Skip to main content
Log in

Early cretaceous lower crustal reworking in NE China: insights from geochronology and geochemistry of felsic igneous rocks from the Great Xing’an range

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This paper presents new zircon LA-ICP-MS U–Pb ages and whole-rock geochemical data for two granitic plutons and rhyolites of the Baiyingaolao Formation in the western Xing’an range (NE China). The two syenogranite granitic plutons yield identical zircon U–Pb age of 142 ± 1 Ma, and the Baiyingaolao rhyolites yield zircon U–Pb age of 138 ± 2 Ma. The granites contain some hornblendes, and show low Zr and Zr + Nb + Ce + Y contents, and low A/CNK (0.98–1.11), Mg# (6–55), and FeOT/MgO values. Rhyolite samples show similar geochemical characteristics with A/CNK of 0.99–1.10 and Mg# of 14–21. In combination with the high K2O contents (4.43–5.61 wt%) and negative correlations between P2O5 and SiO2, both the granites and rhyolites were classified as high-K calc-alkaline I-type granitoids. All samples give high zirconium saturation temperature of 794–964 °C with few initially inherited zircons, and belong to high-temperature I-type granitoids. They were generated by dehydration melting of biotite/muscovite from sub-alkaline meta-basalts in lower crust depth, leaving garnet, amphibole, and plagioclase as the major residual minerals. The syenogranites and rhyolites are likely formed in Mongol–Okhotsk oceanic subduction setting. Incorporating other lower crust-originated felsic rocks in Erguna and Xing’an massifs and Songliao basin, it is argued that lower crustal reworking is pronounced in NE China during Early Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albarede F (1998) The growth of continental crust. Tectonophysics 296(1–2):1–14

    Article  Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46(3):605–626

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80(1–4):155–177

    Article  Google Scholar 

  • Barth AP, Wooden JL, Tosdal RM, Morrison J (1995) Crustal contamination in the petrogenesis of a Calc-Alkalic Rock Series—Josephine Mountain Intrusion, California. Geol Soc Am Bull 107(2):201–212

    Article  Google Scholar 

  • Beard J, Lofgren G (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401

    Article  Google Scholar 

  • Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46(3):535–551

    Article  Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (1992) I-type and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinburgh Earth Sci 83(83):1–26

    Article  Google Scholar 

  • Chappell BW, Bryant CJ, Wyborn D, White AJR, Williams IS (1998) High- and low-temperature I-type granites. Resour Geol 48(4):225–235

    Article  Google Scholar 

  • Chappell BW, Bryant CJ, Wyborn D (2012) Peraluminous I-type granites. Lithos 153:142–153

    Article  Google Scholar 

  • Chen C, Ren YS, Zhao HL, Yang Q, Zou XT (2015) The whole-rock geochemical composition of the Wudaogou group in Eastern Yanbian, NE China-new clues to its relationship with the gold and tungsten mineralization and the evolution of the Paleo-Asian Ocean. Resour Geol 65(3):232–248

    Article  Google Scholar 

  • Chen H, Xia QK, Ingrin J, Deloule E, Bi Y (2017) Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction. Earth Planet Sci Lett 459:208–220

    Article  Google Scholar 

  • Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61(1–2):1–18

    Article  Google Scholar 

  • Cogne JP, Kravchinsky VA, Halim N, Hankard F (2005) Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baikal area (SE Siberia). Geophys J Int 163(2):813–832

    Article  Google Scholar 

  • Collins WJ, Richards SW (2008) Geodynamic significance of S-type granites in circum-Pacific orogens. Geology 36(7):559–562

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of a-type granites with particular reference to Southeastern Australia. Contrib Miner Petrol 80(2):189–200

    Article  Google Scholar 

  • Cong F, Lin SL, Zou GF, Li ZH, Xie T, Peng ZM, Liang T (2011) Magma mixing of granites at Lianghe: in-situ zircon analysis for trace elements, U–Pb ages and Hf isotopes. Sci China Earth Sci 54(9):1346–1359

    Article  Google Scholar 

  • Dong Y, Ge WC, Yang H, Zhao GC, Wang QH, Zhang YL, Su L (2014) Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing’an range, NE China, and its tectonic implications. Lithos 205:168–184

    Article  Google Scholar 

  • Eby GN (1990) The a-type granitoids—a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26(1–2):115–134

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the a-type granitoids—petrogenetic and tectonic implications. Geology 20(7):641–644

    Article  Google Scholar 

  • Fritzell EH, Bull AL, Shephard GE (2016) Closure of the Mongol-Okhotsk Ocean: insights from seismic tomography and numerical modelling. Earth Planet Sci Lett 445:1–12

    Article  Google Scholar 

  • Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52(1):39–53

    Article  Google Scholar 

  • Guo F, Fan WM, Li CW, Gao XF, Miao LC (2009) Early Cretaceous highly positive epsilon(Nd) felsic volcanic rocks from the Hinggan Mountains, NE China: origin and implications for Phanerozoic crustal growth. Int J Earth Sci 98(6):1395–1411

    Article  Google Scholar 

  • Guo F, Fan WM, Gao XF, Li CW, Miao LC, Zhao LA, Li HX (2010) Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China Constraints on tectonic framework and Phanerozoic crustal growth. Lithos 120(3–4):563–578

    Article  Google Scholar 

  • Halim N, Kravchinsky V, Gilder S, Cogne JP, Alexutin M, Sorokin A, Courtillot V, Chen Y (1998) A palaeomagnetic study from the Mongol-Okhotsk region: Rotated Early Cretaceous volcanics and remagnetized Mesozoic sediments. Earth Planet Sci Lett 159:133–145

    Article  Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images—implications for interpretation of complex crustal histories. Chem Geol 110(1–3):1–13

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443(7113):811–817

    Article  Google Scholar 

  • Heilimo E, Elburg MA, Andersen T (2014) Crustal growth and reworking during Lapland–Kola orogeny in northern Fennoscandia: U–Pb and Lu–Hf data from the Nattanen and Litsa-Aragub-type granites. Lithos 205:112–126

    Article  Google Scholar 

  • Hineab R, Williamscd IS, Chappelle BW, White AJR (1978) Contrasts between I- and S-type granitoids of the Kosciusko Batholith. J Geol Soc Aust 25(3–4):219–234

    Google Scholar 

  • Huang YL, Wang PJ, Shu P, Zhang YL (2010) Characteristics and formation mechanism of the Cretaceous intermediate and mafic volcanic reservoirs in Songliao Basin, NE China. Acta Petrol Sin 26(1):82–92

    Google Scholar 

  • IMBGMR (Inner Mongolian Bureau of Geology Mineral Resources) (1991) Regional geology of inner Mongolia. Geological Publishing House, Beijing, pp 1–725 (in Chinese with English abstract)

    Google Scholar 

  • Jahn BM, Wu FY, Chen B (2000a) Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans R Soc Edinburgh Earth Sci 91:181–193

    Article  Google Scholar 

  • Jahn BM, Wu FY, Chen B (2000b) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23(2):82–92

    Google Scholar 

  • Jahn BM, Capdevila R, Liu DY, Vernon A, Badarch G (2004) Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. J Asian Earth Sci 23(5):629–653

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat JJ, Capdevila R (2006) 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: tectonic, geochronologic and geochemical constraints. Precambr Res 150(1–2):1–26

    Article  Google Scholar 

  • Ji Z, Ge WC, Wang QH, Yang H, Zhao GC, Bi JH, Dong Y (2016) Petrogenesis of Early Cretaceous volcanic rocks of the Manketouebo Formation in the Wuchagou region, central Great Xing’an range, NE China, and tectonic implications: geochronological, geochemical, and Hf isotopic evidence. Int Geol Rev 58(5):556–573

    Google Scholar 

  • Kelty TK, Yin A, Dash B, Gehrels GE, Ribeiro AE (2008) Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay–Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia. Tectonophysics 451(1–4):290–311

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007a) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315(5814):980–983

    Article  Google Scholar 

  • Kemp AIS, Shimura T, Hawkesworth CJ (2007b) Linking granulites, silicic magmatism, and crustal growth in arcs: ion microprobe (zircon) U–Pb ages from the Hidaka metamorphic belt, Japan. Geology 35(9):807–810

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Collins WJ, Gray CM, Blevin PL, Eimf (2009) Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet Sci Lett 284(3–4):455–466

    Article  Google Scholar 

  • Kravchinsky VA, Cogne JP, Harbert WP, Kuzmin MI (2002) Evolution of the Mongol–Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia. Geophys J Int 148:34–57

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek Keller AJ, Lameyre Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wolley AR, Zanetti B (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford, p. 193

    Google Scholar 

  • Li XH, Li ZX, Zhou HW, Liu Y, Kinny PD (2002) U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambr Res 113(1–2):135–154

    Article  Google Scholar 

  • Li SC, Liu ZH, Xu ZY, Li G, Zhang C (2015) Age and tectonic setting of volcanic rocks of the Tamulangou Formation in the Great Xing’an range, NE China. J Asian Earth Sci 113:471–480

    Article  Google Scholar 

  • Li Y, Xu WL, Wang F, Pei FP, Tang J, Zhao S (2017a) Triassic volcanism along the eastern margin of the Xing’an Massif, NE China: Constraints on the spatial-temporal extent of the Mongol–Okhotsk tectonic regime. Gondwana Res 48:205–223

    Article  Google Scholar 

  • Li YL, Xu G, Liu HC, Bai LQ, Su YC, Liu XN (2017b) Petrogenesis and tectonic implication of the volcanic rocks in Manitu formation from the Western Great Xing’an range (NE China). Geoscience 31(4):1–15 (Chinese with English abstract)

    Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt–peridotite interactions in the trans-north China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51(1–2):537–571

    Article  Google Scholar 

  • Liu RP, Gu XX, Zhang YM, Wang JL, Zheng L, Gao HJ (2015) Zircon U–Pb geochronology and petrogeochemistry of host igneous rocks of the Dong’ an gold deposit in Heilongjiang Province, NE China. Acta Petrologica Sinica 31(5):1391–1408

    Google Scholar 

  • Liu K, Zhang JJ, Wilde SA, Zhou JB, Wang M, Ge MH, Wang JM, Ling YY (2017) Initial subduction of the Paleo-Pacific Oceanic plate in NE China: Constraints from whole-rock geochemistry and zircon U–Pb and Lu–Hf isotopes of the Khanka Lake granitoids. Lithos 274:254–270

    Article  Google Scholar 

  • Long X, Sun M, Yuan C, Xiao W, Lin S, Wu F, Xia X, Cai K (2007) Detrital zircon age and hf isotopic studies for metasedimentary rocks from the chinese altai: implications for the early paleozoic tectonic evolution of the central Asian orogenic belt. Tectonics 26(5):1–20

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Meng E, Xu WL, Pei FP, Yang DB, Yu Y, Zhang XZ (2010) Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics 485(1–4):42–51

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace-Element Discrimination Diagrams for the Tectonic Interpretation of Granitic-Rocks. J Petrol 25(4):956–983

    Article  Google Scholar 

  • Pei FP, Xu WL, Yang DB, Lu SM, Feng H (2010) Heterogeneity of the lower continental crust beneath southern Jilin Province, NE China: evidence from geochemical and Sr–Nd–Pb isotopic compositions of Early Cretaceous granitoids. Geochimica Et Cosmochimica Acta 74(12):A801-A801

    Google Scholar 

  • Pei FP, Zhang Y, Wang ZW, Cao HH, Xu WL, Wang ZJ, Wang F, Yang C (2016) Early-Middle Paleozoic subduction-collision history of the south-eastern Central Asian Orogenic Belt: evidence from igneous and metasedimentary rocks of central Jilin Province, NE China. Lithos, 261:164–180

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32-Kbar-implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425(6958):605–609

    Article  Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21(9):825–828

    Article  Google Scholar 

  • Rudnick RL (1995) Making continental-crust. Nature 378(6557):571–578

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental-crust—a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  • Safonova I (2017) Juvenile versus recycled crust in the Central Asian Orogenic Belt: implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res 47:6–27

    Article  Google Scholar 

  • Sawyer EW (1998) Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. J Petrol 39(6):1147–1167

    Article  Google Scholar 

  • Sengor AMC, Natalin BA, Burtman VS (1993) Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia. Nature 364(6435):299–307

    Article  Google Scholar 

  • Shellnutt JG, Zhou MF (2007) Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chem Geol 243(3–4):286–316

    Article  Google Scholar 

  • Spencer CJ, Cawood PA, Hawkesworth CJ, Raub TD, Prave AR, Roberts NMW (2014) Proterozoic onset of crustal reworking and collisional tectonics: reappraisal of the zircon oxygen isotope record. Geology 42(5):451–454

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and process. Geol Soc (Lond), 42(SI):313–345 (Special Publications)

  • Sun DY, Wu FY, Li HM, Lin Q (2001) Emplacement age of the postorogenic A-type granites in Northwestern Lesser Xing’an ranges, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone. Chin Sci Bull 46(5):427–432

    Article  Google Scholar 

  • Sun DY, Gou J, Ren YS, Fu CL, Wang X, Liu XM (2011) Zircon U-Pb dating and study on geochemistry of volcanic rocks in Manitu Formation from southern Manchuria, Inner Mongolia. Acta Petrol Sin 27(10):3083–3094

    Google Scholar 

  • Tang GJ, Wang Q, Wyman DA, Li ZX, Zhao ZH, Yang YH (2012) Late Carboniferous high epsilon(Nd)(t)-epsilon(Hf)(t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth. Lithos 140(2012):86–102

    Article  Google Scholar 

  • Tang J, Xu WL, Wang F, Zhao S, Li Y (2015) Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China: constraints on the late Mesozoic tectonic evolution of the Mongol–Okhotsk orogenic belt. Tectonophysics 658:91–110

    Article  Google Scholar 

  • Tang J, Xu WL, Wang F, Zhao S, Wang W (2016) Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res 31:218–240

    Article  Google Scholar 

  • Thompson AB, Connolly JAD (1995) Melting of the continental-crust—some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J Geophys Res Solid Earth 100(B8):15565–15579

    Article  Google Scholar 

  • Wang PJ, Ren YG, Shan XL, Sun SB, Wan CB, Bian WH (2002) The Cretaceous volcanic succession around the Songliao Basin, NE China: relationship between volcanism and sedimentation. Geol J 37(2):97–115

    Article  Google Scholar 

  • Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY, Zhu RX (2006) Late mesozoic volcanism in the Great Xing’an range (NE China): timing and implications for the dynamic setting of NE Asia. Earth Planet Sci Lett 251(1–2):179–198

    Article  Google Scholar 

  • Wang YJ, Fan WM, Sun M, Liang XQ, Zhang YH, Peng TP (2007) Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: a case study in the Hunan Province. Lithos 96(3–4):475–502

    Article  Google Scholar 

  • Wang PJ, Chen SM, Li WZ, Chen HL, Lang YQ (2010) Chronology, petrology and geochemistry of the Cretaceous crypto-explosive breccia-bearing volcanic rocks: implications for volcanic reservoir and tectonics of the Songliao Basin, NE China. Acta Petrol Sin 26(1):33–46

    Google Scholar 

  • Wang F, Xu WL, Xu YG, Gao FH, Ge WC (2015a) Late Triassic bimodal igneous rocks in eastern Heilongjiang Province, NE China: implications for the initiation of subduction of the Paleo-Pacific Plate beneath Eurasia. J Asian Earth Sci 97:406–423

    Article  Google Scholar 

  • Wang T, Guo L, Zhang L, Yang QD, Zhang JJ, Tong Y, Ye K (2015b) Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia: implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. J Asian Earth Sci 97:365–392

    Article  Google Scholar 

  • Wang ZJ, Xu WL, Pei FP, Wang ZW, Li Y, Cao HH (2015c) Geochronology and geochemistry of middle Permian-Middle Triassic intrusive rocks from central-eastern Jilin Province, NE China: constraints on the tectonic evolution of the eastern segment of the Paleo-Asian Ocean. Lithos, 238: 13–25

    Article  Google Scholar 

  • Wang ZW, Pei FP, Xu WL, Cao HH, Wang ZJ, Zhang Y (2016) Tectonic evolution of the eastern Central Asian Orogenic Belt: evidence from zircon U–Pb–Hf isotopes and geochemistry of early Paleozoic rocks in Yanbian region, NE China. Gondwana Res 38:334–350

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY (2003) Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67(3–4):191–204

    Article  Google Scholar 

  • Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41(1):1–30

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics, 22(6)

  • Xiao WJ, Windley BF, Allen MB, Han CM (2013) Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res 23(4):1316–1341

    Article  Google Scholar 

  • Xiong FH, Ma CQ, Zhang JY, Liu B, Jiang HA (2014) Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J Geol Soc 171(6):847–863

    Article  Google Scholar 

  • Yang QD, Guo L, Wang T, Zeng T, Zhang L, Tong Y, Shi XJ, Zhang JJ (2014) Geochronology, origin, sources and tectonic settings of Late Mesozoic two-stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China. Acta Petrol Sin 30(7):1961–1981

    Google Scholar 

  • Yang YT, Guo ZX, Song CC, Li XB, He S (2015) A short-lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic-earliest Cretaceous. Gondwana Res 28(3):1096–1116

    Article  Google Scholar 

  • Yang JH, Peng JT, Zheng YF, Hu RZ, Bi XW, Zhao JH, Huang JC, Zhang BL (2016) Petrogenesis of the Mesozoic Shuikoushan peraluminous I-type granodioritic intrusion in Hunan Province, South China: middle-lower crustal reworking in an extensional tectonic setting. J Asian Earth Sci 123:224–242

    Article  Google Scholar 

  • Yang DG, Sun DY, Gou J, Hou XG (2017) U-Pb ages of zircons from Mesozoic intrusive rocks in the Yanbian area, Jilin Province, NE China: transition of the Paleo-Asian oceanic regime to the circum-Pacific tectonic regime. J Asian Earth Sci 143:171–190

    Article  Google Scholar 

  • Yuan HL, Gao S, Liu XM, Li HM, Gunther D, Wu FY (2004) Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 28(3):353–370

    Article  Google Scholar 

  • Zeitler PK, Koons PO, Bishop MP, Chamberlain CP, Craw D, Edwards MA, Hamidullah S, Jan MQ, Khan MA, Khattak MUK, Kidd WSF, Mackie RL, Meltzer AS, Park SK, Pecher A, Poage MA, Sarker G, Schneider DA, Seeber L, Shroder JF (2001) Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 20(5):712–728

    Article  Google Scholar 

  • Zhang KJ (2014) Genesis of the Late Mesozoic Great Xing’an range Large Igneous Province in eastern central Asia: a Mongol–Okhotsk slab window model. Int Geol Rev 56:1557–1583

    Article  Google Scholar 

  • Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T, King J (2004) Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett 228(1–2):195–212

    Article  Google Scholar 

  • Zhang FQ, Chen HL, Yu X, Dong CW, Yang SF, Pang YM, Batt GE (2011) Early Cretaceous volcanism in the northern Songliao Basin, NE China, and its geodynamic implication. Gondwana Res 19(1):163–176

    Article  Google Scholar 

  • Zhao S, Xu WL, Wang W, Tang J, Zhang YH (2014) Geochronology and geochemistry of Middle-Late ordovician granites and gabbros in the Erguna Region, NE China: implications for the Tectonic Evolution of the Erguna Massif. J Earth Sci 25(5):841–853

    Article  Google Scholar 

  • Zhou JB, Wilde SA (2013) The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res 23:1365–1377

    Article  Google Scholar 

  • Zhou ZB, Pei FP, Wang ZW, Cao HH, Wen-Liang X, Wang ZJ, Zhang Y (2017) Using detrital zircons from late Permian to Triassic sedimentary rocks in the south-eastern Central Asian Orogenic Belt (NE China) to constrain the timing of the final closure of the Paleo-Asian Ocean. J Asian Earth Sci 144:82–109

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Wolf-Christian Dullo, Wenjiao Xiao, Kaijun Zhang, and Xiaoping Xia for their constructive and helpful reviews. We would like to thank Jianwei Xiao, Tingting Zhang, Yinchun Su, Yuling Bai, Hongbin Li, and Hongyu Han for their help in field work and zircon U–Pb analyses. This study is financially supported by National Natural Science Foundation of China (41502210) and Geological Survey projects of China Geological Survey (12120115031301 and DD20160047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huichuan Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 505 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, H., Huangfu, P. et al. Early cretaceous lower crustal reworking in NE China: insights from geochronology and geochemistry of felsic igneous rocks from the Great Xing’an range. Int J Earth Sci (Geol Rundsch) 107, 1955–1974 (2018). https://doi.org/10.1007/s00531-017-1581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1581-7

Keywords

Navigation