Skip to main content
Log in

Precursor and ambient rock paleothermometry to assess the thermicity of burial dolomitization in the southern Cantabrian Zone (northern Spain)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Paleozoic rocks in the Cantabrian Zone, and the Variscan foreland fold-and-thrust belt on the Iberian Peninsula have been affected by a sequence of diagenetic to epizonal thermal events. Late- to Post-Variscan hot fluid circulation caused a large-scale burial dolomitization and ore mineralization, mostly in Cambrian and a Lower to Middle Carboniferous carbonate sucessions. The goal of this study is to analyze and compare the temperatures experienced by the carbonate precursor rocks, as well as the under- and over-lying siliciclastic ambient rocks to gain a better understanding of the thermicity of dolomitization. These temperatures are evaluated based on published paleothermal datasets combined with new data obtained from Rock–Eval pyrolysis and vitrinite reflectance analysis of Carboniferous rocks rich in organic matter. The overall results indicate that reworking of detrital sediments in synorogenic ambient siliciclastics results in an anomalously high thermal maturity recorded by bulk rock techniques such as illite crystallinity and Rock–Eval pyrolysis. In situ VR-derived paleotemperatures recorded by ambient siliciclastic rocks appear to be higher compared to CAI-derived temperatures for carbonate precursor rocks. This variation in thermal maturity is likely related to the analytical techniques used to obtain CAI and VR data, and the empirical equations applied to calculate corresponding paleotemperatures. Conodont fragments were not as sensitive compared to vitrinite, and the color alteration process could have suffered from hydrothermal alteration. A secondary cause might be a different response to mechanical deformation between siliciclastic and carbonate units during the Variscan and post-Variscan geodynamic evolution of the study area. Rigid precursor carbonate units experienced fluid circulation mainly along distinct and spaced fracture zones, creating fracture-related dolomite geobodies and ore mineralization. Soft ambient siliciclastic rocks experienced more diffuse fluid circulation and heat dissipation. The different paleothermometry datasets compiled for the study area indicate that the fluids circulating during Late- to Post-Variscan times, with associated fracture-related dolomitization and ore mineralization in carbonate precursors, are hydrothermal. The highest paleotemperatures were recorded in ambient and precursor rocks in the highly tectonized northern part of the study area, where several thrusts and faults allowed intense fluid circulation. Positive temperature anomalies within the precursor carbonates correlate well with the occurrence of dolomite geobodies and ore mineral deposits. Such anomalies could thus be used as an exploration tool for hydrothermal dolomite bodies in analog sub-surface settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

[modified from Aller et al. (2005) and Pérez-Estaún et al. (1988)] showing Carboniferous precursor carbonate successions in light blue and dolomite geobodies in pink. Stephanian siliciclastics are indicated in purple. Pre-orogenic and synorogenic successions are distinguished, as well as what is here referred to as dolomite precursor carbonate rocks and ambient siliciclastic rocks. The stratigraphic intervals sampled for the different published paleothermometry datasets and sampled for this study are shown on the right

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aller J, Brime C (1985) Deformación y metamorfismo en la parte Sur de la Cuenca Carbonífera Central (NO de España). C R X Congr Int Strat Géol Carbonif 3:541–548

    Google Scholar 

  • Aller J, Bastida F, Brime C, Pérez-Estaún A (1987) Cleavage and its relation with metamorphic grade in the Cantabrian Zone (Hercynian of North–West Spain). Sci Géol Bull 40(3):255–272

    Google Scholar 

  • Aller J, Valín ML, García-López S, Brime C, Bastida F (2005) Superposition of tectono-thermal episodes in the southern Cantabrian Zone (foreland thrust and fold belt of the Iberian Variscides, NW Spain). Bull Soc Geol Fr 176:487–498

    Article  Google Scholar 

  • Alonso JL, Suárez-Rodríguez A, Rodríguez-Fernández LR, Farias P, Villegas FJ (1990) Hoja del Mapa Geológico Nacional de España (1:50000), memoria 104 (La Pola de Gordón). IGME, Madrid

    Google Scholar 

  • Alonso JL, Pulgar JA, García-Ramos JC, Barba P (1996) Tertiary basins and Alpine tectonics in the Cantabrian Mountains (NW Spain). In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain: the stratigraphic record of crustal kinematics. Cambridge University Press, Cambridge, pp 214–227

    Chapter  Google Scholar 

  • Alonso JL, Marcos A, Suárez A (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: The León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan thrust belt in the Ibero-Armorican Arc. Geol Acta 7(4):451–473

    Article  Google Scholar 

  • Ayllón F, Bakker RJ, Warr LN (2003) Re-equilibration of fluid inclusions in diagenetic-anchizonal rocks of the Ciñera-Matallana coal basin (NW Spain). Geofluids 3:49–68

    Article  Google Scholar 

  • Bahamonde JR, Merino-Tomé O, Della Porta G, Villa E (2015) Pennsylvanian carbonate platforms adjacant to deltaic systems in an active marine foreland basin (Escalada Fm., Cantabrian Zone, NW Spain). Basin Res 27(2):208–229

    Article  Google Scholar 

  • Barker CE (1991) Implications for organic maturation studies of evidence of a geologically rapid increase and stabilization of vitrinite reflectance at peak temperature: Cerro Prieto geothermal system, Mexico. AAPG Bull 75(12):1852–1863

    Google Scholar 

  • Barker CE, Goldstein RH (1990) Fuid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology 18:1003–1006

    Article  Google Scholar 

  • Barker CE, Pawlewicz MJ (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. In: Mukhopadhyay PK, Dow WG (eds) Vitrinite reflectance as a maturity parameter: applications and limitations. ACS Symp Ser 570:216–229

    Article  Google Scholar 

  • Bastida F, Brime C, García-López S, Sarmiento GN (1999) Tectono-thermal evolution in a region with thin-skinned tectonics : the western nappes in the Cantabrian Zone (Variscan belt of NW Spain). Int J Earth Sci 88:38–48

    Article  Google Scholar 

  • Bastida F, Brime C, García-López S, Aller J, Valín ML, Sanz-López J (2002) Tectono-thermal evolution of the Cantabrian Zone (NW Spain). Cuad Del Museo Geomin 1:105–123

    Google Scholar 

  • Blanco-Ferrera S, Sanz-López J, García-López S, Bastida F (2017) Tectonothermal evolution of the northeastern Cantabrian zone (Spain). Int J Earth Sci 106(5):1539–1555

    Article  Google Scholar 

  • Botor D (2012) Hydrothermal fluids influence on the thermal evolution of the Stephanian sequence, the Sabero Coalfield (NW Spain). Geol Geophys Environ 38:369–393

    Article  Google Scholar 

  • Botor D, Anczkiewicz AA (2015) Thermal history of the Sabero coalfield (Southern Cantabrian Zone, NW Spain) as revealed by apatite fission track analyses from tonstein horizons: implications for timing of coalification. Int J Earth Sci 104:1779–1793

    Article  Google Scholar 

  • Brime C (1981) Postdepositional transformations of clays in Palaeozoic rocks of Northwest Spain. Clay Miner 16:421–424

    Article  Google Scholar 

  • Brime C, García-López S, Bastida F, Valín ML, Sanz-López J, Aller J (2001) Transition from diagenesis to metamorphism near the front of the Variscan regional metamorphism (Cantabrian zone, Northwestern Spain). J Geol 109:363–379

    Article  Google Scholar 

  • Brouwer A, van Ginkel AC (1964) La succession Carbonifère dans la partie méridionale des montagnes Cantabriques (Espagne Nord-Ouest). Comptes Rendus, 5ème Congrès sur le Carbonifère, Paris 1963, vol 1, pp 307–319

    Google Scholar 

  • Cantrell D, Swart P, Hagerty R (2004) Genesis and characterization of dolomite, Arab-D Reservoir, Ghawar Field, Saudi Arabia. GeoArabia 9(2):11–36

    Google Scholar 

  • Carrière KL (2006) Neoproterozoic to Holocene tectonothermal evolution of the southern Cantabrian mountains NW Iberia, revealed by apatite fission-track thermochronology. Dissertation, University of Heidelberg

  • Chesnel V, Samankassou E, Merino-Tomé Ó, Fernández LP, Villa E (2015) Facies, geometry and growth phases of the Valdorria carbonate platform (Pennsylvanian, Northern Spain). Sedimentology 63:60–104

    Article  Google Scholar 

  • Colmenero JR, Prado JG (1993) Coal basins in the Cantabrian mountains, Northwestern Spain. Int J Coal Geol 23:215–229

    Article  Google Scholar 

  • Colmenero JR, Suárez-Ruiz I, Fernández-Suárez J, Barba P, Llorens T (2008) Genesis and rank distribution of Upper Carboniferous coal basins in the Cantabrian mountains, Northern Spain. Int J Coal Geol 76:187–204

    Article  Google Scholar 

  • Copard Y, Disnar JR, Becq-Giraudon JF (2002) Erroneous maturity assessment given by Tmax and HI Rock-Eval parameters on highly mature weathered coals. Int J Coal Geol 49:57–65

    Article  Google Scholar 

  • Corretgé LG, Suárez O (1990) Igneous rocks of the Cantabrian/Palentine Zone. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 72–79

    Chapter  Google Scholar 

  • Crespo JL, Moro MC, Fadón O, Cabrera R, Fernández A (2000) The Salamón gold deposit (León, Spain). J Geochem Explor 71:191–208

    Article  Google Scholar 

  • Dallmeyer RD, Martínez García E (1990) Pre-mesozoic geology of Iberia. Springer, Berlin

    Book  Google Scholar 

  • Dietrich B (2005) Numerical modeling as a means to enhance genetic sedimentary basin interpretation: a case study of the Southern Cantabrian Basin (NW Spain). Dissertation, University of Heidelberg

  • Duddy IR, Green PF, Bray RJ, Hegarty KA (1994) Recognition of the thermal effects of fluid flow in sedimentary basins. In: Parnel J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geol Soc SP 78:325–345

    Article  Google Scholar 

  • Eberl DD (1993) Three zones for illite formation during burial diagenesis and metamorphism. Clay Clay Miner 41:26–37

    Article  Google Scholar 

  • Eichmüller K (1985) Die Valdeteja Formation: Aufbau und Geschichte einer oberkarbonischen Karbonatplattform. (Kantabrisches Gebirge, Nordspanien) Facies 13:45–154

    Article  Google Scholar 

  • Epstein AG, Epstein JB, Harris LD (1977) Conodont color alteration—an index to organic metamorphism. US Geol Surv Prof Paper 995:1–27

    Google Scholar 

  • Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J (1977) Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Rev I Fr Petrol 32:23–45

    Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985a) La pyrolyse Rock-Eval et ses applications. Première Partie. Rev I Fr Petrol 40:563–579

    Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985b) La pyrolyse Rock–Eval et ses applications. Deuxième Partie. Rev I Fr Petrol 40:755–784

    Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985c) La pyrolyse Rock–Eval et ses applications. Troisième Partie Rev I Fr Petrol 41:73–89

    Google Scholar 

  • Evers HJ (1967) Geology of the Leonides between the Bernesga and Porma rivers, Cantabrian Moutains, NW Spain. Leidse Geol Meded 41:83–151

    Google Scholar 

  • Feng M, Zitong Q, Ping S, Jian Z, Yanzhong T, Maolong X (2016) Evidences for hydrothermal dolomite of Sinian Dengying formation in Gaoshiti-Moxi area, Sichuan basin. Acta Petrol Sin 37:587–598

    Google Scholar 

  • Fillon C, Pedreira D, van der Beek PA, Huismans RS, Barbero L, Pulgar JA (2016) Alpine exhumation of the central Cantabrian mountains, Northwest Spain. Tectonics 35:339–356

    Article  Google Scholar 

  • Frings K, Warr L (2012) Hydrothermally altered mudrock of the Ciñera-Matallana coal basin, Cantabrian Zone, northern Spain. Eur J Miner 24:1017–1029

    Article  Google Scholar 

  • Frings K, Lutz R, de Wall H, Warr LN (2004) Coalification history of the Stephanian Ciñera-Matallana pull-apart basin, NW Spain: Combining anisotropy of vitrinite reflectance and thermal modeling. Int J Earth Sci 93:92–106

    Article  Google Scholar 

  • Fukuchi R, Fujimoto K, Kameda J, Hamahashi M, Yamaguchi A, Kimura G, Hamada Y, Hashimoto Y, Kitamura Y, Saito S (2014) Changes in illite crystallinity within an ancient tectonic boundary thrust caused by thermal, mechanical, and hydrothermal effects: an example from the Nobeoka Thrust, southwest Japan. Earth Planets Space 66:116

    Article  Google Scholar 

  • García-López S, Bastida F, Brime C, Aller J, Valín ML, Sanz-López J, Méndez CA, Menéndez-Álvarez JR (1999) Los episodios metamórficos de la Zona Cantábrica y su contexto estructural. Trabajos Geol Univ Oviedo 21:177–187

    Google Scholar 

  • Gasparrini M, Bakker RJ, Bechstädt T (2006a) Characterization of dolomitizing fluids in the Carboniferous of the Cantabrian Zone (NW Spain): a fluid-inclusion study with cryo-raman spectroscopy. J Sediment Res 76:1304–1322

    Article  Google Scholar 

  • Gasparrini M, Bechstädt T, Boni M (2006b) Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Mar Petrol Geol 23:543–568

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR (1981) A natural long-term track annealing experiment for apatite. Nucl Tracks 5:169–174

    Article  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology Short Course 31

  • Gómez-Fernández F, Both RA, Mangas J, Arribas A (2000) Metallogenesis of Zn–Pb carbonate-hosted mineralization in the southeastern region of the Picos de Europa (Central Northern Spain) province: geologic, fluid inclusion, and stable isotopes studies. Econ Geol 95:19–40

    Article  Google Scholar 

  • Gong Z, Langereis CG, Mullender TAT (2008) The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth Planet Sci Lett 273:80–93

    Article  Google Scholar 

  • Guggenheim S, Bain DC, Bergaya F, Brigatti MF, Drits VA, Eberl DD, Formoso MLL, Galán E, Merriman RJ, Peacor DR, Stanjek H, Watanabe T (2002) Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the ‘Crystallinity Index’. Clay Miner 37:389–393

    Article  Google Scholar 

  • Gutiérrez-Alonso G, Fernández-Suárez J, Weil AB (2004) Orocline triggered lithospheric delamination. Geol Soc Am Spec Pap 383:121–130

    Google Scholar 

  • Gutiérrez-Alonso G, Johnston ST, Weil AB, Pastor-Galán D, Fernández-Suárez J (2012) Buckling an orogen: the Cantabrian Orocline. GSA Today 22:4–9

    Article  Google Scholar 

  • Gutiérrez-Alonso G, Collins AS, Fernández-Suárez J, Pastor-Galán D, González-Clavijo E, Jourdan F, Weil AB, Johnston ST (2015) Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike-slip shear zones in northwestern Iberia. Tectonophysics 643:44–54

    Article  Google Scholar 

  • Hurley NF, Budros R (1990) Albion-Scipio and Stoney Point fields, USA, Michigan basin. In: Beaumont EA, Foster NH (eds) Stratigraphic traps I: AAPG treatise of petroleum geology. Atlas of Oil and Gas Fields, Tulsa, pp 1–37

    Google Scholar 

  • Jarvie DM, Claxton BL, Henk FB, Breyer JT (2001) Oil and Shale gas from the Barnett Shale, Ft. Worth Basin, Texas. AAPG National Convention, Denver, 3–6 June 2001

    Google Scholar 

  • Julivert M (1971) Décollement tectonics in the Variscan Cordillera of northwest Spain. Am J Sci 270:1–29

    Article  Google Scholar 

  • Julivert M (1978) Hercynian orogeny and Carboniferous palaeogeography in northwestern Spain: a model of deformation–sedimentation relationships. Z Dtsch Geol Ges 29:565–592

    Google Scholar 

  • Junfeng J, Browne PRL (2000) Relationschip between illite crystallinity and temperature in active geothermal systems of New Zealand. Clay Clay Miner 48:139–144

    Article  Google Scholar 

  • Karweil J (1955) Die Metamorphose der Kohlen vom Standpunkt der physikalischen Chemie. Z Dtsch Geol Gesellsch 107:132–139

    Google Scholar 

  • Kübler B (1967) La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. Etages Tectoniques, Colloque de Neuchâtel 1966, à la Baconnière, Neuchâtel, pp 105–121

  • Kübler B (1968) Evaluation quantitative du métamorphisme par cristallinité de l’illite. Bull Centre Rech Pau 2:385–397

    Google Scholar 

  • Lafargue F, Marquis F, Pillot D (1998) Rock–Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Rev I Fr Petrol 53:421–437

    Google Scholar 

  • Lapponi F, Bechstädt T, Boni M, Banks DA, Schneider J (2013) Hydrothermal dolomitization in a complex geodynamic setting (Lower Palaeozoic, northern Spain). Sedimentology 61:411–443

    Article  Google Scholar 

  • Lobato L, García-Alcalde JL, Sánchez de Posada LC, Truylos J, Villegas FJ (1984) Hoja del Mapa Geológico Nacional de España (1:50000), Memoria 104 (Boñar). IGME, Madrid

    Google Scholar 

  • Machel HG, Lonnee J (2002) Hydrothermal dolomite—a product of poor definition and imagination. Sediment Geol 152:163–171

    Article  Google Scholar 

  • Marcos A (1968) La tectónica de la Unidad de la Sobia-Bodón. Trab Geol Univ Oviedo 2:59–87

    Google Scholar 

  • Marcos A, Pulgar JA (1982) An approach to the tectonostratigraphic evolution of the Cantabrian Foreland thrust and fold belt, Hercynian Cordillera of NW Spain. Neues Jahrb Geol P 163(2):256–260

    Google Scholar 

  • Marín JA (1997) Estructura del Domo de Valsurbio y borde surorental de la Región del Pisuerga-Carrión (Zona Cantábrica, NO de España). Dissertation, University Oviedo

  • Marschik R (1992) Der Übergang von Diagenese zur sehr niedergradigen Metamorphose im externen Variszikum (Kantabrische Zone), NW Spanien. Dissertation, University of Heidelberg

  • Martínez-García E (1983) Permian Mineralizations in the Cantabrian Mountains (North-West Spain). In: Schneider HJ (ed) Mineral Deposits of the Alps and of the Alpine Epoch in Europe. Springer, Berlin, pp 259–274

    Chapter  Google Scholar 

  • Martín-González F, Barbero L, Capote R, Heredia N, Gallastegui G (2012) Interaction of two successive Alpine deformation fronts: constraints from low-temperature thermochronology and structural mapping (NW Iberian Peninsula). Int J Earth Sci 101:1331–1342

    Article  Google Scholar 

  • Méndez A (1985) Estudio de la evolución de los carbones de la Cuenca Ciñera-Matallana, León. Dissertation, University of Oviedo

  • Merriman RJ, Frey M (1999) Patterns of very low-grade metamorphism in metapelitic rocks. In: Frey M,, Robinson D (eds) Low-grade metamorphism. Blackwell Science Limited, London, pp 61–107

    Google Scholar 

  • Middleton DWJ, Parnell J, Green PF, Xu G, McSherry M (2001) Hot fluid flow events in Atlantic margin basins: an example from the Rathlin Basin. In: Shannon PM, Haughton PDW, Corcoran DV (eds) The petroleum exploration of Ireland’s offshore basins, 188. Special Publications, London, pp 91–105

    Google Scholar 

  • Mukoyoshi H, Hara H, Omori K (2007) Quantitative estimation of temperature conditions for illite crystallinity: comparison to vitrinite reflectance from the Chichibu and Shimanto accretionary complexes, eastern Kyushu, Southwest Japan. Bull Geol Surv Jpn 58:23–31

    Article  Google Scholar 

  • Muñoz-Quijano IN (2015) Hydrothermal dolomitization of Paleozoic successions in Northern Spain: petrophysical properties and structural control. Dissertation, University of Heidelberg

  • Muñoz-Quijano IN, Gutiérrez-Alonso G (2007) Modelo de evolución topográfica en el NO de la Península Ibérica durante la delaminación litosférica al final de la Orogenia Varisca. Geogaceta 43:43–46

    Google Scholar 

  • Paniagua A, Fontboté L, Fenoll Hach-Alí P, Fallick AE, Moreiras DB, Corretgé LG (1993) Tectonic setting, mineralogical characteristics, geochemical signatures and age dating of a new type of epithermal carbonate-hosted, precious metal-five element deposits: the Villamanín area (Cantabrian Zone, northern Spain). In: Fennoll Hach-Alí P, Torres-Ruiz J, Gervilla F (eds) Current research in geology applied to ore deposits. Proceedings of the 2nd SGA biennial meeting, Granada, pp 531–534

    Google Scholar 

  • Pérez-Estaún A, Bastida F, Alonso JL et al (1988) A thin-skinned tectonics model for an arcuate fold and thrust belt : the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7:517–537

    Article  Google Scholar 

  • Phipps GG (1989) Exploring for dolomitized Slave Point carbonates in northeastern British Columbia. Geophysics 54:806–814

    Article  Google Scholar 

  • Price PB, Walker RM (1963) Fossil tracks of charged particles in mica and the age of minerals. J Geophys Res 68(16):4847–4862

    Article  Google Scholar 

  • Pulgar JA, Alonso JL, Espina RG, Marín JA (1999) La deformación alpina en al basamento varisco de la Zona Cantábrica. Trab Geol Univ Oviedo 21:283–294

    Google Scholar 

  • Raven JGM (1983) Conodont biostratigraphy and depositional history of the Middle Devonian to Lower Carboniferous in the Cantabrian Zone (Cantabrian Mountains, Spain). Leidse Geol Meded 52:265–339

    Google Scholar 

  • Raven JGM, van der Pluijm BA (1986) Metamorphic fluids and transtension in the Cantabrian Mountains of northern Spain: an application of the conodont colour alteration index. Geol Mag 123:673–681

    Article  Google Scholar 

  • Rejebian VA, Harris AG, Huebner JS (1987) Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geol Soc Am Bull 99:471–479

    Article  Google Scholar 

  • Robb L (2005) Introduction to ore-forming processes. Blackwell, Oxford

    Google Scholar 

  • Samankassou E (2001) Internal structure and depositional environment of Late Carboniferous mounds from the San Emiliano Formation, Cármenes Syncline, Cantabrian mountains, Northern Spain. Sediment Geol 145:235–252

    Article  Google Scholar 

  • Sanchez de Posada LC, Martinez Chacon ML, Mendez Fernandez C, Menendez Alvarez JR, Truyols J, Villa E (1990) Carboniferous Pre-Stephanian rocks of the Asturian-Leonese Domain (Cantabrian zone). In: Dallmeyer RD, Martínez-García E (eds) Pre-Mesozoic geology of Iberia. Springer, Berlin, pp 24–33

    Google Scholar 

  • Schito A, Corrado S, Aldega L, Grigo D (2016) Overcoming pitfalls of vitrinite reflectance measurements in the assessment of thermal maturity: the case history of the lower Congo basin. Mar Petrol Geol 74:59–70

    Article  Google Scholar 

  • Seibert L (1986) Fazies und Paläogeographie des Unter-Karbon (Alba Formation) im Kantabrischen Gebirge (Nordspanien). Dissertation, University of Tübingen

  • Stearns ND, Stearns HT, Waring GA (1935) Thermal springs in the United States. Contributions to the hydrology of the United States. Water Supply Paper 679-B:59–191

    Google Scholar 

  • Suárez Rodríguez A, Heredia N, López Díaz F, Toyos JM, Rodríguez Fernández LR, Gutiérrez G (1991) Hoja del Mapa Geológico Nacional de España (1:50000), memoria 102 (Los Barrios de Luna). IGME, Madrid

    Google Scholar 

  • Suggate RP (1959) New Zealand coals, their geological setting and its influence on their properties. In: Owen RE (ed) New Zealand Department of Scientific Industrial Research Bulletin 13:1–112

    Google Scholar 

  • Teichmüller M (1982) Application of coal petrological methods in geology including oil and natural gas prospecting. In: Stach E, Mackowsky MTh, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (eds) Stach’s textbook of coal petrology. Gebrüder Borntraeger, Berlin, pp 381–413

    Google Scholar 

  • Teichmüller M (1987) Organic material and very low grade metamorphism. In: Frey M (ed) Low-temperature metamorphism. Chapman and Hall, Glasgow, pp 114–161

    Google Scholar 

  • Tissot BP, Welte DH (1978) Petroleum formation and occurrence. A new approach to oil and gas exploration. Springer, Berlin

    Google Scholar 

  • van Ginkel AC (1965) Carboniferous fusulinids from the Cantabrian Mountains (Spain). Leidse Geol Meded 34:1–255

    Google Scholar 

  • Voldman GG, Albanesi GL, Do Campo M (2008) Conodont palaeothermometry of contact metamorphism in Middle Ordovician rocks from the Precordillera of western Argentina. Geol Mag 145:449–462

    Article  Google Scholar 

  • Wagner RH, Bowman MBJ (1983) The position of the Bashkirian/Moscovian boundary in West European chronostratigraphy. Newsl Stratigr 12:132–161

    Article  Google Scholar 

  • Wagner GA, van den Haute P (1992) Fission-track dating. Enke, Stuttgart

    Book  Google Scholar 

  • Wagner RH, Winkler Prins CF, Riding RE (1971) Lithostratigraphic units of the lower part of the Carboniferous in Northern León, Spain. Trab Geol Univ Oviedo 4:603–663

    Google Scholar 

  • Weh A, Krumm S, Clauer N, Keller M (2001) The late orogenic history of the southeastern Cantabrian mountains: illite-crystallinity and K–Ar data. EUGXI abstract

  • Weil AB, Gutiérrez-Alonso G, Johnston ST, Pastor-Galán D (2013) Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: a geologic synthesis. Tectonophysics 582:25–49

    Article  Google Scholar 

  • White DE (1957) Thermal waters of volcanic origin. Geol Soc Am Bull 68:1637–1658

    Article  Google Scholar 

  • Winkler Prins CF (1968) Carboniferous Productidina and Chonetidina of the Cantabrian Mountains (NW Spain): systematics, stratigraphy and palaeoecology. Leidse Geol Meded 43:41–126

    Google Scholar 

  • Zamarreño I (1972) Las lithofacies carbonatadas del Cámbrico de la Zona Cantábrica (NW España) y su distribución paleogeográfica. Trab Geol Univ Oviedo 5:3–118

    Google Scholar 

  • Zhang S, Barnes CR (2007) Late Ordovician-Early Silurian conodont biostratigraphy and thermal maturity, Hudson Bay Basin. B Can Petrol Geol 55:179–216

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Research Foundation—Flanders (FWO). Additional funding was also provided by the IAS 2014 Grant Scheme. Rock–Eval measurements were performed at IFPEN (France). Daniel Pillot and Géremie Letort are kindly acknowledged for assistence with the analyses. We thank Elisabeth Bemer (IFPEN), head of the “water–rock interaction” project, who provided additional funding for vitrinite reflectance analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Honlet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honlet, R., Gasparrini, M., Jäger, H. et al. Precursor and ambient rock paleothermometry to assess the thermicity of burial dolomitization in the southern Cantabrian Zone (northern Spain). Int J Earth Sci (Geol Rundsch) 107, 1357–1377 (2018). https://doi.org/10.1007/s00531-017-1541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1541-2

Keywords

Navigation