Skip to main content
Log in

Reworked Middle Jurassic sandstones as a marker for Upper Cretaceous basin inversion in Central Europe—a case study for the U–Pb detrital zircon record of the Upper Cretaceous Schmilka section and their implication for the sedimentary cover of the Lausitz Block (Saxony, Germany)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Saxonian–Bohemian Cretaceous Basin (Elbsandsteingebirge, E Germany and Czech Republic, Elbtal Group) comprises Upper Cretaceous sedimentary rocks from Upper Cenomanian to Santonian age. These sandstones were deposited in a narrow strait of the sea linking the northern Boreal shelf to the southern Tethyan areas. They were situated between the West Sudetic Island in the north and the Mid-European Island in the south. As known by former studies (e.g. Tröger, Geologie 6/7:717–730, 1964; Tröger, Geologie von Sachsen, Schweizerbart, 311–358, 2008; Voigt and Tröger, Proceedings of the 4th International Cretaceous Symposium, 275–290, 1996; Voigt, Dissertation, TU Bergakademie Freiberg, 1–130, 1995; Voigt, Zeitschrift der geologischen Wissenschaften 37(1-2): 15–39, 2009; Wilmsen et al., Freiberger Forschungshefte C540: 27–45, 2011) the main sedimentary input came from the north (Lausitz Block, southern West-Sudetic Island). A section of Turonian to Coniacian sandstones was sampled in the Elbsandsteingebirge near Schmilka (Elbtal Group, Saxony, Germany). The samples were analysed for their U–Pb age record of detrital zircon using LA-ICP-MS techniques. The results show main age clusters typical for the Bohemian Massif (local material) and are interpreted to reflect the erosion of uniform quartz-dominated sediments and basement rocks. Surprisingly, these rocks lack an expected Upper Proterozoic to Lower Palaeozoic age peak, which would be typical for the basement of the adjacent Lausitz Block (c. 540–c. 560 Ma). Therefore, the Lausitz Block basement must have been covered by younger sediments that acted as source rocks during deposition of the Elbtal Group. The sandstones of the Elbe valley (Elbtal Group, Schmilka section) represent the re-deposited sedimentary cover of the Lausitz Block in inverse order. This cover comprised Permian, Triassic, Jurassic and Lower Cretaceous deposits, which are eroded already today and cannot be investigated. Within the samples of the Elbtal Group (Schmilka section), the zircon age patterns change significantly towards the Lower Coniacian (topmost sample of the analysed section), where a major input of Meso- and Paleoproterozoic grains was obtained. Comparable ages are generally scarce in the working area. To have a reference for the detrital zircon age spectra of Triassic and Jurassic sediments of the area, two Upper Triassic und two Middle Jurassic clastic sediments of Germany were analysed. Surprisingly, the two Middle Jurassic (Dogger) sandstones from Bavaria and Lower Saxony showed similar detrital zircon age compositions as the Coniacian sediments on top of the Schmilka section (Elbe valley, Elbtal Group). In contrast, the two Upper Triassic sediments could be excluded as possible source rocks for the Upper Cretaceous sandstones of the Elbe valley (Schmilka section, Elbtal Group). The Meso- and Paleoproterozoic zircon age populations in the uppermost sandstone sample of the Schmilka section are assumed to originate from recycled Jurassic (Dogger) sandstones, resting on the Lausitz Block. These Middle Jurassic deposits were strongly influenced by a sedimentary input from the Scandinavian region (southern Baltica and North Sea Dome). The Turonian sandstones of the Schmilka section (samples below the topmost Coniacian sample) are interpreted to represent re-deposited Lower Cretaceous sediments resting on the Lausitz Block. A proposed synsedimentary uplift of about 5 km during the Upper Cretaceous along the Lausitz Fold (Lange et al., Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159(1):123–132, 2008) would have caused erosion of the pre-existing sedimentary cover of the Lausitz Block followed by inverse accumulation of the detritus into the Cretaceous Basin (Elbe valley, Elbtal Group). The Permian and Triassic cover units of the Lausitz Block were not exposed during the Upper Cretaceous, but are assumed to have contributed to younger (post-Coniacian) sediments of the Elbtal Group, which were eroded during uppermost Cretaceous and lower Paleogene. Based on this study, the detrital zircon record of the Jurassic Dogger sandstones of Germany can be seen as “marker ages” for the European Cretaceous Basin inversion. This paper presents the first results of a case study with further investigations in other areas of Europe to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andersen T, Andresen A, Sylvester AG (2002a) Timing of late- to post-tectpmoc Sveconorwegian granitic magmatism in South Norway. NGU-BULL 440:5–18

    Google Scholar 

  • Andersen T, Sylvester AG, Andresen A (2002b) Age and petrogenesis of the Tinn granite, Telemark, south Norway, and its geochemical relationship to metarhyolite of the Rjukan Group. NGU-BULL 440:19–26

    Google Scholar 

  • Andersen T, Graham S, Sylvester AG (2007) Timing and tectonic significance of Sveconorwegian A-type granitic magmatism in Telemark, southern Norway: new results from laser-ablation ICPMS U–Pb dating of zircon. NGU-BULL 447:17–31

    Google Scholar 

  • Andersen T, Saeed A, Gabrielsen RH, Olaussen S, 2011. Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U–Pb, Lu-Hf and trace element analyses of detrital zircons by laser ablation ICMPS. Nor J Geol, 1–18

  • Bingen B, Mansfeld J, Sigmond EMO, Stein H (2002) Baltica-Laurentia link during the Mesoproterozoic: 1.27 Ga development of continental basins in the Sveconorwegian Orogen, southern Norway. Can J Earth Sci 39:1425–1440

    Article  Google Scholar 

  • Bingen B, Davis WJ, Hamilton MA, Engvik AK, Stein H, Skår Ø, Nordgulen Ø (2008) Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U–Pb, Th-Pb and Re-Os data. Norw J Geol, 13–42

  • Bleiner D, Günther D (2001) Theoretical description and experimentalobservation of aerosol transport processes in laserablation inductively coupled plasma mass spectrometry. JAnal At Spectrom 16:449–456

    Article  Google Scholar 

  • Danišik M, Migoń P, Kuhlemann J, Evans NJ, Dunkl I, Frisch W (2010) Thermochronological constraints on the long-term erosional history of the Karkonosze Mts. Cent Eur Geomorphol 117:78–89

    Article  Google Scholar 

  • Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic—early Palaeozoic volcano-sedimentary successions of the Teplá-Barrandian unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geologica Saxonica 54:1–168

    Google Scholar 

  • Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic—Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U–Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci (Geol Rundsch) 93:742–757

    Article  Google Scholar 

  • Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital Zircon analysis of the sedimentary record. In: Hanchar JM, Hoskin PWO (eds) Zircon reviews in mineralogy geochemistry 53. Mineralogical Society of America, Washington, pp 277–303

  • Franke W (2000) The mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61

    Article  Google Scholar 

  • Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated La-SF-ICP-MS. Chem Geol 261:261–270

    Article  Google Scholar 

  • Füchtbauer H (1988) Sedimente und Sedimentgesteine. 4. Auflage. Schweizerbart, Stuttgart, pp 1–1141

  • Gärtner A (2011) Morphologische, geochronologische und isotopengeochemische Untersuchungen an Zirkonen aus rezenten Sedimenten der Elbe. Unpublished Diploma Thesis, TU Dresden, p 232

  • Geluk MC, Röhling HG (1999) High-resolution sequence stratigraphy of the lower Triassic Buntsandstein: a new tool for basin analysis. Zbl Geol Paläont Teil 1:797–812

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  • Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U–Pb and Lu-Hf in-situ La-ICP-MS analyses of Archean zircons from the Limpopo Belt. Chem Geol 261(3–4):230–243

    Article  Google Scholar 

  • Guynn J, Gehrels GE (2010) Comparison of detrital zircon age distributions using the K–S-test. Arizona Laser Chron Center. Web Address: https://sites.google.com/a/laserchron.org/ laserchron/home/

  • Hesselbo SP (2000). Late Triassic and Jurassic: disintegrating Pangaea. In: Woodcock N, Strachan R (eds), Geolocical history of Britain and Ireland. Blackwell Science, Hoboken. p 314–338

  • Hofmann M, Linnemann U, Gerdes A, Ullrich B, Schauer M (2009) Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse oft he Variscan Orogeny in the Bohemian Massif constrained by LA-SF-ICP-MS U–Pb zircon data. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient orogens and modern analogues. The Geological Society, London. The Geological Society of London Special Publication, vol 327, pp 197–214

  • Johansson Å, Meier M, Oberli F, Wikman H (1993) The early evolution of the Southwest Swedish Gneiss Province: geochronological and isotopic evidence from southernmost Sweden. Prec Res 64:361–388

    Article  Google Scholar 

  • Lamminen J, 2011. Provenance and correlation of sediments in Telemark, South Norway: status of the Lifjell Group and implications for early Sveconorwegian fault tectonics. Norw J Geol 91(1):57–75

  • Lamprecht F (1928) Schichtenfolge und Oberflächenformen im Winterberggebiete des Elbsandsteingebirges. Genehmigte Dissertation, Sächsische Technische Hochschule zu Dresden. Druck Emil Helle, Bad Liebenwerda, pp 1–48

  • Lange JM, Tonk C, Wagner GA (2008) Apatitspaltspurdaten zur postvariszischen thermotektonischen Entwicklung des sächsischen Grundgebirges—erste Ergebnisse. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159(1):123–132

    Article  Google Scholar 

  • Linnemann U (2008) Die Struktureinheiten des Saxothuringikums. In: Linnemann U (ed) Das Saxothuringikum—Abriss der präkambrischen und paläozoischen Geologie von Sachsen und Thüringen. 2. Auflage. Staatliche Naturhistorische Sammlungen Dresden, Druckhaus Dresden, pp 23–32

  • Linnemann U, Romer RL, Gerdes A, Jeffries TE, Drost K, Ulrich J (2010) The Cadomian Orogeny in the Saxo-Thuringian Zone. In: Linnemann U, Romer RL (eds), Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin tot he Variscan Orogen. Schweizerbart, Stuttgart, p 37–58

  • Lobst R (1993) Geologische Karte der Nationalparkregion Sächsische Schweiz 1:50000, Geologische Regionalkarte 1, 1. Aufl. Sächsisches Landesamt für Umwelt und Geologie, Freiberg

    Google Scholar 

  • Ludwig KR (2001) User’s manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Center Special Publication 1a, Berkeley, p 1–56

  • Lundmark AM, Corfu F, Spürgin S, Selbekk RS (2007) Proterozoic evolution and provenance of the high-grade Jotun Nappe complex, SW Norway: U–Pb geochronology. Prec Res 159:133–154

    Article  Google Scholar 

  • Paul J, Wemmer K, Ahrendt H (2008) Provenance of siliciclastic sediments (Permian to Jurassic) in the Central European Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159:641–650

    Article  Google Scholar 

  • Pietzsch K (1963) Geologie von Sachsen. VEB Deutscher Verlag der Wissenschaften, Berlin, p 1–870

    Google Scholar 

  • Prescher H (1954) Sedimentpetrographische Untersuchungen oberturoner Sandsteine im Elbsandsteingebirge. Freib Forsch C11:1–96

    Google Scholar 

  • Prescher H (1981) Probleme der Korrelation des Cenomas und Turons in der Sächsischen und Böhmischen Kreide. Z Geol Wiss 9/4:367–373

    Google Scholar 

  • Røhr TS, Corfu F, Håkon A, Andersen TB (2004) Sveconorwegian U–Pb zircon and monazite ages of granulite-facies rocks, Hisarøya, Gulen, Western Gneiss Region, Noway. Nor J Geol 251–256

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from3D structural modelling and subsidence analysis. Tectonophysics 313:145–169

    Article  Google Scholar 

  • Shaw J, Gutiérrez-Alonso G, Johnston ST, Pastor Galán D, 2014. Provenance variability along the early Ordovician north Gondwana margin: Paleogeographic and tectonic imlications of U–Pb detrital zircon ages frim the Armorican Quartzite of the Iberian Variscan belt. GSA Bulletin V. 126(5–6): 702–719

  • Sircombe KN (2004) Age display: an Excel workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Tröger K-A (1964) Die Ausbildung der Kreide (Cenoman bis Coniac) in der Umrandung des Lausitzer Massivs. Geologie 6/7:717–773

  • Tröger K-A (2008) Kreide—Oberkreide. In: Pälchen W, Walter H (eds), Geologie von Sachsen. E. Schweizerbart’sche Verlangsbuchhandlung, Stuttgart 311–358

  • Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451

    Article  Google Scholar 

  • Voigt T (1995) Ablagerungssequenzen am Rande eines Epikontinentalmeeres—Die Entwicklungsgeschichte der Sächsischen Kreide. Dissertation, TU Bergakademie Freiberg, p 1130

  • Voigt T (2009) Die Lausitz-Riesengebirgs-Antiklinalzone als kreidezeitliche Inversionsstruktur: Geologische Hinweise aus den umgebenden Kreidebecken. Z geol Wiss 37(1–2):15–39

    Google Scholar 

  • Voigt T (2011) Sturmdominierte Sedimentation in der Postelwitz-Formation (Mittel-Turon) der Sächsischen Kreide. Freiberger Forschungsheft C540:3–25

    Google Scholar 

  • Voigt T, Tröger K-A (1996) Sea-level changes during Late Cenomanian and early Turonian in the Saxonian Cretaceous Basin. In: Spaeth C, (ed.) New developments in cretaceous research topics. Proceedings of the 4th International Cretaceous Symposium, Hamburg 1992. Mitt. Geol.-Paläont. Inst. Univ. Hamburg, p 275–290

  • von Eynatten H, Voigt T, Meier A, Franzke H-J, Gaupp R (2008) Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to exhumation of the Harz Mountains and the timing of inversion tectonics in the Central European Basin. Int J Earth Sci (Geol Rundsch) 97:1315–1330

    Article  Google Scholar 

  • Wilmsen M, Vodrážka R, Niebuhr B (2011) The Upper Cenomanian and Lower Turonian of Lockwitz (Dresden area, Saxony, Germany): lithofacies, stratigraphy and fauna of a transgressive succession. Freiberger Forschungshefte C 540:27–45

    Google Scholar 

  • Wurster P (1964) Geologie des Schilfsandsteins. Mitt. Geol Saatsinst Hamburg 33:1–140

    Google Scholar 

  • Ziegler PA (1990) Geological atlas of western and Central Europe 2. Shell Internationale Petroleum Maatschappij B.V., p 1–239

Download references

Acknowledgements

The authors would like to thank Dr. Richard Albert and Dr. Sonia Sánchez Martínez for their efforts in reviewing this paper and for their corrections, comments and suggestions that helped to improve this paper. Also, the authors would like to thank Prof. Wolf-Christian Dullo for his editorial work and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandy Hofmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, M., Voigt, T., Bittner, L. et al. Reworked Middle Jurassic sandstones as a marker for Upper Cretaceous basin inversion in Central Europe—a case study for the U–Pb detrital zircon record of the Upper Cretaceous Schmilka section and their implication for the sedimentary cover of the Lausitz Block (Saxony, Germany). Int J Earth Sci (Geol Rundsch) 107, 913–932 (2018). https://doi.org/10.1007/s00531-017-1552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1552-z

Keywords

Navigation