Paleosalinity evolution of the Paleogene perennial Qaidam lake on the Tibetan Plateau: climatic vs. tectonic control

Abstract

As the largest Cenozoic terrestrial intermountain basin in the Tibetan Plateau, the Qaidam Basin is an ideal basin to understand the coupling controls of tectonics and climate on plateau lake evolution. More than 10,000 data of chloride content from the Paleogene sediments of the endorheic Qaidam Basin have been collected to monitor changes in lake paleosalinity. Results show that there were two prominent salinity increase events in the Paleogene paleolake, one in the late Eocene (~ 40 Ma) and the other in the transition from the Eocene to Oligocene (EOT, ~ 35.5 Ma). The first salinity increase event was evidenced by the expansion of saline water, the connection of two previous separated saline centers and the deposition of thick-bedded halite in a local sag, which correlated with the late Eocene’s frequently fluctuated climate. The other salinity increase event at the EOT was characterized by the expansion of mesosaline water range, which corresponded well to the drier condition of the Oligocene icehouse climate. The synchronous migration of the saline centers and depocenters demonstrates that the Qaidam Basin was a tectonically active saline basin, where the activity of main faults controlled the occurrence and disappearance of supersaline center under the overall brackish background. The deposition of over 200-m thick-bedded halite during the late Eocene in a local sag was the result of coupled effects by active tectonics and fluctuated climate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abels HA, Dupont-Nivet G, Xiao G, Bosboom R, Krijgsman W (2011) Step-wise change of Asian interior climate preceding the Eocene–Oligocene Transition (EOT). Palaeogeogr Palaeoclimatol Palaeoecol 299:399–412. https://doi.org/10.1016/j.palaeo.2010.11.028

    Article  Google Scholar 

  2. Abu-Jaber NS (1998) A new look at the chemical and hydrological evolution of the Dead Sea. Geochim Cosmochim Acta 62:1471–1479. https://doi.org/10.1016/S0016-7037(98)00083-0

    Article  Google Scholar 

  3. Bastviken D, Sanden P, Svensson T et al (2006) Chloride retention and release in a boreal forest soil: effects of soil water residence time and nitrogen and chloride loads. Environ Sci Technol 40:2977–2982

    Article  Google Scholar 

  4. Bastviken D, Thomsen F, Svensson T et al (2007) Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochim Cosmochim Acta 71:3182–3192

    Article  Google Scholar 

  5. Bao J, Wang Y, Song C et al (2017) Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate. Glob Planet Change 155:56–69. http://doi.org/10.1016/j.gloplacha.2017.03.006

  6. Bosboom R, Dupont-Nivet G, Grothe A et al (2014a) Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China). Palaeogeogr Palaeoclimatol Palaeoecol 403:101–118. https://doi.org/10.1016/j.palaeo.2014.03.035

    Article  Google Scholar 

  7. Bosboom RE, Abels HA, Hoorn C et al (2014b) Aridification in continental Asia after the Middle Eocene climatic optimum (MECO). Earth Planet Sci Lett 389:34–42. https://doi.org/10.1016/j.epsl.2013.12.014

    Article  Google Scholar 

  8. BoscoloGalazzo F, Giusberti L, Luciani V, Thomas E (2013) Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath: the benthic foraminiferal record from the Alano section (NE Italy). Palaeogeogr Palaeoclimatol Palaeoecol 378:22–35. https://doi.org/10.1016/j.palaeo.2013.03.018

    Article  Google Scholar 

  9. Bush MA, Saylor JE, Horton BK, Nie J (2016) Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: inferences from depositional patterns and multiproxy detrital provenance signatures. Lithosphere 8:58–82. https://doi.org/10.1130/L449.1

    Article  Google Scholar 

  10. Carrapa B, DeCelles PG, Wang X et al (2015) Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia. Earth Planet Sci Lett 424:168–178. https://doi.org/10.1016/j.epsl.2015.05.034

    Article  Google Scholar 

  11. Carroll AR, Bohacs KM (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology 27:99–102. https://doi.org/10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2

  12. Chen Z, Zhang J, Zha M (2013) Geochemistry of evaporites in lacustrine basin, Dongying depression, Bohai Bay Basin, China. Pet Environ Biotechnol 4:15. https://doi.org/10.4172/2157-7463.1000156

    Google Scholar 

  13. Cheng F, Jolivet M, Fu S, Zhang Q, Guan S, Yu X, Guo Z (2014) Northward growth of the QimenTagh Range: a new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin. Tectonophysics 632:32–47. https://doi.org/10.1016/j.tecto.2014.05.034

    Article  Google Scholar 

  14. Cheng F, Fu S, Jolivet M, Zhang C, Guo Z (2016) Source to sink relation between the eastern Kunlun range and the Qaidam basin, northern tibetan plateau, during the cenozoic. Geol Soc Am Bull 128:258–283. https://doi.org/10.1130/B31260.1

    Google Scholar 

  15. Coxall H, Wilson P, Pälike H, Lear JC (2005) Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57. https://doi.org/10.1038/nature03135

    Article  Google Scholar 

  16. Dupont-Nivet G, Krijgsman W, Langereis CG et al (2007) Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445:635–638. https://doi.org/10.1038/nature05516

    Article  Google Scholar 

  17. Eugster HP (1970) Chemistry and origin of the brines of Lake Magadi. Kenya Spec Publ Geol Soc 3:215–235

    Google Scholar 

  18. Fang X, Zhang W, Meng Q et al (2007) High-resolution magneto stratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet Sci Lett 258:293–306. https://doi.org/10.1016/j.epsl.2007.03.042

    Article  Google Scholar 

  19. Frantz CM, Petryshyn VA, Marenco PJ et al (2014) Dramatic local environmental change during the early eocene climatic optimum detected using high resolution chemical analyses of Green River Formation stromatolites. Palaeogeogr Palaeoclimatol Palaeoecol 405:1–15. https://doi.org/10.1016/j.palaeo.2014.04.001

    Article  Google Scholar 

  20. Fu S, Yuan J, Wang L et al (2014) Conditions of the oil–gas accumulation of the Qaidam Basin. Science press, Beijing (Chinese)

    Google Scholar 

  21. Gierlowski-Kordesch EH, Buchheim HP (2003) Lake basins as archives of continental tectonics and paleoclimate: introduction. J Paleolimnol 30:113–114. https://doi.org/10.1023/A:1025563931270

    Article  Google Scholar 

  22. Gierlowski-Kordesch EH, Jacobson AD, Blum JD, Valero Garćes BL (2008) Watershed reconstruction of a Paleocene–Eocene lake basin using Sr isotopes in carbonate rocks. Geol Soc Am Bull 120:85–95. https://doi.org/10.1130/B26070.1

    Article  Google Scholar 

  23. Grimaldi C, Thomas Z, Fossey M, Fauvel Y, Merot P (2009) High chloride contents in the soil and groundwater under an oak hedge in the West of France: an indicator of evapotranspiration and water movement. Hydrol Process 23:1865–1873

    Article  Google Scholar 

  24. Heermance RV, Pullen A, Kapp P et al (2013) Climatic and tectonic controls on sedimentation and erosion during the pliocene-quaternary in the Qaidam basin (China). Geol Soc Am Bull 125:833–856. https://doi.org/10.1130/B30748.1

    Article  Google Scholar 

  25. Huang C, Hinnov L (2014) Evolution of an Eocene–Oligocene saline lake depositional system and its controlling factors, Jianghan Basin, China. J Earth Sci 25:959–976. https://doi.org/10.1007/s12583-014-0499-2

    Article  Google Scholar 

  26. Ji J, Zhang K, Clift PD et al (2017) High-resolution magnetostratigraphic study of the Paleogene–Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau. Gondwana Res 46:141–155. https://doi.org/10.1016/j.gr.2017.02.015

    Article  Google Scholar 

  27. Jiang J, Peng P, Fu J, Sheng G (2004) Generation, migration and accumulation of oils and gases in hypersaline lacustrine basin, China. Guangdong Science and Technology Press, Guangzhou, pp 1–364 (Chinese)

    Google Scholar 

  28. Jobbágy EG, Jackson RB (2007) Groundwater and soil chemical changes under phreatophytic tree plantations. J Geophys Res Biogeosci 112:1–15. https://doi.org/10.1029/2006JG000246

    Article  Google Scholar 

  29. Kirchner JW, Tetzlaff D, Soulsby C (2010) Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments. Hydrol Process 24:1631–1645. https://doi.org/10.1002/hyp.7676

    Article  Google Scholar 

  30. Licht A, van Cappelle M, Abels HA et al (2014) Asian monsoons in a late Eocene greenhouse world. Nature 513:501–506. https://doi.org/10.1038/nature13704

    Article  Google Scholar 

  31. Liu C, Zhao J, Ma Y et al (2014) The advances and problems in the study of the characteristics and formation of hydrocarbon-rich sag. Earth Sci Front 21:75–88 (Chinese with English abstract)

    Google Scholar 

  32. Liu D, Li H, Sun Z et al (2017) AFT dating constrains the Cenozoic uplift of the QimenTagh Mountains, Northeast Tibetan Plateau, comparison with LA-ICPMS Zircon U-Pb ages. Gondwana Res 41:438–450. https://doi.org/10.1016/j.gr.2015.10.008

    Article  Google Scholar 

  33. Lu H, Xiong S (2009) Magneto stratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and AltynTagh Fault. Earth Planet Sci Lett 288:539–550. https://doi.org/10.1016/j.epsl.2009.10.016

    Article  Google Scholar 

  34. Lyman J (1969) Redefinition of salinity and chlorinity. Limnol Oceanogr 14:928–929

    Article  Google Scholar 

  35. Mao LG, Xiao AC, Wu L et al (2014) Cenozoic tectonic and sedimentary evolution of southern Qaidam Basin, NE Tibetan Plateau and its implication for the rejuvenation of Eastern Kunlun Mountains. Sci China Earth Sci 57:2726–2739. https://doi.org/10.1007/s11430-014-4951-z

    Article  Google Scholar 

  36. Martinsen OJ, Ryseth A, Helland-Hansen W, Wyoming SW et al (1999) Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs Uplift. USA Sedimentol 46:235–259. https://doi.org/10.1046/j.1365-3091.1999.00208.x

    Article  Google Scholar 

  37. März C, Mix AC, McClym E (2014) Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341). EGU General Assembly 16. https://doi.org/10.1029/2009GC002949.Mann

  38. McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and precipitation of Br and K+ with halite. J Sediment Petrol 57:928–1037

  39. Meng QR, Fang X (2008) Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau. Geol Soc Am Spec Pap 44:1–24. https://doi.org/10.1130/2008.2444(01)

    Google Scholar 

  40. Miao YF, Fang XM, Wu FL et al (2013) Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records. Clim Past 9:1863–1877. https://doi.org/10.5194/cp-9-1863-2013

    Article  Google Scholar 

  41. National Energy Administration (2009) Test method of chloride content in rock. Petroleum and natural gas industry standards (SY/T 5503-2009) of China (in Chinese)

  42. Pälike H, Shackleton NJ, Röhl U (2001) Astronomical forcing in Late Eocene marine sediments. Earth Planet Sci Lett 193:589–602. https://doi.org/10.1016/S0012-821X(01)00501-5

    Article  Google Scholar 

  43. Pälike H, Norris RD, Herrle JO et al (2006) The heartbeat of the Oligocene climate system. Science 314:1894–1898. https://doi.org/10.1126/science.1133822

    Article  Google Scholar 

  44. Peters NE, Ratcliffe EB (1998) Tracing hydrologic pathways using chloride at the Panola mountain research watershed, Georgia, USA. Water Air Soil Pollut 105:263–275. https://doi.org/10.1023/A:1005082332332

    Article  Google Scholar 

  45. Phillips JD (2006) Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change. Hydrol Earth Syst Sci Discuss 3:365–394. https://doi.org/10.5194/hessd-3-365-2006

    Article  Google Scholar 

  46. Pietras JT, Carroll AR, Rhodes MK (2003) Lake basin response to tectonic drainage diversion: Eocene Green River Formation, Wyoming. J Paleolimnol 30:115–125. https://doi.org/10.1023/A:1025518015341

    Article  Google Scholar 

  47. Quan C, Liu Z, Utescher T et al (2014) Revisiting the Paleogene climate pattern of East Asia: a synthetic review. Earth Sci Rev 139:213–230. https://doi.org/10.1016/j.earscirev.2014.09.005

    Article  Google Scholar 

  48. Reynolds B, Pomeroy AB (1988) Hydro geochemistry of chloride in an upland catchment in mid-Wales. J Hydrol 99:19–32. https://doi.org/10.1016/0022-1694(88)90075-3

    Article  Google Scholar 

  49. Rieser AB, Neubauer F, Liu Y, Ge X (2005) Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam Basin, western China: tectonic vs. climatic control. Sediment Geol 177:1–18. https://doi.org/10.1016/j.sedgeo.2005.01.012

    Article  Google Scholar 

  50. Rieser AB, Bojar AV, Neubauer F et al (2009) Monitoring Cenozoic climate evolution of northeastern Tibet: stable isotope constraints from the western Qaidam Basin, China. Int J Earth Sci 98:1063–1075. https://doi.org/10.1007/s00531-008-0304-5

    Article  Google Scholar 

  51. Song T, Wang X (1993) Structural styles and stratigraphic patterns of syndepositional faults in a contractional setting: Examples from Quaidam basin, northwestern China. Aapg Bull 77:102–117

    Google Scholar 

  52. Su A, Chen Z, Liang D et al (2006) Oil-gas formation in the Tibet Plateau: examples of the Cenozoic strata in the western Qaidam Basin. Geological Publishing House, Beijing, pp 13–28 (Chinese)

    Google Scholar 

  53. Sun X, Wang P (2005) How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol 222:181–222. https://doi.org/10.1016/j.palaeo.2005.03.005

    Article  Google Scholar 

  54. Sun Z, Yang F, Zhang Z, Li S, Li D (1997) Sedimentary environment and oil–gas generation of Cenozoic saline lakes in China. Petroleum Industry Press, Beijing, pp 1–338 (Chinese)

    Google Scholar 

  55. Sun Z, Yang Z, Pei J et al (2005) Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth Planet Sci Lett 237:635–646. https://doi.org/10.1016/j.epsl.2005.07.007

    Article  Google Scholar 

  56. Sun B, Yan D, Xie S, Wang Y (2009) Stomata and carbon isotope analyses of fossil plants and their applications. Science Press, Beijing (Chinese)

    Google Scholar 

  57. Sun J, Windley BF, Zhang Z, Fu B, Li S (2016) Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene. J Asian Earth Sci 116:222–231. https://doi.org/10.1016/j.jseaes.2015.11.020

    Article  Google Scholar 

  58. Tänavsuu-Milkeviciene K, Frederick Sarg J (2012) Evolution of an organic-rich lake basin—stratigraphy, climate and tectonics: Piceance creek basin, eocene green river formation. Sedimentology 59:1735–1768. https://doi.org/10.1111/j.1365-3091.2012.01324.x

    Article  Google Scholar 

  59. Wang J, Wang YJ, Liu ZC, Li JQ, Xi P (1999) Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeogr Palaeoclimatol Palaeoecol 152:37–47. https://doi.org/10.1016/S0031-0182(99)00038-3

    Article  Google Scholar 

  60. Wang E, Xu FY, Zhou JX et al (2006) Eastward migration of the Qaidam Basin and its implications for Cenozoic evolution of the AltynTagh fault and associated river systems. Geol Soc Am Bull 118:349–365. https://doi.org/10.1130/B25778.1

    Article  Google Scholar 

  61. Wang CW, Hong HL, Song BW et al (2011) The early-Eocene climate optimum (EECO) event in the Qaidam Basin, northwest China: clay evidence. Clay Miner 46:649–661. https://doi.org/10.1180/claymin.2011.046.4.649

    Article  Google Scholar 

  62. Wang Y, Zheng J, Zhang W et al (2012) Cenozoic uplift of the Tibetan Plateau: evidence from the tectonic-sedimentary evolution of the western Qaidam Basin. Geosci Front 3:175–187. https://doi.org/10.1016/j.gsf.2011.11.005

    Article  Google Scholar 

  63. Wang D, Lu S, Han S, Sun X, Quan C (2013) Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics. J Asian Earth Sci 62:776–787. https://doi.org/10.1016/j.jseaes.2012.11.032

    Article  Google Scholar 

  64. Wang Y, Liu Y, Huang G, Li S (2014) Paleo-Neogene sedimentary system and hydrocarbon distribution of the western Qaidam Basin. Petroleum Industry Press, Beijing (Chinese)

    Google Scholar 

  65. Wang M, Sherwood N, Li Z et al (2015) Shale oil occurring between salt intervals in the Dongpu depression, Bohai Bay Basin, China. Int J Coal Geol 152:100–112. https://doi.org/10.1016/j.coal.2015.07.004

    Article  Google Scholar 

  66. Wang C, Hong H, Abels HA et al (2016) Early middle Miocene tectonic uplift of the northwestern part of the Qinghai–Tibetan Plateau evidenced by geochemical and mineralogical records in the western Tarim Basin. Int J Earth Sci 105:1021–1037. https://doi.org/10.1007/s00531-015-1212-0

    Article  Google Scholar 

  67. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin

    Book  Google Scholar 

  68. Warren JK (2016) Evaporites. Sprinter, New York. https://doi.org/10.1007/978-3-319-13512-0

  69. Wu L, Xiao A, Yang S et al (2012) Two-stage evolution of the AltynTagh Fault during the Cenozoic: new insight from provenance analysis of a geological section in NW Qaidam Basin, NW China. Terra Nov 24:387–395. https://doi.org/10.1111/j.1365-3121.2012.01077.x

    Article  Google Scholar 

  70. Xia W, Zhang N, Yuan X, Fan L, Zhang B (2001) Cenozoic Qaidam Basin, China: A stronger tectonic inversed, extensional rifted basin. Am Assoc Pet Geol Bull 85:715–736. https://doi.org/10.1306/8626c98d-173b-11d7-8645000102c1865d

    Article  Google Scholar 

  71. Xiao GQ, Abels HA, Yao ZQ, Dupont-Nivet G, Hilgen FJ (2010) Asian aridification linked to the first step of the Eocene–Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China). Clim Past 6:501–513. https://doi.org/10.5194/cp-6-501-2010

    Article  Google Scholar 

  72. Xiao A, Wu L, Li H, Wang L (2013) Tectonic processes of the Cenozoic AltynTagh fault and its coupling with the Qaidam Basin, NW China. Acta Petrol Sin 29:2826–2836 (Chinese with English abstract).

    Google Scholar 

  73. Yang Y, Fang X, Koutsodendris A et al (2016) Exploring Quaternary paleolake evolution and climate change in the western Qaidam Basin based on the bulk carbonate geochemistry of lake sediments. Palaeogeogr Palaeoclimatol Palaeoecol 446:152–161. https://doi.org/10.1016/j.palaeo.2016.01.021

    Article  Google Scholar 

  74. Ye C, Yang Y, Fang X, Zhang W (2016) Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate. Sediment Geol 346:49–59. https://doi.org/10.1016/j.sedgeo.2016.10.006

    Article  Google Scholar 

  75. Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes. Earth Scie Rev 58:343–365. https://doi.org/10.1016/S0012-8252(02)00067-3

    Article  Google Scholar 

  76. Yin A, Dang Y, Zhang M et al (2007) Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (part 2): wedge tectonics in southern Qaidam Basin and the Eastern Kunlun Range. Geol Soc Am Spec Pap 433:369–390. https://doi.org/10.1130/2007.2433(18)

    Google Scholar 

  77. Yin A, Dang YQ, Wang LC et al (2008a) Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): the southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin. Geol Soc Am Bull 120:813–846. https://doi.org/10.1130/B26180.1

    Article  Google Scholar 

  78. Yin A, Dang YQ, Zhang M et al (2008b) Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geol Soc Am Bull 120:847–876. https://doi.org/10.1130/B26232.1

    Article  Google Scholar 

  79. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. https://doi.org/10.1126/science.1059412

    Article  Google Scholar 

  80. Zhang WL (2006) High-resolution magneto stratigraphy of the Cenozoic Qaidam Basin, implications for the uplift of Tibetan Plateau. Dissertation, Lanzhou University (in Chinese)

  81. Zhang R, Kravchinsky VA, Yue L (2012) Link between global cooling and mammalian transformation across the Eocene–Oligocene boundary in the continental interior of Asia. Int J Earth Sci 101:2193–2200. https://doi.org/10.1007/s00531-012-0776-1

    Article  Google Scholar 

  82. Zhou J, Xu F, Wang T, Cao A, Yin C (2006) Cenozoic deformation history of the Qaidam Basin, NW China: results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics. Earth Planet Sci Lett 243:195–210. https://doi.org/10.1016/j.epsl.2005.11.033

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge continuous support for field work, core observation, and original data supply by Qinghai Oil Company of PetroChina. We thank Yanqing Wang in PetroChina Hangzhou Research Institute of Geology for instructive discussions. This work is co-supported by a National Natural Science Foundation of China (No. 41330315) and Northwest University Doctorate Dissertation of Excellence Funds (No. YYB17024).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pei Guo or Chiyang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 30 KB)

Appendix

Appendix

The original data and sources of fission-track ages in Fig. 9 are provided in supplementary material.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Liu, C., Yu, M. et al. Paleosalinity evolution of the Paleogene perennial Qaidam lake on the Tibetan Plateau: climatic vs. tectonic control. Int J Earth Sci (Geol Rundsch) 107, 1641–1656 (2018). https://doi.org/10.1007/s00531-017-1564-8

Download citation

Keywords

  • Paleogene
  • Qaidam Basin
  • Saline lake
  • Chloride content
  • Halite