RH, Fitches WR (1983) Pan-African structures, ophiolites and melange in the Eastern Desert of Egypt: a traverse at 26°N. J Geol Soc Lond 140:75–95CrossRefGoogle Scholar
  61. Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10:113–120CrossRefGoogle Scholar
  62. Schweinfurth GA (1887) Zur Topographie der Ruinenstätte des alten Schet (Krokodilopolis-Arsinoë). Zeitschrift der Gesellschaft für Erdkunde zu Berlin 22:54–88Google Scholar
  63. Shackleton RM (1986) Precambrian collision tectonics in Africa., In: Coward MP, Reis AC (eds) Collision Tectonics, vol 19. Geol Soc London Spec Publ, pp 329–349Google Scholar
  64. Stern RJ (1981) Petrogenesis and tectonic setting of Late-Precambrian ensimatic volcanic rocks, Central Eastern Desert of Egypt. Precambrian Res 16:195–230CrossRefGoogle Scholar
  65. Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondowanaland. Annu Rev Earth Planet Sci 22:319–351CrossRefGoogle Scholar
  66. Stern RJ, Gottfried D (1986) Petrogenesis of a Late-Precambrian (575–600 Ma) bimodal suite in northern Africa. Contrib Miner Petrol 92:492–501CrossRefGoogle Scholar
  67. Stern RJ, Hedge CE (1985) Geochronological and isotopic constraints on Late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci 285:97–127CrossRefGoogle Scholar
  68. Stern RJ, Gottfried D, Hedge CE (1984) Late Precambrian rifting and crustal evolution in the Northeastern Desert of Egypt. Geology 12:168–172CrossRefGoogle Scholar
  69. Stern RJ, Sellers G, Gottfried D (1988) Bimodal dikes swarms in the North Eastern Desert of Egypt: significance for the origin of Late Precambrian “A-type” granites in northern Afro-Arabia. In: El-Gaby S, Greiling RO (eds) The Pan-African Belt of NE Africa and adjacent areas. Vieweg Verlag, Braunschweig, pp 147–177Google Scholar
  70. Sun SS, McDonough WF (1989) Chemical and isotope systematics of oceanic basalts, implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in Ocean Basins, vol 42. Geol Soc London Spec Publ, pp 313–345Google Scholar
  71. Tera F, Wasserburg GJ (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304CrossRefGoogle Scholar
  72. van Rengen W (1995) A new Paneion at Mons Porphyrites. Chronique d’Égypte. 70: 240–245.  https://doi.org/10.1484/J.CDE.2.308994 CrossRefGoogle Scholar
  73. van Rengen W (2001) The inscription. In: Maxfield VA, Peacock DPS, pp 60–62Google Scholar
  74. Wang D, Shu LS (2012) Late Mesozoic basin and range tectonics and related magmatism in Southeast China. Geosci Front 3:109–124CrossRefGoogle Scholar
  75. Werner L (1998) Via Porphyrites. Saudi Aramco World 49(6):2–9Google Scholar
  76. Whitehouse MJ, Kamber BS (2005) Assigning dates to thin gneissic veins in high-grade metamorphic terranes—a cautionary tale from Akilia, southwest Greenland. J Petrol 46:291–318CrossRefGoogle Scholar
  77. Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of ion-microprobe U–Th–Pb zircon data from early Archaean rocks of West Greenland—a reassessment based on new combined ion-microprobe and imaging studies. Chem Geol 160:204–221CrossRefGoogle Scholar
  78. Wilde SA, Youssef K (2000) Significance of SHRIMP U–Pb dating of the Imperial Porphyry and associated Dokhan Volcanics, Gebel Dokhan, North Eastern Desert, Egypt. J Afr Earth Sci 31:403–410CrossRefGoogle Scholar
  79. Williams-Thorpe O, Jones MC, Potts PJ, Riggby IJ (2001) Geology, mineralogy and characterization studies of Imperial Porphyry. In: Maxfield V, Peacock D (eds), The Roman Imperial Quarries: Survey and Excavation at Mons Porphyrites 1994–1998. Volume 1: topography and Quarries. Excavation Memoirs, vol 67. The Egyptian Exploration Society, London, pp 305–318Google Scholar
  80. Wilson M (1989) Igneous petrogenesis. Unwin Hyman Ltd, London, p 466CrossRefGoogle Scholar
  81. Winchester JA, Floyd PA (1976) Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Lett 28:459–469CrossRefGoogle Scholar
  82. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  83. Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30CrossRefGoogle Scholar
  84. Zoback ML, Anderson RE, Thompson GA (1981) Cenozoic evolution of the state of stress and style of tectonism in the western United States. Philos Trans R Soc B Biol Sci 300(1454):407–434CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mahrous M. Abu El-Enen
    • 1
  • Joachim Lorenz
    • 2
  • Kamal A. Ali
    • 3
  • Volker von Seckendorff
    • 4
  • Martin Okrusch
    • 4
  • Ulrich Schüssler
    • 4
  • Helene Brätz
    • 5
  • Ralf-Thomas Schmitt
    • 6
  1. 1.Geology Department, Faculty of SciencesMansoura UniversityMansouraEgypt
  2. 2.Karlstein am MainGermany
  3. 3.Department of Mineral Resources and Rocks, Faculty of Earth SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Lehrstuhl für Geodynamik und GeomaterialforschungInstitut für Geographie und GeologieWürzburgGermany
  5. 5.Geozentrum NordbayernUniversität ErlangenErlangenGermany
  6. 6.Museum für Naturkunde, Leibniz-Institut für Evolutions- und BiodiversitätsforschungBerlinGermany

Personalised recommendations