Advertisement

Paleomagnetism of Permo–Triassic volcanic units in northern Patagonia: are we tracking the final stages of collision of Patagonia?

  • Tomás Luppo
  • Carmen I. Martínez DopicoEmail author
  • Augusto E. Rapalini
  • Mónica G. López de Luchi
  • Maximiliano Miguez
  • Christopher M. Fanning
Original Paper
  • 79 Downloads

Abstract

A paleomagnetic and geochronologic study was carried out on Late Permian-to-Early Triassic magmatic units exposed in the North Patagonian Massif, near the locality of Estancia La Esperanza (Río Negro Province, Argentina), to provide better paleogeographic and tectonic constraints on the evolution of Patagonia and its relations with Gondwana in the Late Paleozoic–Early Mesozoic. The study included the Late Permian (264 ± 2 Ma) Rhyolite Dome, the Collinao Dacite, for which we obtained a U–Pb zircon crystallization age of 253 ± 2 Ma, several basic dikes, that intrude older granite units (255 ± 2 Ma), and a swarm of acidic dikes for which an Early Triassic age had been previously assigned that we confirmed with a U–Pb zircon age of 244 ± 2 Ma. A paleomagnetic pole (C), computed on the basis of seven VGPs, was obtained for the Collinao Dacite and associated units (48.3°S, 349.9°E, N = 7, A95 = 15.1°). A single VGP for the somewhat older Rhyolite Dome falls close to that pole. A second paleomagnetic pole (A) which strongly disagrees with the C position was computed based on 12 VGPs from the same number of acidic dikes (87°S, 51.5°E, N = 12, A95 = 8.1°). The basic dikes, with ages bracketed between the dacitic and the rhyolitic dikes, yielded four VGPs, two of which are consistent with the C pole and the other two are close to the A pole. The C pole falls on a much older position (Late Carboniferous) on different Gondwana/South America reference paths, which is clearly anomalous based on its Late Permian age. The A pole, in turn, is consistent with the 250/240 Ma paleomagnetic poles in most reference paths for Gondwana/South America. Either regional tilting or rotation around a vertical axis to explain the anomalous C pole is unlikely considering the local geological evidence. A working model is presented to explain the discrepancy as due to around 30° CCW rotation of the whole North Patagonian Massif during the latest Permian and earliest Triassic, closing a V-shaped basin that separated it from southern Gondwana, as the final stages of collision of an allochthonous or para-autochthonous Patagonia terrane. This hypothesis is consistent with Late Permian-to-Early Triassic evidence of deformation in the Hespérides Basin as well as in northern Patagonia. Scarce previous paleomagnetic data from this region can be reconciled with this model, considering that they are very loosely constrained in age.

Keywords

North Patagonian Massif Apparent polar wander path Gondwana Late Paleozoic La Esperanza volcanic rocks 

Notes

Acknowledgements

Financial support for these investigations is from the Agencia Nacional de Investigaciones Científicas y Técnicas (Argentina) through grants PICT2013-1162 to M.G. López de Luchi and PICT2015-206 to A.E. Rapalini. We would like to acknowledge M. Domeier and an anonymous reviewer whose comments helped us improving the manuscript. We thank Carlos A. Vasquez (IGEBA) for his assistance during the paleomagnetic and rock-magnetic laboratory procedures. C.I. Martínez Dopico would like to thank FUNDALEU (Fundación de Lucha contra la Leucemia).

References

  1. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170.  https://doi.org/10.1016/S0009-2541(03)00165-7 Google Scholar
  2. Brandt D, Ernesto M, Rocha-Campos AC, dos Santos PR (2009) Paleomagnetism of the Santa Fé Group, central Brazil: Implications for the Late Paleozoic apparent polar wander path for South America. J Geophys Res 114:1–19.  https://doi.org/10.1029/2008JB005735 Google Scholar
  3. Chadima M, Hrouda F (2006) Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques 27:20–21Google Scholar
  4. Chernicoff CJ, Zappettini EO (2004) Geophysical evidence for terrane boundaries in South-Central Argentina. Gondwana Res 7:1105–1116.  https://doi.org/10.1016/S1342-937X(05)71087-X Google Scholar
  5. Chernicoff CJ, Zappettini EO, Santos JOS, McNaughton NJ, Belousova E (2013) Combined U–Pb SHRIMP and Hf isotope study of the Late Paleozoic Yaminué Complex, Río Negro Province, Argentina: Implications for the origin and evolution of the Patagonia composite terrane. Geosci Front 4:37–56.  https://doi.org/10.1016/S0009-2541(03)00165-7 Google Scholar
  6. Dalla Salda L, Cingolani C, Varela R (1990) The origin of Patagonia. Comunicaciones: Una revista de geología andina 41:55–61Google Scholar
  7. Dalziel IWD (2013) Antarctica and supercontinental evolution: clues and puzzles. Earth Environ Sci Trans R Soc Edinburgh 104:3–16.  https://doi.org/10.1017/S1755691012000096 Google Scholar
  8. Fanning CM, Hervé F, Pankhurst RJ, Rapela CW, Kleiman LE, Yaxley GM et al (2011) Lu–Hf isotope evidence for the provenance of Permian detritus in accretionary complexes of western Patagonia and the northern Antarctic Peninsula region. J South Am Earth Sci 32(4):485–496.  https://doi.org/10.1016/j.jsames.2011.03.007 Google Scholar
  9. Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond Ser A 217:295–305Google Scholar
  10. Gallo LC, Tomezzoli RN, Cristallini EO (2017) A pure dipole analysis of the Gondwana apparent polar wander path: paleogeographic implications in the evolution of Pangea. Geochem Geophys Geosyst 18(4):1499–1519.  https://doi.org/10.1002/2016GC006692 Google Scholar
  11. Geuna SE, Escosteguy LD (2014) Geología de superficie. Paleomagnetismo. In: Martino ED, Guereschi AB (eds) Relatorio XIX Congreso Geológico Argentino. Asociación Geológica Argentina, Córdoba, pp 831–843Google Scholar
  12. Giacosa RE, Lema H, Busteros A, Zubia M, Cucchi R, Tommaso DI (2007) Estructura del Triásico de la región norte del Macizo Norpatagónico (40°–41°S, 67°30ʹ–69ª45ʺO) Río Negro. Rev de la Asoc Geol Argent 62(3):355–365Google Scholar
  13. González PD, Tortello MF, Damborenea SE (2011) Early Cambrian archaeocyathan limestone blocks in low-grade meta-conglomerate from El Jagüelito Formation (Sierra Grande, Río Negro, Argentina). Geol Acta 9:159–173.  https://doi.org/10.1344/105.000001650 Google Scholar
  14. González PD, Sato AM, Naipauer M, Varela R, Basei M, Sato K et al (2018) Patagonia-Antarctica Early Paleozoic conjugate margins: Cambrian synsedimentary silicic magmatism, U–Pb dating of K-bentonites, and related volcanogenic rocks. Gond Res 63:186–225.  https://doi.org/10.1016/j.gr.2018.05.015 Google Scholar
  15. Gregori DA, Kostadinoff J, Strazzere L, Raniolo A (2008) Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina. Gondwana Res 14:429–450.  https://doi.org/10.1016/j.gr.2008.04.005 Google Scholar
  16. Gregori DA, Kostadinoff J, Alvarez G, Raniolo A, Strazzere L, Martínez JC, Barros M (2013) Preandean geological configuration of the eastern North Patagonian Massif, Argentina. Geosci Front 4:693–708.  https://doi.org/10.1016/j.gsf.2013.01.001 Google Scholar
  17. Gregori DA, Saini-Eidukat B, Benedini L, Strazzere L, Barros M, Kostadinoff J (2016) The Gondwana Orogeny in northern North Patagonian Massif: evidences from the Caita Có granite, La Seña and Pangaré mylonites, Argentina. Geosci Front 7(4):621–638.  https://doi.org/10.1016/j.gsf.2015.06.002 Google Scholar
  18. Hounslow MW, Balabanov YP (2016) A geomagnetic polarity timescale for the Permian, calibrated to stage boundaries. Geol Soc Lond Spec Publ 450:61–103.  https://doi.org/10.1144/SP450.8 Google Scholar
  19. Kirschvink JL (1980) The least-square line and plane and the analysis of paleomagnetic data. Geophys J R Astron Soc 62:699–718.  https://doi.org/10.1111/j.1365-246X.1980.tb02601.x Google Scholar
  20. Kleiman LE, Japas MS (2009) The Choiyoi volcanic province at 34–36°S (San Rafael, Mendoza, Argentina): implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473:283–299.  https://doi.org/10.1016/j.tecto.2009.02.046 Google Scholar
  21. Llambías EJ, Rapela CW (1984) Geología de los complejos eruptivos del Paleozoico superior de La Esperanza, provincia de Río Negro. Rev Asoc Geol Argent 39:220–243Google Scholar
  22. Ludwig KR (2008) User’s Manual for Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4. 76 pGoogle Scholar
  23. Martínez C (1980) Structure et évolution de la chaîne hercynienne et la chaîne andine dans le Nord de la Cordillère des Andes de Bolivie. PhD Thesis Université des Sciences et Techniques du Languedoc, Montpellier 356 ppGoogle Scholar
  24. Martínez Dopico CI (2013) Geología, petrogénesis y condiciones de emplazamiento de los granitoides permo-triásicos del área de La Esperanza, Macizo Norpatagónico: Inferencias sobre la construcción del borde SO del Gondwana. PhD Thesis. Universidad de Buenos Aires. 580 ppGoogle Scholar
  25. Martínez Dopico CI, López de Luchi MG, Rapalini AE, Kleinhanns IC (2011) Crustal segments in the North Patagonian Massif, Patagonia: an integrated perspective based on Sm-Nd isotope systematics. J South Am Earth Sci 31:324–341.  https://doi.org/10.1016/j.jsames.2010.07.009 Google Scholar
  26. Martínez Dopico CI, López de Luchi MG, Rapalini AE, Wemmer K, Fanning M, Basei M (2017a) Emplacement and temporal constraints of the Gondwanan intrusive complexes of Northern Patagonia: La Esperanza plutono-volcanic case. Tectonophysics 712–713:249–269.  https://doi.org/10.1016/j.tecto.2017.05.015 Google Scholar
  27. Martínez Dopico CI, Tohver E, López de Luchi MG, Rapalini AE, Wemmer K, Cawood P (2017b) A Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U–Pb zircon evidence. Int J Earth Sci 106(7):2343–2357.  https://doi.org/10.1007/s00531-016-1430-0 Google Scholar
  28. McElhinny MW, McFadden PL (1997) Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophys J Int 131:240–252Google Scholar
  29. McFadden PL, McElhinny MW (1988) The combined analysis of remagnetisation circles and direct observations in paleomagnetism. Earth Planet Sci Lett 87:161–172Google Scholar
  30. Miguez MR (2014) Geología y paleomagnetismo del enjambre de diques permotriásicos de La Esperanza, Macizo Norpatagónico, provincia de Río Negro. Master Thesis. Universidad de Buenos Aires. 100 pagesGoogle Scholar
  31. Ogg JG, Ogg GM, Gradstein FM (2016) Permian, in: A Concise Geologic Time Scale. pp. 115–131.  https://doi.org/10.1016/B978-0-444-59467-9.00010-8
  32. Özdemir Ö, Dunlop DJ (1999) Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes. Earth Planet Sci Lett 165:229–239.  https://doi.org/10.1016/S0012-821X(98)00269-6 Google Scholar
  33. Pángaro F, Ramos VA (2012) Paleozoic crustal blocks of onshore and offshore central Argentina: new pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Marine Petroleum Geol 37:162–183.  https://doi.org/10.1016/j.marpetgeo.2012.05.010 Google Scholar
  34. Pángaro F, Ramos VA, Pazos PJ (2015) The Hesperides basin: a continental-scale upper Palaeozoic to Triassic basin in southern Gondwana. Basin Res 28:685–711.  https://doi.org/10.1111/bre.12126 Google Scholar
  35. Pankhurst RJ, Caminos R, Rapela CW (1993) Problemas geocronológicos de los granitoides gondwánicos de Nahuel Niyeu, Macizo Norpatagónico. Conference proceedings XII Congreso Geológico Argentino and II Congreso de Exploración de Hidrocarburos 4: 99–104 (Buenos Aires) Google Scholar
  36. Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257.  https://doi.org/10.1016/j.earscirev.2006.02.001 Google Scholar
  37. Pankhurst RJ, Rapela CW, López de Luchi MG, Rapalini AE, Fanning CM, Galindo C (2014) The Gondwana connections of northern Patagonia. J Geol Soc Lond 171:313–328.  https://doi.org/10.1144/jgs2013-081 Google Scholar
  38. Pysklywec RN, Mitrovica JX (1999) The role of subduction-induced subsidence in the evolution of the Karoo Basin. J Geol 107:155–164.  https://doi.org/10.1086/314338 Google Scholar
  39. Ramos VA (1984) Patagonia: ¿un continente paleozoica a la deriva? Conference proceedings IX Congreso Geológico Argentino 2:311–325Google Scholar
  40. Ramos VA (2008) A paleozoic continent adrift? J South Am Earth Sci 26:235–251.  https://doi.org/10.1016/j.jsames.2008.06.002 Google Scholar
  41. Ramos VA, Naipauer M (2014) Patagonia: where does it come from? J Iber Geol 40:367–379Google Scholar
  42. Rapalini AE (1998) Syntectonic magnetization of the Mid-Palaeozoic Sierra Grande Formation: further constraints on the tectonic evolution of Patagonia. Geol Soc London 155:105–114.  https://doi.org/10.1144/gsjgs.155.1.0105 Google Scholar
  43. Rapalini AE (2005) The accretionary history of southern South America from the latest Proterozoic to the Late Palaeozoic: some palaeomagnetic constraints. Geol Soc London 246:305–328.  https://doi.org/10.1144/GSL.SP.2005.246.01.12 Google Scholar
  44. Rapalini AE, López de Luchi MG, Martínez Dopico CI, Lince Klinger F, Giménez M, Martínez P (2010) Did Patagonia collide with Gondwana in the Late Paleozoic? Some insights from a multidisciplinary study of magmatic units of the North Patagonian Massif. Geol Acta 8:349–371.  https://doi.org/10.1344/105.000001577 Google Scholar
  45. Rapalini AE, López de Luchi MG, Tohver E, Cawood PA (2013) The South American ancestry of the North Patagonian Massif: geochronological evidence for an autochthonous origin? Terra Nova 25:337–342.  https://doi.org/10.1111/ter.12043 Google Scholar
  46. Rapela CW, Llambías EJ (1985) Evolución magmática y relaciones regionales de los Complejos eruptivos de La Esperanza, Provincia de Río Negro. Revista Asoc Geol Argent 40(1–2):4–25Google Scholar
  47. Tera F, Wasserburg G (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304Google Scholar
  48. Tomezzoli RN, Rapalini AE, López de Luchi MG, Martínez Dopico CI (2013) Further evidence of widespread Permian remagnetization in the North Patagonian Massif, Argentina. Gondwana Res 24:192–202.  https://doi.org/10.1016/j.gr.2012.08.019 Google Scholar
  49. Torsvik TH (2015) GMAP 2015 http://www.iggl.no/resources.html
  50. Torsvik TH, Van der Voo R, Preeden U, Niocaill CM, Steinberger B, Doubrovine PV et al (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci Rev 114:325–368.  https://doi.org/10.1016/j.earscirev.2012.06.002 Google Scholar
  51. von Gosen W (2003) Thrust tectonics in the North Patagonian Massif (Argentina): implications for a patagonia plate. Tectonics 22:1–33.  https://doi.org/10.1029/2001TC901039 Google Scholar
  52. Williams IS (1998) U–Th–Pb Geochronology by Ion Microprobe. In: McKibben MA, Shanks WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35.  https://doi.org/10.5382/Rev.07.01
  53. Yrigoyen MR (1999) Los depósitos cretácicos y terciarios de las cuencas del Salado y del Colorado. In: Caminos R (Ed), Geología Argentina (Vol 29) Servicio Geológico Minero Argentino, Instituto de Geología Y Recursos Minerales pp 645–650Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas y NaturalesInstituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto de Geocronología y Geología Isotópica (INGEIS)Buenos AiresArgentina
  4. 4.School of Earth SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations