Skip to main content
Log in

Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The North Saxon Volcanic Complex (NSVC) is a nested caldera edifice dominated by the c. 295 Ma Rochlitz Volcanic System and the c. 289 Ma Wurzen Volcanic System (WVS). The climactic activity of the WVS resembled a VEI ≥ 7 fissure ‘supereruption’ resulting in voluminous and crystal-rich caldera-fill ignimbrites (minimum volume c. 199 km3); caldera outflow facies is not known sofar. Precursory to the WVS ‘monotonous intermediates’, rhyolitic and rhyodacitic volcanic activity led to deposition of the low-volume Wermsdorf and Cannewitz ignimbrites. Modal analysis of the WVS pyroclastic units reveals an inhomogeneous crystal population (≤ 58 vol%) comprising k-feldspar, plagioclase, quartz, ortho- and clinopyroxene and minor amounts of biotite. The Wurzen caldera fill ignimbrites feature three types of fiamme: (1) felsic fiamme; (2) mafic fiamme; and (3) granite-porphyry fiamme. This, the modal variation, and the common presence of clinopyroxene and biotite indicate a strong magma mingling component in the WVS—characteristics which have not been observed in the precursory, Wermsdorf and Cannewitz ignimbrites. The caldera fill ignimbrites feature a large compositional variation from (basaltic) trachyandesite to rhyolite caused by basaltic injection and magma mingling. It is proposed that magmatic underplating led to reheating crystal mush and finally to convection processes within the WVS magma chamber. The predominance of either pyroxene or biotite as mafic mineral in the (trachy-) dacitic to rhyolitic ignimbrites indicates eruption of crystal mush from different magma batches. Prominent negative Nb and Ta anomalies of the Wurzen caldera fill ignimbrites, porphyries, and mafic dykes indicate enhanced melt–crust interaction or contamination of mantle melt. In the aftermath of the WVS caldera eruption, basaltic, trachyandesitic, andesitic and rhyolitic melts ascended puncturing the Wurzen-α and β ignimbrites leading to an array of NW–SE-trending dykes, subvolcanic bodies, and lava domes. Among these, voluminuous granite-to-syenite porphyries emplaced. The deeply eroded WVS caldera allows insight into one of the major magmatic processes that governed the post-collisional phase of the Variscan orogeny in Europe. The study of the deeply eroded supervolcano caldera will lead to the understanding of the connection between a monotonous intermediate ignimbrite and related post-eruptive intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andreani L, Stanek KP, Gloaguen R, Krentz O, Domínguez-González L (2014) DEM-based analysis of interactions between tectonics and landscape in the Ore Mountains and Eger rift (East Germany and NW Czech Republic).Remote Sensing6(9):7971–8001

    Article  Google Scholar 

  • Arikas K (1986) Geochemie und Petrologie der permischen Rhyolithe in Südwestdeutschland (Saar-Nahe-Pfalz-Gebiet, Odenwald, Schwarzwald) und in den Vogesen, 8th issue of Pollichia. Verein für Naturforschung und Landespflege Pollichia, Selbstverlag d Pollichia, p 321

    Google Scholar 

  • Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa; results of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320

    Article  Google Scholar 

  • Awdankiewicz M, Breitkreuz C, Ehling B-C (2004) Emplacement textures in Late Paleozoic andesite sills of the Flechtingen-Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society Special Publication, London, pp 51–66

    Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Article  Google Scholar 

  • Bachmann O, Bergantz G (2008) The magma reservoirs that feed supereruptions. Elements 4:17–21

    Article  Google Scholar 

  • Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Min 101:2377–2404

  • Bachmann O, Dungan MA, Lipman PW (2000) Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado. J Volcanol Geotherm Res 98(1–4):153–171

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper crustal batholith. J Petrol 43:1469–1503

    Article  Google Scholar 

  • Benek R, Korich D, Kramer W (1992) Late Hercynian volcanic associations in NE Central Europe—geochemical features and geotectonic aspects. Z geol Wiss Berlin 20(3):271–275

    Google Scholar 

  • Benek R, Kramer W, McCann T, Scheck M, Negendank JFW., Korich D, Huebscher HD, Bayer U (1996) Permo-Carboniferous magmatism of the Northeast German basin. Tectonophysics 266:379–404

    Article  Google Scholar 

  • Berra F, Tiepolo M, Caironi V, Siletto GB (2015) U-Pb zircon geochronology of volcanic deposits from the Permian basin of the Orobic Alps (Southern Alps, Lombardy): chronostratigraphic and geological implications). Geol Mag 152:429–443

    Article  Google Scholar 

  • Breitkreuz C, Kennedy A (1999) Magmatic flare-up at the Carboniferous/Permian boundary in the NE German basin revealed by SHRIMP zircon ages. Tectonophysics 302:307–326

    Article  Google Scholar 

  • Breitkreuz C, Kennedy A, Geissler M, Ehling B-C, Kopp J, Muszynski A, Protas A, Stogue S (2007) Far eastern Avalonia: its chronostratigraphic structure revealed by SHRIMP zircon ages from Upper Carboniferous to Lower Permian volcanic rocks (drill cores from Germany, Poland and Denmark). Geol Soc Am Spec Pap 423:173–190

    Google Scholar 

  • Breitkreuz C, Renno A, Schneider J-W, Stanek K (2009) Late Paleozoic volcanosedimentary evolution of the Elbe Zone and the eastern Erzgebirge. In: Lange J-M, Linnemann U, Röhling H-G (eds) GeoDresden 2009. Geologie der Böhmischen Masse—Regionale und angewandte Geowissenschaften in Mitteleuropa.—Exkurs.f. und Veröfftl. DGG. 241:219–230

  • Bull KF, McPhie J (2007) Fiamme textures in volcanic successions: flaming issues of definition and interpretation. J Volcanol Geotherm Res 164:205–216

    Article  Google Scholar 

  • Caricchi L, Blundi J (2015) Experimental petrology of monotonous intermediate magmas. Geol Soc Lond Spec Publ 422(1):105–130

    Article  Google Scholar 

  • Chapin CE, Lowell GR (1979) Primary and secondary flow structures in ash-flow tuffs of the Gribbles Run paleovalley, central Colorado. In: Chapin CE, Elston WE (eds) Ash flow tuffs, vol 180. Geological Society of America Special Papers, pp 137–154

    Article  Google Scholar 

  • Chappell BW (1996) Magma mixing and the production of compositional variation within granite suites: evidence from granites of Southeastern Australia. J Petrol 97(3):449–470

    Article  Google Scholar 

  • Chlupáč I (1993): Geology of the Barrandian—a field trip guide. Verlag Waldemar Kramer, Frankfurt am Main, Senckenberg-Buch 69:163

    Google Scholar 

  • Christiansen EH (2005) Contrasting processes in silicic magma chambers: evidence from very large volume ignimbrites. Geol Mag 142(6):669–681

    Article  Google Scholar 

  • Christiansen RL, Peterson DW (1981) Chronology of the 1980 eruptive activity. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount ST. Helens. US Geological Survey Professional Paper, Washington, pp 17–30

  • Christiansen RL, Lipman PW, Carr WJ, Byers FM, Orkild PP, Sargent KA (1977) Timber Mountain–Oasis Valley caldera complex of southern Nevada. GSA Bulletin v 129:3–4

    Google Scholar 

  • Chrustschoff VK (1886) Ueber einen eigenthümlichen Einschluss im Granitporphyr von Beucha. Mineralogische petrographische Mitteilungen 7(3):181–188 (in German)

    Google Scholar 

  • Cole PD, Calder ES, Druitt TH, Hoblitt R, Robertson R, Sparks RSJ, Young SR (1998) Pyroclastic flows generated by gravitational instability of the 1996–97 lava dome of Soufriere Hills Volcano, Montserrat. Geophys Res Lett 25(18):3425–3428

    Article  Google Scholar 

  • Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures. Earth-Sci Rev 69:1–26

    Article  Google Scholar 

  • Cook GW, Wolff JA, Self S (2016) Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico. Bull Volcanol 78(2):10. https://doi.org/10.1007/s00445-016-1000-0

  • de Silva S (1989) Altiplano-Puna volcanic complex of the central Andes. Geology 17:1102–1106

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (2013) An introduction to rok forming minerals, 3rd edn. Mineralogical Society of Great Britain and Ireland, London, p 498

    Google Scholar 

  • Deering CD, Bachmann O, Vogel TA (2011a) The Ammonia Tanks Tuff: Erupting a melt-rich rhyolite cap and its remobilized crystal cumulate. Earth Planet Lett 310(3–4):518–525

    Article  Google Scholar 

  • Deering CD, Cole JW, Vogel TA (2011b) Extraction of crystal-poor rhyolite from a hornblende-bearing intermediate mush: a case study of the caldera-forming Matahina eruption, Okataina volcanic complex. Contrib Mineral Petrol 161(1):129–151

  • Eigenfeld F (1978) Zur geologischen Entwicklung der vulkanischen Gesteine im Süd- und Ostteil des NW-Sächsischen Vulkanitkomplexes. unpubl PhD thesis, Martin Luther University of Halle (Germany), p 236 (in German)

  • Eigenfeld F, Gläßer W (1977) Vulkanite, der 1. Vulkanitfolge. In: Röllig G, Schwab M (eds) Variszischer subsequenter Vulkanismus - Kurzreferate und Exkursionsführer. Gesellschaft für Geologische Wissenschaften der DDR, Berlin: pp 22–27 (in German)

  • Ellis BS, Bachmann O, Wolff J (2014) Cumulate fragments in silicic ignimbrites: the case of the Snake River Plain. Geol Soc Am Geol. doi:10.1130/G35399.1

    Google Scholar 

  • Evans BW, Bachmann O (2013) Implications of equilibrium and disequilibrium among crystal phases in the Bishop Tuff. Am Mineral 98:271–274

    Article  Google Scholar 

  • Fischer F (1991) Das Rotliegende des ostthüringischen-westsächsischen Raumes (Vorerzgebirgs-Senke, Nordwestsächsischer Vulkanitkomplex, Geraer Becken). Unpublished PhD thesis, TU Bergakademie Freiberg, 171 p (in German)

  • Folkes CB, Wright HM, Cas RAF, de Silva SL, Lesti C, Viramonte JG (2011) A re-appraisal oft he stratigraphy and volcanology oft he Cerro Galán volcanic system, NW Argentina. Bull Volcanol 73:1427–1454

    Article  Google Scholar 

  • Francis PW, O’Callaghan LJ, Kretschmar GA, Thorpe RS, Sparks RSJ, Page RN, de Barrio RE, Gillou G, Gonzales OE (1983) The Cerro Galan ignimbrite. Nature 301:51–53

    Article  Google Scholar 

  • Gans PB, Bohrson WA (1998) Suppression of volcanism during rapid extension in the basin and range province, United States. Science 279(5347):66–68

  • Gans PB, Mahood GA, Schermer E (1989) Synextensional magmatism in the basin and range province: a case study from the eastern great basin, vol 233. Geological Society of America Special Paper, pp 1–53

  • Gläßer W (1977) Beitrag zur Petrologie, Vulkanotektonik und Vulkanologie der andesitoiden Vulkanite Nordwestsachsens. Unpublished PhD thesis, Martin Luther University Halle, 370 p (in German)

  • Gläßer W (1983) Beitrag zur Petrologie und Vulkanologie der andesitoiden Vulkanite Nordwestsachsens. Hall Jahrb Geowiss Gotha 8:1–30 (in German)

    Google Scholar 

  • Geißler M, Breitkreuz C, Kiersnowski H (2008) Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati. Int J Earth Sci 97(5):973–989

  • Gregg PM, de Silva SL, Grosfils EB, Parmigiani JP (2012) Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J Volcanol Geotherm Res 241–242:1–12

    Article  Google Scholar 

  • Grocke SB, de Silva SL, Iriarte R, Lindsay JM, Cotrell E (2017) Catastrophic Caldera-Forming (CCF) monotonous silicic magma reservoirs: geochemical and petrological constraints on heterogeneity, magma dynamics, and eruption dynamics of the 349 Ma Tara Supereruption, Guacha II Caldera, SW Bolivivia. J Petrol 58(2):227–260

    Article  Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers. J Volcanol Geotherm Res 86(11):10153–10192

    Google Scholar 

  • Hildreth W, Mahood GA (1986) Ring-fracture eruption of the Bishop Tuff. GSA Bull 97(4):396–403

    Article  Google Scholar 

  • Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous-Permian volcanic evolution in Central Europe - U/Pb-ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102:73–99

    Article  Google Scholar 

  • Huber C, Bachmann O, Manga M (2009) Homogenization processes in silicic magma chamber by stirring and latend heat buffering. Earth Planet Sci Lett 283:38–47

    Article  Google Scholar 

  • Huber C, Bachmann O, Dufek J (2012) Crystal-poor versus crystal-rich ignimbrites: a competition between stirring and reactivation. Geology 40:115–118

    Article  Google Scholar 

  • Jacobs J, Breitkreuz C (2003) Zircon and apatite fission-track thermochronology of Late Carboniferous volcanic rocks of the NE German basin. Int J Earth Sci 92:165–172

    Article  Google Scholar 

  • Junge FW, Magnus M, Kleeberg R (2001) Investigations on a carbonateous xenolith from Beucha subvolcanite. Z geol Wiss Berlin 29:355–370 (in German, English abstract)

    Google Scholar 

  • Kaiser JF, de Silva S, Schmitt AK, Economos R, Sunagua M (2017) Million-year melt-presence in monotonous intermediate magma for a volcanic-plutonic assemblage in the Central Andes: contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas. Earth Planet Sci Lett 457:73–86

    Article  Google Scholar 

  • Kennedy B, Wilcock J, Stix J (2012) Caldera resurgence during magma replenishment and rejuvenation at Valles and Lake City calderas. Bull Volcanol 74:1833–1847

    Article  Google Scholar 

  • Koch RA, Lange P (1981) Der Beuchaer Pyroxengranitporphyr, seine Xenolithe und sein Granatgehalt. Hall Jb f Geowiss 6, Gotha/Leipzig: 41–50 (in German)

    Google Scholar 

  • Königer S, Lorenz V, Stollhofen H, Armstrong RA (2002) Origin, age and stratigraphic significance of distal fall out tuffs from Carboniferous-Permian continental Saar-Nahe Basin (SW Germany). In J Earth Sci 91:341–356

    Google Scholar 

  • Kroner U, Mansy J-L, Mazur S, Aleksandrowski P, Hann HP, Huckriede H, Lacquement F, Lamarche J, Ledru P, Pharaoh TC, Zedler H, Zeh A, Zulauf G (2008) Variscan Tectonics. In: McCann T (ed) The Geology of Central Europe volume 1: Precambrian and Paleozoic. Geological Society, London, pp 599–664

    Google Scholar 

  • Laverne C, Grauby O, Alt JC, Nohn M (2006) Hydroscholomite in altered basalts from Hole 1256D, ODP Leg 206: The transition from low-temperature to hydrothermal alteration. Geochem Geophys Geosyst. doi:10.1029/2005GC001180(29)

    Google Scholar 

  • LfUG (ed. 1995) Geologische Übersichtskarte des Freistaates Sachsen 1:400 000. map without Cenozoic sediments (GÜK 400 o. KZ.), 3rd edn, Freiberg

  • Lipman PW (1967) Mineral and chemical variations within an ashflow sheet from Aso-Caldera, southwestern Japan. Contr Miner Petrol Berlin Heidelberg New York 16:300–327

    Article  Google Scholar 

  • Lipman PW, Hagstrum JT (1992) Jurassic ash-flow sheets, calderas, and related intrusions of the Cordilleran volcanic arc in southeastern Arizona: Implications for regional tectonics and ore deposits. Bull Geol Soc Am 104(1):32–39

    Article  Google Scholar 

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Vulcanol 66:735–748

    Article  Google Scholar 

  • Mattern F (1996) The Elbe zone at Dresden—a Late Paleozoic pull-apart intruded shear zone. ZDGG 147(1):57–80

    Google Scholar 

  • Maughan LL, Christiansen EH, Best MG, Grommé CS, Deino AL, Tingey DG (2002) The oligocene lund tuff, great basin, USA: a very large volume monotonous intermediate. J Volcanol Geoth Res 113(1–2):129–157

  • McConell VS, Shearer CK, Eichelberger JC, Keskinen MJ, Layer PW, Papike JJ (1995) Rhyolite intrusions in the intracaldera Bishop Tuff, Long Valley Caldera, California. J Volcanol Geotherm Res 67(1–3):41–60

    Article  Google Scholar 

  • McPhie J, Doyle M, Allen R (1993) Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Center for Ore Deposit and Exploration Studies, University of Tasmania: p 198

  • Miller CF, Wark DA (2008) Supervolcanoes and their explosive supereruptions. Elements 4:11–16

    Article  Google Scholar 

  • Mlčoch B, Skácelová Z (2010) Geometry of the Altenberg-Teplice Caldera revealed by the borehole and seismic data in its Czech part. J Geosci 55(3):217–229

    Google Scholar 

  • Müller A, Breiter K, Seltmann R, Pécskay Z (2005) Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos 80(1):201–227

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238

    Article  Google Scholar 

  • Paulick H, Breitkreuz C (2005) The Late Paleozoic felsic lava-dominated large igneous province in northeast Germany: volcanic facies analysis based on drill cores. Int J Earth Sci (Geol Rundsch) 94:834–850

    Article  Google Scholar 

  • Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: application for massive sulphide exploration, vol 12. Geological Society of Canada Short Courses Notes, pp 79–113

  • Quane SL, Russell JK (2005) Ranking welding intensity in pyroclastic deposits. Bull Volcanol 67:129–143

    Article  Google Scholar 

  • Rascher J, Escher D. Fischer J, Dutschmann U, Kästner S (2005) Tertiär Nordwestsachsen 1:250.000. In: Standke (ed) Geologischer Atlas. Landesamt f Umwelt Geologie, Freiberg, p 6

    Google Scholar 

  • Röllig G (1969) Beiträge zur Petrogenese und Vulkanotektonik der Pyroxenquarzporphyre Nordwestsachsens. unpubl PhD thesis, Martin-Luther University of Halle (Germany), p 183 (in German)

  • Röllig G (1970) Stoffliche und strukturelle Prozesse im Vulkanismus des Molassestockwerkes (Nordwesten des Bezirkes Leipzig). Exkursionsführer 17. Jahrestagung der deutschen Gesellschaft für geologische Wissenschaften. Deutsch Ges geol Wiss, pp 40–57 (in German)

  • Röllig G (1976) Zur Petrogenese und Vulkanotektonik der Pyroxenquarzporphyre (Ignimbrite) des Nordwestsächsischen Vulkanitkomplexes. Jahrb Geologie 5/6, Berlin, pp 175–268 (in German)

  • Röllig G (2007) Ein Aufschluss an der Basis der Pyroxenquarzporphyre im Steinbruch Hengstberg bei Grimma-Hohnstädt (Nordwestsachsen). Hallesches Jahrbuch für Geowissenschaften, 29, Halle (Saale), pp 79–92 (in German)

  • Röllig G (2010) An outcrop at the base of the pyroxene quartz porphyries in the Hengstberg quarry near Grimma-Hohnstädt in the Permian NW Saxony Eruptive Complex., Germany Z geol Wiss Berlin 38(5–6):311–326 (in German, English abstract)

    Google Scholar 

  • Romer RL, Förster H-J, Breitkreuz C (2001) Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). Contrib Miner Petrol 141(2):201–221

  • Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360(1–4):281–299

    Article  Google Scholar 

  • Schmiedel T, Breitkreuz C, Görz I, Ehling B-C (2015) Geometry of laccolith margins: 2D and 3D models of the Late Paleozoic Halle Volcanic Complex (Germany). Int J Earth Sci 104(2):323–333

  • Schneider J, Romer R (2010) The Late Variscan molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian Zone. In: Linnemann U, Romer R (eds) Pre-Mesozoic Geology of Saxo-Thuringia: From the Cardomian active margin to the Variscan Orogen. Schweizerbart, pp 323–346

  • Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens. In: Lützner H, Kowalczyk G (eds) Deutsche Stratigraphische Kommission: Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61:530–588 (in German, English abstract)

  • Sliwinski J, Bachmann O, Dungan MA, Huber C, Deering CD, Lipman PW, Martin LHJ, Liebske C (2017) Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA. Contrib Mineral Petrol 172:30. doi:10.1007/s00410-017-1351-3

    Article  Google Scholar 

  • Smith RL, Bailey RA (1968) Resurgent Cauldrons. In: Coats RR, Hay RL, Anderson CA (eds) Studies in volcanology. Geological Society of America, Memoir 116:613–662

    Google Scholar 

  • Soler MM, Caffe PJ, Coira BL, Onoe AT, Mahlburg Kay S (2007) Geology of the Vilama caldera: A new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene. J Volcanol Geotherm Res 164:27–53

    Article  Google Scholar 

  • Steck A (1968) Die alpidischen Strukturen in den Zentralen Aaregraniten des westlichen Aarmassivs (the alpine structures in the central Aar-granites of the western Aar-massif). Eclogae Geol Helv 61:19–48 (in German)

    Google Scholar 

  • Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: The AD 472 (Pollena) eruption of Somma-Vesuvius (Italy). Bull Volcanol 67:743–767

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, vol 42, no 1. Geological Society, Special Publications, London, pp 313–345

  • Thompson M (1985) Evidence for a late Precambrian caldera in Boston. Massachusetts Geol 13:641–643

    Google Scholar 

  • Timmerman MJ (2008) Paleozoic magmatism. In: McCann T (ed) The geology of Central Europe Volume 1: Precambrian and Paleozoic. Geological Society, London, pp 665–748

    Google Scholar 

  • Ventura B, Lisker F, Kopp J (2009) Thermal and denudation history oft he Lusatian Block (NE Bohemian Massif, Germany) as indicated by apatite fission-track data. Geol Soc Special Publications, London, pp 181–192

    Google Scholar 

  • Walter H (2006) Das Rotliegend der Nordwestsächsischen Senke. Veröff Museum Naturk Chemnitz Chemnitz 29:157–176 (in German)

    Google Scholar 

  • Walter H (2010) Überblick zur Geologie in Nordwestsachsen. In: Rascher J, Heidenfelder W, Walter H (eds) Landschaftsentwicklung, Bodenschätze und Bergbau zwischen Mulde und Elbe (Nordwestsachsen). Exkurs f und Veröfftl DGG 243, Hannover, pp 9–34 (in German)

  • Walter H (2012) Rotliegend im Nordwestsächsischen Becken. Stratigraphie von Deutschland X Rotliegend. Teil I: Innervariscische Becken, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 61, pp 517–529 (in German)

  • Walter H, Pälchen H (2011) Geologie von Sachsen I—Geologischer Bau und Entwicklungsgeschichte. 2. Korrigierte Auflage, E. Schweitzerbart’sche Verlagsbuchhandlung: p 537 (in German)

  • Wendt I, Höhndorf A, Wendt JI, Müller P, Wetzel K (1995) Radiometric dating of volcanic rocks in NW-Saxony by combined use of U-Pb and Sm-Nd zircon dating as well as Sm-Nd and Rb-Sr whole rock and mineral systematics. 11th meeting on geodynamics of eurpean Variscides, 2nd Symposium on Permocarboniferous igneous rocks. Terra Nostra Potsdam, 7:147–148

    Google Scholar 

  • Wetzel K, Gerstenberger H, Wand G, Wendt I (1995) Zur Geochemie der nordwestsächsischen Vulkanite. Z geol Wiss 23 (4), Berlin, pp 371–400

    Google Scholar 

  • White JC, Benker SC, Ren M, Urbanczyk KM, Corrick DW (2006) Petrogenesis and tectonic setting of the peralkaline Pine Canyon caldera, Trans-Pecos Texas, USA. Lithos 91(1–4):74–94

  • Whitney JA, Stormer JC (1985) Mineralogy, petrology, and magmatic conditions from the Fish Canyon Tuff, Central San Juan Volcanic Field, Colorado. J Petrol 26(3):726–762

    Article  Google Scholar 

  • Willcock MAW, Cas RAF, Giordano G, Morelli C (2013) The eruption, pyroclastic flow behaviour, and caldera in-filling processes of the extremely large volume (>1290km3), intra- to extra-caldera, Permian Ora (Ignimbrite) Formation, Southern Alps, Italy. J Volcanol Geoth Res 265:102–126

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

  • Winter C, Breitkreuz C, Lapp M (2008) Textural analysis of a Late Paleozoic coherent to pyroclastic rhyolitic dyke system near Burkersdorf (Erzgebirge, Saxony, Germany). Geol Soc London Spec Publ 302:197–219

    Article  Google Scholar 

  • Wotzlaw J-F, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Günther D (2013) Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 8:867–870

    Article  Google Scholar 

  • Zegers TE, van Keken PE (2001) Middle Archean continent formation by crustal delamination. Geology 29(12):1083–1086

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hartmut Hempel (Basalt AG, Großsteinberg) for the permission to sample several quarries and for placing three cores drilled in the Großsteinberg quarry near Grethen (Parthenstein) at our disposal. We thank Axel Hiller (Wismut AG, Hartenstein) for the provision of sample material and thin sections. In particular we would like to thank Frank Eigenfeld (Halle) and Harald Walter (Saxon State Agency for Environment, Agriculture and Geology, Freiberg) for constructive discussions and comments. Johannes Richter kindly enough provided access to the core depository of the Saxon State Agency for Environment, Agriculture and Geology, Freiberg. We would like to thank Manfred Birke (Federal Institute for Geosciences and Natural Resources, Hanover) for ceding geochemical data. Sabine Haser (Institute for Mineralogy, TU Bergakademie Freiberg) is thanked for technical support at the scanning electron microscope. Peter Stutz (Institute for Mineralogy and Petrography, University of Hamburg), Gudrun Geyer and Ronny Ziesemann (Institute for Geology, TU Bergakademie Freiberg), and Bernd Scheunert (Saxon State Agency for Environment, Agriculture and Geology, Freiberg) are thanked for the preparation of polished rock samples and thin sections. We highly appreciate helpful comments given by Shan de Silva and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Repstock.

Electronic supplementary material

Below is the link to the electronic supplementary material.

531_2017_1554_MOESM1_ESM.pdf

Online Appendix Figure 1 simplified geological map of the NSVC, the Wurzen Volcanic Complex is highlighted in color. Green point’s marks outcrops and quarries (for numbers see Appendix Table 1). (PDF 1882 KB)

531_2017_1554_MOESM2_ESM.pdf

Online Appendix Figure 2 Drilling WIS 1519A/82 exposing the upper part of Wurzen-α ignimbrites (Wurzen IID accord. to Röllig 1969) overlain by a c. 400 m thick assumedly andesitic to dacitic lava dome complex, for location see Fig. 3. (PDF 65 KB)

531_2017_1554_MOESM3_ESM.pdf

Online Appendix Figure 3 Profiles across Wurzen Volcanic System (vertically exaggerated) within the North Saxon Volcanic Complex depict the assumed structure; modified in consideration of collected data from quarries, outcrops and drill cores and the geological map (Fig. 3) modified after Röllig (1969) and Hoffmann et al. (2013). The correlated drill cores are: 1—WIS 176/73 (Naunhof), 2—WIS 1519A/82 (Thallwitz), 3 – three drill cores in the Großsteinberg quarry, 4 – 276/72 (Wermsdorf) (PDF 70 KB)

531_2017_1554_MOESM4_ESM.pdf

Online Appendix Figure 4 Thin section images of WVS ignimbrites; A: Wermsdorf ignimbrite with quartz (Qtz) reveals pseudohexagonal shape in the contact zone between fiamme—formerly pumice (P)—and host ignimbrite. Hematite usually is finely disseminated in groundmass, enriched in a part from the contact between former pumice and host ignimbrite. K-feldspar (Kfs) occurs as pre-dominant feldspar. Dominant mafic mineral is orthopyroxene (Opx). B: Cannewitz ignimbrite outcropping at the Mutzschen Wasser between Cannewitz and Serka showing small crystal clasts of k-feldspar (Kfs), plagioclase (Pl) and quartz (Qtz) as opposed to larger crystal clasts in the Wermsdorf ignimbrite and the Wurzen α,-β-ignimbrites. Predominant mafic mineral is biotite (Bt) that also rims lithics (L) as secondary phase. Fiamme are typically not larger than 2 mm, rarely can reach up to 3 cm (Appendix Figure 3). C: Coarse-grained recrystallized groundmass of the Wurzen-α ignimbrite at the Haselberg quarry, plagioclase is the pre-dominant mineral, followed by k-feldspar with overgrowth of secondary k-feldspar, which indicates a metasomatic overprint. Although pyroxene is the dominant mafic crystal clast, secondary formed biotite (Bt) is abundant, in places. D: recrystallized groundmass of the Wurzen-α ignimbrite at Zinkenberg quarry veils volcanic textures; plagioclase (Pl) again is pre-dominant and orthopyroxene (Opx) often altered to chlorite (Chl). E and F: Wurzen-β ignimbrite at the contact zone between an exotic fiamme (F) and the host ignimbrite. Plagioclase (Pl) occurs in both, within the exotic fiamme and the host ignimbrite. Biotite (Bt) again is the dominant mafic mineral. Chloritization is common in the contact zone. G: granite-porphyry from the Wachtelberg outcrop south of Wurzen reveal poikilitic desolution of k-feldspar (Kfs) in plagioclase (Pl). Quartz (Qtz) is less abundant in comparison to the other felsic crystal clasts. Orthopyroxene (Opx) is the most common mafic mineral. H: Thin section of the carapace facies of the andesite lava complex exposed in drill core WIS 1519A/82 (Appendix Figure 2). Distinct highlighted relictic perlites (rP) reveal a recrystallization of volcanic glass in ancient glassy lava dome of assumely andesitic to dacitic composition, hematite (Hem) is abundant in groundmass (PDF 412 KB)

531_2017_1554_MOESM5_ESM.pdf

Online Appendix Figure 5 Diagram highlighting Ti/Zr ratios, andesite, trachyandesite and basaltic trachyandesite reveal high Ti/Zr values, whereas trachydacitic and rhyodacitic compositions reveal moderate-to-low ratios. Variations in Zr may be related to magmatic differentiation, TiO2 variations could be explained by magma mingling and mixing processes (for symbology see Fig. 10) (PDF 1453 KB)

531_2017_1554_MOESM6_ESM.pdf

Online Appendix Table 1 GPS data for outcrops and quarries in the Wurzen Volcanic System (for location on map see Appendix Figure 1) (PDF 93 KB)

Online Appendix Table 2 Orientation and dip of fiamme in the WVS ignimbrites (see also Fig. 6) (PDF 304 KB)

531_2017_1554_MOESM8_ESM.pdf

Online Appendix Table 3 Modal composition of crystals in bulk matrix of ignimbrite rock samples and thin sections, data in vol% (PDF 59 KB)

Online Appendix Table 4  Granulometry in fiamme (PDF 101 KB)

Online Appendix Table 5 Whole rock geochemical analyses of WVS rocks (PDF 70 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repstock, A., Breitkreuz, C., Lapp, M. et al. Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization. Int J Earth Sci (Geol Rundsch) 107, 1485–1513 (2018). https://doi.org/10.1007/s00531-017-1554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1554-x

Keywords

Navigation