Long-term seismic observations along Myanmar–Sunda subduction margin: insights for 2004 Mw > 9.0 earthquake

Abstract

The present study investigates the temporal variation of few seismic parameters between the Myanmar (Zone I), Andaman–Nicobar–Northwest Sumatra (Zone II), Southeast Sumatra–West Indonesia (Zone III) and East Indonesia (Zone IV) converging boundaries in reference to the generation of 26 December 2004 Mw > 9.0 off-Sumatra mega-earthquake event. The four segments are distinguished based on tectonics parameters, distinct geological locations, great earthquake occurrences, and the Wadati–Benioff zone characteristics. Two important seismic parameters such as seismic energy and b values are computed over a time-window of 6-month period during the entire 1976–2013 period for these segments. The b values show a constant decrease in Zones II, III, and IV, whereas the Zone I does not show any such pattern prior to the 2004 mega-event. The release of seismic energy was also gradually decreasing in Zones II and III till the 2004 event, and little similar pattern was also noted in Zone IV. This distinct observation might be indicating that the stress accumulation was dominant near the Sumatra–Java area located towards southeast of Zone II and northwest of Zone III. The released strain energy during the 2004 event was subsequently migrated towards north, rupturing ~ 1300 km of the boundary between the Northwest Sumatra and the North Andaman. The occurrence of 2004 mega-event was apparently concealed behind the long-term seismic quiescence existing near the Sumatra and Nicobar margin. A systematic study of the patterns of seismic energy release and b values, and the long-term observation of collective behaviour of the margin tectonics might have had given clues to the possibility of the 2004 mega-event.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allen JRL (1986) Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentation basins. Sed Geol 46:67–75

    Article  Google Scholar 

  2. Ammon CJ, Chen J, Thio H-K, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra–Andaman earthquake. Sci 308:1133–1139

    Article  Google Scholar 

  3. Ammon CJ, Kanamori H, Lay T (2008) A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. Nature 451:561–566

    Article  Google Scholar 

  4. Banerjee P, Pollitz F, Bürgmann R (2005) Size and duration of the great 2004 Sumatra–Andaman earthquake from far-field static offsets. Sci 308:1769–1772

    Article  Google Scholar 

  5. Bhattacharya PM, Kayal JR (2003) Mapping the b values and its correlation with the fractal dimension in the northeast region of India. J Geol Soc India 62:680–695

    Google Scholar 

  6. Bilham R, Engdahl ER, Feldl N, Satyabala SP (2005) Partial and complete rupture of the Indo–Andaman plate boundary 1847–2004. Seismol Res Lett 76:299–311

    Article  Google Scholar 

  7. Bletery Q, Sladen A, Jiang J, Simons M (2016) A Bayesian source model for the 2004 great Sumatra–Andaman earthquake. J Geophys Res 121:5116–5135

    Article  Google Scholar 

  8. Cao A, Gao SS (2002) Temporal variation of seismic b values beneath north-eastern Japan island arc. Geophys Res Lett 29(48):1–3

    Google Scholar 

  9. Cardwell RK, Isacks BL (1978) Geometry of the subducted lithosphere beneath the Banda Sea in Eastern Indonesia from seismicity and fault plane solutions. J Geophys Res 83:2825–2838

    Article  Google Scholar 

  10. Chakraborty PP, Khan PK (2009) Cenozoic geodynamic evolution of the Andaman–Sumatra subduction margin: a current understanding. Island Arc 18:184–200

    Article  Google Scholar 

  11. Chlieh M, Avouac JP, Hjorleifsdottir V, Song TRA, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Galetzka BY J (2007) Coseismic slip and after slip of the great M w 9.15 Sumatra–Andaman earthquake of 2004. Bull Seismol Soc Am 97:S152–S173

    Article  Google Scholar 

  12. Clévédé E, Bukchin B, Favreau P, Mostinskiy A, Aoudia A, Panza G (2012) Long-period spectral features of the Sumatra–Andaman 2004 earthquake rupture process. Geophys J Int 191:1215–1225

    Google Scholar 

  13. Cloetingh S, Wortel R (1986) Stress in the Indo-Australian plate. Tectonophysics 132:49–67

    Article  Google Scholar 

  14. Curray JR (2005) Tectonics and history of the Andaman Sea region. J Asian Earth Sci 25:187–232

    Article  Google Scholar 

  15. Curray JR, Emmel FJ, Moore DG, Russel WR (1982) Structure, tectonics, and geological history of the northeastern Indian Ocean. In: Nairn AE, Stehli FG (eds) The Ocean Basins Margins 6: 399–450. The Indian Ocean, Plenum, New York

    Article  Google Scholar 

  16. Daly MC, Cooper MA, Wilson I, Smith DG, Hooper BGD (1991) Cenozoic plate tectonics and basin evolution in Indonesia. Marine Petrol Geol 8:2–22

    Article  Google Scholar 

  17. Diament M, Harjono H, Karta K, Deplu C, Dahrin D, Zen MT Jr, Gérard M, Lassal O, Martin A, Malod J (1992) Mentawai fault zone off Sumatra: a new key to the geodynamics of western Indonesia. Geol 20:259–262

    Article  Google Scholar 

  18. Fitch TJ (1972) Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and western Pacific. J Geophys Res 77:4432–4460

    Article  Google Scholar 

  19. Forsyth DW, Uyeda S (1975) On the relative importance of the driving forces of plate motion. Geophys J R Astron Soc 43:163–200

    Article  Google Scholar 

  20. Gahalaut VK, Gahalaut K (2007) Burma plate motion. J Geophys Res 112:B10402

    Article  Google Scholar 

  21. Gahalaut VK, Nagarajan B, Catherine JK, Kumar S (2006) Constraints on 2004 Sumatra–Andaman earthquake rupture from GPS measurements in Andaman–Nicobar Islands. Earth Planet Sci Lett 242:365–374

    Article  Google Scholar 

  22. Ghose R, Yoshioka S, Oike K (1990) Three-dimensional numerical simulation of the subduction dynamics in the Sunda arc region, Southeast Asia. Tectonophys 181:223–255

    Article  Google Scholar 

  23. Gutenberg B, Ritcher CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bull Seismol Soc Am 32:163–191

    Google Scholar 

  24. Gutenberg B, Ritcher CF (1954) Seismicity of the earth and associated phenomenon. Princeton University Press, Pinceton

    Google Scholar 

  25. Hall R (1997) Cenozoic plate tectonic reconstructions of SE Asia. In: Fraser AJ, Matthews SJ, Murphy RW (eds) Petroleum Geology of Southeast Asia. Special Publication, The Geological Society of London 126: 11–23

    Article  Google Scholar 

  26. Heimpel M, Malin P (1998) Aseismic slip in earthquake nucleation and selfsimilarity: evidence from Parkfield, California. Earth Planet Sci Lett 157:249–254

    Article  Google Scholar 

  27. Henstock TJ, McNeill LC, Bull JM, Cook BJ, Gulick SPS, Austin JA, Permana JH, Djajadihardja YS (2017) Downgoing plate topography stopped rupture in the A.D. 2005 Sumatra earthquake. Geol 44:71–74

    Article  Google Scholar 

  28. Hofsetter A, Shapira A (2000) Determination of earthquake energy release in the eastern Mediterranean region. Geophys J Int 143:898–908

    Article  Google Scholar 

  29. Holt WE, Haines AJ (1993) Velocity fields in deforming Asia from the inversion of earthquake-released strains. Tectonics 12:1–20

    Article  Google Scholar 

  30. Holt WE, Ni JF, Wallace TC, Haines AJ (1991) The active tectonics of the eastern Himalayan syntaxis and surroundings regions. J Geophys Res 96:14595–14632

    Article  Google Scholar 

  31. Isacks B, Molnar P (1971) Mantle earthquakes mechanisms and the sinking of the Lithosphere. Nature 223:1121–1124

    Article  Google Scholar 

  32. Ishii M, Shearer PM, Houston H, Vidale JE (2005) Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature 435:933–936

    Article  Google Scholar 

  33. Jacob J, Dyment J, Yatheesh V (2014) Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia. J Geophys Res 119:169–190. https://doi.org/10.1002/2013JB010285

    Article  Google Scholar 

  34. Jarrard RD (1986) Terrane motion by strike-slip faulting of forearc slivers. Geol 14:780–783

    Article  Google Scholar 

  35. Khan PK (2005) Variation in dip-angle of the Indian plate subducting beneath the Burma plate and its tectonic implications. Geosci J 9:227–234

    Article  Google Scholar 

  36. Khan PK (2007) Lithospheric deformation under pre- and post-seismic stress fields along the Nicobar–Sumatra subduction margin during 2004 Sumatra mega-event and its tectonic implications. Gond Res 12:468–475

    Article  Google Scholar 

  37. Khan PK (2010) Role of unbalanced slab resistive force in the 2004 off Sumatra mega-earthquake (M w> 9.0) event. Int J Earth Sci 100:1749–1758

    Article  Google Scholar 

  38. Khan PK (2011) Role of unbalanced slab resistive force in the 2004 off Sumatra mega-earthquake (M w> 9.0) event. Int J Earth Sci 100:1749–1758

    Article  Google Scholar 

  39. Khan P, Chakraborty PP (2005) Two-phase opening of Andaman Sea: a new seismotectonics insight. Earth Planet Sci Lett 229:259–271

    Article  Google Scholar 

  40. Khan PK, Chakraborty PP (2009) Plate geometry, plate rheology, and their relation to shallow-focus mega-thrust seismicity with special reference to 26 December 2004 Sumatra event. J Asian Earth Sci 34:480–491

    Article  Google Scholar 

  41. Khan PK, Ghosh M, Chakraborty PP, Mukherjee D (2011) Seismic b value and the assessment of ambient stress in Northeast India. Pure App Geophys 168:1693–1706

    Article  Google Scholar 

  42. Khan PK, Chakraborty PP, Tarafder G, Mohanty SP (2012) Testing the intraplate origin of mega-earthquakes at subduction margins. Geosci Front 3:473–481

    Article  Google Scholar 

  43. Khan PK, Shamim Sk, Mohanty M, Kumar P, Banerjee J (2017) Myanmar–Andaman–Sumatra subduction margin revisited: insights of arc-specific deformations Myanmar–Andaman–Sumatra subduction margin revisited: insights of arc-specific deformations. J Earth Sci (accepted)

  44. Kumar P, Srijayanthi G, Kumar MR (2016) Seismic evidence for tearing in the subducting Indian slab beneath the Andaman arc. Geophys Res Lett 43:4899–4904

    Article  Google Scholar 

  45. Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster RC, Beck SL, Bilek SL, Brudzinski MR, Butler R, DeShon HR, Ekström G, Satake K, Sipkin S (2005) The great Sumatra–Andaman earthquake of 26 December 2004. Sci 308:1127–1133

    Article  Google Scholar 

  46. Lay T, Kanamori H, Ammon CJ, Hutko AR, Furlong K, Rivera L (2009) The 2006–2007 Kuril Islands great earthquake sequence. J Geophys Res 114:B11308

    Article  Google Scholar 

  47. Levchenko OV (1989) Tectonic aspects of intraplate seismicity in the northeastern Indian Ocean. Tectonophys 170:125–139

    Article  Google Scholar 

  48. Maung H (1987) Transcurrent movement in the Mayanmar Andaman Sea region. Geol 15:911–912

    Article  Google Scholar 

  49. McCaffrey R (1991) Slip vectors and stretching of the Sumatran forearc. Geol 19:881–884

    Article  Google Scholar 

  50. McCaffrey R (1992) Oblique plate convergence, slip vectors, and forearc deformation. J Geophys Res 97:8905–8915

    Article  Google Scholar 

  51. McCloskey J, Nalbant SS, Steacy S (2005) Earthquake risk from co-seismic stress. Nature 434:291

    Article  Google Scholar 

  52. Mishra OP, Chakrabortty GK, Singh OP (2005) Aftershock investigation in Andaman–Nicobar Islands. Geol Survey of India Special Publication 89:115–163

    Google Scholar 

  53. Mishra OP, Kayal JR, Chakraborty GK, Singh OP, Ghosh D (2007a) Aftershock investigation in Andaman–Nicobar Islands of India and its seismotectonic implications. Bull Seismol Soc Am 97:S71–S85

    Article  Google Scholar 

  54. Mishra OP, Chakraborty GK, Singh OP, Kayal JR, Ghosh D (2007b) Aftershock investigation in the Andaman–Nicobar Islands: an antidote to public panic. Seismol Res Lett 78:591–600

    Article  Google Scholar 

  55. Mishra OP, Zhao D, Ghosh C, Wang Z, Singh OP, Ghosh B, Mukherjee KK, Saha DK, Chakraborty GK, Gaonkar SG (2011) Role of crustal heterogeneity beneath Andaman–Nicobar Islands and its implications for coastal hazard. Natural Haz 57:51–64

    Article  Google Scholar 

  56. Mitchell AHG (1985) Collision-related fore-arc and back-arc evolution of the Northern Sunda arc. Tectonophysics 116:323–334

    Article  Google Scholar 

  57. Mogi K (1963) The fracture of a semi-infinite body caused by an inner stress origin and its relation to earthquake phenomena. Bull Earthq Res Inst Tokyo Univ 41:595–614

    Google Scholar 

  58. Mogi K (1967) Regional variation of aftershock activity. Bull Earthq Res Inst Tokyo Univ 46:175–203

    Google Scholar 

  59. Molchan G, Kronrod T, Panza GF (1997) Multi-scale seismicity model for seismic risk. Bull Seismol Soc Am 87:1220–1229

    Google Scholar 

  60. Mori J, Abercrombie RE (1997) Depth dependence of earthquake frequency–magnitude distributions in California: implications for the rupture initiation. J Geophys Res 102:15081–15090

    Article  Google Scholar 

  61. Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1997) Digital isochrones of the world’s ocean floor. J Geophys Res 102:3211–3214

    Article  Google Scholar 

  62. Nettles M, Ekström G (2004) Quick CMT of the 2004 Sumatra–Andaman Island earthquake. Seismoware FID: BR345, emailed announcement. 26 December 2004

  63. Newcomb KR, McCann W (1987) Seismic history and seismotectonics of the Sunda arc. J Geophys Res 92:421–439

    Article  Google Scholar 

  64. Ninkovich D (1976) Late Cenozoic clockwise rotation of Sumatra. Earth Planet Sci Lett 29:269–275

    Article  Google Scholar 

  65. Nishimura S, Suparka S (1990) Tectonics of East Indonesia. Tectonophys 181:257–266

    Article  Google Scholar 

  66. Nishimura S, Nishida J, Yokoyama T, Hehuwat F (1986) Tectonics of the Strait of Sunda. Indonesia J Asian Earth Sci 1:81–91

    Article  Google Scholar 

  67. Pacheco JF, Scholz CH, Sykes LR (1992) Changes in frequency–size relationship from small to large earthquakes. Nature 355:71–73

    Article  Google Scholar 

  68. Park J, Song T-RA, Thomp J, Okal E, Stein S, Roult G, Clevede E, Laske G, Kanamori H, Davis P, Berger J, Braitenberg C, Camp MV, Lei X, Sun H, Xu H, Rosat S (2005) Earth’s free oscillations excited by the 26 December 2004 Sumatra–Andaman earthquake. Sci 308:1139–1144

    Article  Google Scholar 

  69. Patriat P, Achache J (1984) India–Eurasia collision chronology has implications for crustal shortening and driving mechanism for plates. Nature 311:615–621

    Article  Google Scholar 

  70. Peresan A, Gentili S (2018) Seismic clusters analysis in Northeastern Italy by the nearest-neighbor approach. Phys Earth Planet Int 274:87–104

    Article  Google Scholar 

  71. Raju KAK, Ramprasad T, Rao PS, Rao BR, Varghese J (2004) New insights into the tectonic evolution of the Andaman basin, northeast Indian Ocean. Earth Planet Sci Lett 221:145–162

    Article  Google Scholar 

  72. Raju KAK, Ray D, Mudholkar A, Murty GPS, Gahalaut VK, Samudrala K, Paropkari AL, Ramachandran R, Prakash LS (2012) Tectonic and volcanic implications of a cratered seamount off Nicobar Island, Andaman Sea. J Asian Earth Sci 56:42–53

    Article  Google Scholar 

  73. Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogs and the hypothesis of self-similarity. Nature 337:251–253

    Article  Google Scholar 

  74. Rydelek PA, Sacks IS (2003) Comment on “Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan”. Bull Seismol Soc Am 93:1862–1867

    Article  Google Scholar 

  75. Scholz CH (1968) The frequency–magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  76. Sobolev GA (2011) Seismicity dynamics and earthquake predictability. Natural Haz Earth Syst Sci 11:445–458

    Article  Google Scholar 

  77. Stein RS (1999) The role of stress transfer in earthquake occurrence. Nature 402:605–609

    Article  Google Scholar 

  78. Stein S, Okal EA (2005) Speed and size of the Sumatra earthquake. Nature 134:581–582

    Article  Google Scholar 

  79. Subarya C, Chlieh M, Prawirodirdjo L, Avouac J, Bock Y, Sieh K, Meltzner AJ, Natawidjaja DH, McCaffrey R (2006) Plate boundary deformation associated with the great Sumatra–Andaman earthquake. Nature 440:46–51

    Article  Google Scholar 

  80. Taylor DWA, Snoke JA, Sacks IS, Takanami T (1990) Nonlinear frequency magnitude relationships for the Hokkaido Corner, Japan. Bull Seism Soc Am 80:340–353

    Google Scholar 

  81. Tsai VC, Nettles M, Ekström G, Dziewonski A (2005) Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys Res Lett 32:L17304

    Article  Google Scholar 

  82. Tsapanos TM (1990) b values of two tectonic parts in the circum-Pacific belt. Pure App Geophys 134:229–242

    Article  Google Scholar 

  83. Vassiliou MS, Kanamori H (1982) The energy release in earthquakes. Bull Seismol Soc Am 72:371–387

    Google Scholar 

  84. Vigny C, Simons WJF, Abu S, Bamphenyu R, Satirapod C, Choosakul N, Subarya C, Socquet A, Omar K, Abidin HZ, Ambrosius BAC (2005) Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in Southeast Asia. Nature 436:201–206

    Article  Google Scholar 

  85. Vorobieva I, Shebalin P, Narteau C (2016) Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system. Geophs Res Lett 43:6869–6875

    Article  Google Scholar 

  86. Walter TR, Amelung F (2007) Volcanic eruptions following M ≥ 9.0 megathrust earthquakes: implications for the Sumatra–Andaman volcanoes. Geol 35:539–542

    Article  Google Scholar 

  87. Wason HR, Sharma ML, Khan PK, Kapoor K, Nandini D, Kara V (2002) Analysis of aftershocks of the Chamoli Earthquake of March 29, 1999 using broadband seismic data. J Him Geol 23:7–18

    Google Scholar 

  88. Weissel JK, Anderson RN, Geller CA (1980) Deformation of the Indo-Australian plate. Nature 287:284–291

    Article  Google Scholar 

  89. Whittaker JM, Müller RD, Sdrolias M, Heine C (2007) Sunda–Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous. Earth Planet Sci Lett 255:445–457

    Article  Google Scholar 

  90. Widiyantoro S, Van der Hilst R (1997) Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophys J Int 130:167–182

    Article  Google Scholar 

  91. Wiemer S, Wyss M (1997) Mapping the frequency–magnitude distribution in asperities: an improved technique to calculate recurrence times. J Geophys Res 102:15115

    Article  Google Scholar 

  92. Wiemer S, Wyss M (2000) Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90:859–869

    Article  Google Scholar 

  93. Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95:684–698

    Article  Google Scholar 

  94. Wyss M (1973) Toward a physical understanding of the earthquake frequency distribution. Geophys J Roy Astron Soc 31:341–359

    Article  Google Scholar 

  95. Yoshimoto M, Yamanaka Y (2014) Teleseismic inversion of the 2004 Sumatra–Andaman earthquake rupture process using complete Green’s functions. Earth Planets Space 66:152

    Article  Google Scholar 

  96. Zen MT (1983) Krakatau and the tectonic importance of Sunda Strait. Bull Jurusan Geol 12:9–22

    Google Scholar 

Download references

Acknowledgements

First author is thankful to the Director, Indian Institute of Technology (ISM), Dhanbad, for providing the infrastructure facilities. This work has been supported by the grants of the Department of Science and Technology, Govt. of India, New Delhi. Authors are thankful to Antonella Peresan for critical comments, which have improved the quality of the manuscript greatly.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prosanta Kumar Khan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, P.K., Banerjee, J., Shamim, S. et al. Long-term seismic observations along Myanmar–Sunda subduction margin: insights for 2004 Mw > 9.0 earthquake. Int J Earth Sci (Geol Rundsch) 107, 2383–2392 (2018). https://doi.org/10.1007/s00531-018-1603-0

Download citation

Keywords

  • Myanmar–Sunda margin
  • 2004 M w 9.3 mega-earthquake
  • Seismic b value
  • Seismic energy pattern
  • Seismic quiescence