Skip to main content
Log in

Geochemical study of travertines along middle-lower Tiber valley (central Italy): genesis, palaeo-environmental and tectonic implications

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Several travertine deposits dating to the Pleistocene outcrop along the Tiber valley between Orte and Rome. Mineralogically, they are mainly composed of calcite; various lithofacies (stromatolitic, phytoclastic, and massive) were identified and relatively wide ranges of carbon (δ13C −8.11 to +11.42‰ vs. VPDB) and oxygen (δ18O +22.74 to +27.71‰ vs. VSMOW) isotope compositions were measured. The isotope and chemical compositions of water and free gases, in some cases associated with the travertines, were also measured. Carbon isotope data show that several samples fall in the typical range of thermogenic travertine, i.e., linked to the addition of deep inorganic CO2. The oxygen isotope composition of the springs associated with the travertine deposits points to travertine precipitation by slightly thermal water of meteoric origin. In general, these travertines are in association with, or close to, mineralised groundwaters (with slightly acidic pH, low thermalism, and enrichment in sulphates or sodium chloride) and rich CO2 gas emissions, the origin of which may be linked to decarbonation reactions. The travertine bodies are locally connected with crustal structural lineaments favouring the circulation of ascending deep CO2-rich fluids. Conversely, some samples show isotopic connotations of meteogenic deposits, representing travertines formed mainly from soil biogenic or atmospheric carbon dioxide generally present in shallow groundwater or surface water. According to their morphology and isotope data, these travertines may be attributed to the sedimentary environment of waterfalls. These new geochemical and morphological data are integrated with those already available in the literature regarding the study area and contribute to shedding light on palaeo-environmental conditions in western-central Italy during the Quaternary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Affek HP, Zaarur S (2014) Kinetic isotope effect in CO2 degassing: insight from clumped and oxygen isotopes in laboratory precipitation experiments. Geochim Cosmochim Acta 143:319–330

    Google Scholar 

  • Altunel E, Hancock PL (1993) Morphology and structural setting of Quaternary Travertines at Pamukkale, Turkey. Geol J 28:335–346

    Google Scholar 

  • Altunel E, Karabacak V (2005) Determination of horizontal extension from fissure-ridge travertines: a case study from the Denizli Basin, southwestern Turkey. Geodin Acta 18:333–342

    Google Scholar 

  • Andrews JE (2006) Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth Sci Rev 75:85–104

    Google Scholar 

  • Andrews JE, Riding R, Dennis PF (1997) The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeogr Palaeocl 129:171–189

    Google Scholar 

  • Ascione A, Iannace A, Imbriale P, Santangelo N, Santo A (2013) Tufa and travertines of southern Italy: deep-seated, fault-related CO2 as the key control in precipitation. Terra Nova 26:1–13

    Google Scholar 

  • Barberi F, Buonasorte G, Cioni R, Fiordelisi A, Foresi L, Iaccarino S, Laurenzi MA, Sbrana A, Vernia A, Villa IM (1994) Plio–Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem Descr Carta Geol d’It 49:77–135

    Google Scholar 

  • Barbieri M, Masi U, Tolomeo L (1979) Origin and distribution of strontium in the travertines of Latium (Central Italy). Chem Geol 24:181–188

    Google Scholar 

  • Boni CF, Bono P, Capelli G (1988) Carta Idrogeologica del Territorio della Regione Lazio—scala 1:250.000. Regione Lazio, Assessorato alla Programmazione, Ufficio Parchi e Riserve, Università degli Studi di Roma “La Sapienza”. Dipartimento di Scienze della Terra, Roma

    Google Scholar 

  • Brogi A (2004) Faults linkage, damage rocks and hydrothermal fluid circulation: Tectonic interpretation of the Rapolano Terme travertines (southern Tuscany, Italy) in the context of Northern Apennines Neogene–Quaternary extension. Eclogae Geol Helv 97:307–320

    Google Scholar 

  • Brogi A, Capezzuoli E, Aquè R, Branca M, Voltaggio M (2010) Studying travertines for neotectonics investigations: middle–Late Pleistocene syn-tectonic travertine deposition at Serre di Rapolano (Northern Apennines, Italy). Int J Earth Sci 99:1383–1398

    Google Scholar 

  • Brogi A, Capezzuoli E, Buracchi E, Branca M (2012) Tectonic control on travertine and calcareous tufa deposition in a low-temperature geothermal system (Sarteano, Central Italy). J Geol Soc Lond 169:461–476

    Google Scholar 

  • Brogi A, Capezzuoli E, Alçiçek MC, Gandin A (2014) Evolution of a fault-controlled fissure-ridge type travertine deposit in the western Anatolia extensional province: the Çukurbağ fissure-ridge (Pamukkale, Turkey). J Geol Soc Lond 171:425–441

    Google Scholar 

  • Buccino G, D’Argenio B, Ferreri V, Brancaccio L, Ferreri M, Panichi C, Stanzione D (1978) I travertini della bassa valle del Tanagro (Campania): studio geomorfologico, sedimentologico e geochimico. Boll Soc Geol Ital 97:617–646

    Google Scholar 

  • Çakır Z (1999) Along strike discontinuity of active normal faults and its influence on Quaternary travertine deposition: Examples from western Turkey. Turk J Earth Sci 8:67–80

    Google Scholar 

  • Capelli G, Mastrorillo L, Mazza R, Petitta M, Baldoni T, Banzato F, Cascone D, Di Salvo C, La Vigna F, Taviani S, Teoli P (2012) Carta Idrogeologica del Territorio della Regione Lazio, scala 1:100.000 (4 fogli). Regione Lazio, S.EL.CA., Firenze

    Google Scholar 

  • Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61:1–21

    Google Scholar 

  • Carminati E, Doglioni C (2012) Alps vs. Apennines: the paradigm of a tectonically asymmetric Earth. Earth Sci Rev 112:67–96

    Google Scholar 

  • Carrara C (1994) I travertini di Canino (VT, Italia centrale): elementi di cronolitostratigrafia, di geochimica isotopica e loro significato ambientale e climatico. Quaternario 7:73–90

    Google Scholar 

  • Carucci V, Petitta M, Aravena R (2012) Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modelling. Appl Geochem 27:266–280

    Google Scholar 

  • Cavinato GP, De Celles PG (1999) Extensional basins in the tectonically bimodal central Apennines fold–thrust belt, Italy: response to comer flow above subducting slab in retrograde motion. Geology 27:955–958

    Google Scholar 

  • Cavinato GP, Cosentino D, De Rita D, Funiciello R, Parotto M (1994) Tectonic–sedimentary evolution of intrapenninic basins and correlation with the volcano–tectonic activity in Central Italy. Mem Descr Carta Geol d’It 49:63–76

    Google Scholar 

  • Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3406

    Google Scholar 

  • Chafetz HS, Folk RL (1984) Travertines: depositional morphology and the bacterially constructed constituents. J Sediment Res 54:289–316

    Google Scholar 

  • Chiodini G, Cardellini C, Amato A, Boschi E, Caliro S, Frondini F, Ventura G (2004) Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys Res Lett 31:L07615

    Google Scholar 

  • Claes H, Soete J, Van Noten K, El Desouky H, Marques Erthal M, Vanhaecke F, Özkul M, Swennen R (2015) Sedimentology, three-dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballik area (south-west Turkey). Sedimentology 62:1408–1445

    Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press/Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Çolak Erol S, Özkul M, Aksoy E, Kele S, Ghaleb B (2015) Travertine occurrences along major strike-slip fault zones: structural, depositional and geochemical constraints from the Eastern Anatolian fault System (EAFS), Turkey. Geodin Acta 27:154–173

    Google Scholar 

  • Coplen TB (2007) Calibration of the calcite–water oxygen isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim Cosmochim Acta 71:3948–3957

    Google Scholar 

  • Cosentino D, Cipollari P, Marsili P, Scrocca D (2010) Geology of the central Apennines: a regional review. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) The geology of Italy: tectonics and life along plate margins, vol 36(12. doi:10.3809/jvirtex.2010.00223 (Journal of the Virtual Explorer Electronic Edition)

  • De Rita D, Funiciello R, Corda L, Sposato A, Rossi U (1993) Volcanic units. In: Di Filippo M (ed) Sabatini volcanic complex, vol 114. Quaderni della Ricerca Scientifica, C.N.R., Roma, pp 33–79

    Google Scholar 

  • De Rita D, Faccenna C, Funiciello R, Rosa C (1995) Stratigraphy and volcano tectonics. In: Trigila R (ed) The volcano of the Alban Hills, Roma, pp 33–71

  • De Filippis L, Faccenna C, Billi A, Anzalone E, Brilli M, Özkul M, Soligo M, Tuccimei P, Villa IM (2012) Growth of fissure ridge travertines from geothermal springs of Denizli Basin, western Turkey. Geol Soc Am Bull 124:1629–1645

    Google Scholar 

  • De Filippis L, Faccenna C, Billi A, Anzalone E, Brilli M, Soligo M, Tuccimei P (2013) Plateau versus fissure ridge travertines from Quaternary geothermal spring of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth Sci Rev 123:35–52

    Google Scholar 

  • Epstein S, Mayeda TK (1953) Variations of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224

    Google Scholar 

  • Faccenna C (1994) Structural and hydrogeological features of Pleistocene shear zones in the area of Rome (Central Italy). Ann Geofis 37:121–133

    Google Scholar 

  • Faccenna C, Funiciello R (1993) Tettonica pleistocenica tra il Monte Soratte e i Monti Cornicolani. Il Quaternario 6:103–118

    Google Scholar 

  • Faccenna C, Funiciello R, Montone P, Parotto M, Voltaggio M (1994) Late Pleistocene strike–slip tectonics in the Acque Albule Basin (Tivoli, Latium). Mem Descr Carta Geol d’It 49:37–50

    Google Scholar 

  • Faccenna C, Soligo M, Billi A, De Filippis L, Funiciello R, Rossetti C, Tuccinei P (2008) Late Pleistocene depositional cycles of the lapis Tiburtinus travertine (Tivoli, Central Italy): possible influence of climate and fault activity. Glob Planet Change 63:299–308

    Google Scholar 

  • Faccenna C, Funiciello R, Soligo M (2010) Origin and deposition of the Lapis Tiburtinus travertine. In: Funiciello R, Giordano G (eds) The Colli Albani volcano. IAVCEI Spec. Publ. 3, Geological Society, London, pp 215–228

    Google Scholar 

  • Ferreri M, Stanzione D (1978) Contributo alla conoscenza geochimica dei travertini campani: travertini di Paestum e della Bassa Valle del Tanagro. Rend Accad Sci Fis Mat Di Napoli IV 45:1–15

    Google Scholar 

  • Fischbeck R, Müller G (1971) Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite and calcite in speleothems of the Frankische Schweiz, Western Germany. Contrib Mineral Petrol 33:87–92

    Google Scholar 

  • Folk RL (1994) Interaction between bacteria, nannobacteria, and mineral precipitation in hot springs of Central Italy. Geogr Phys Quat 48:233–246

    Google Scholar 

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41:117–175

    Google Scholar 

  • Fouke BW, Farmer JD, Des Marais DJ, Prat L, Sturchio NC, Burns PC, Discipulo MK (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). J Sediment Res 70:565–585

    Google Scholar 

  • Frank N, Braum M, Hamach U, Mangini A, Wagner G (2000) Warm period growth of travertine during the Last Interglaciation in Southern Germany. Quat Res 54:38–48

    Google Scholar 

  • Friedman I (1970) Some investigations of the deposition of travertine from hot springs: I. The isotope chemistry of a travertine depositing spring. Geochim Cosmochim Acta 34:1303–1315

    Google Scholar 

  • Funiciello R, Giordano G (2008) Note illustrative della Carta Geologica d’Italia alla scala 1:50.000, Foglio 347 ROMA. APAT-Servizio Geologico d’Italia, Roma

    Google Scholar 

  • Funiciello R, Parotto M (1978) Il substrato sedimentario nell’area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino centrale. Geol Romana 17:233–287

    Google Scholar 

  • Funiciello R, Giuliani R, Marra F, Salvi S (1994) The influence of volcanism and tectonics on Plio-Quaternary regional landforms in the Southeastern Sabatinian area (Central Italy). Mem Descr Carta Geol d’It 49:323–332

    Google Scholar 

  • Gandin A, Capezzuoli E (2014) Travertine: distinctive depositional fabrics of carbonates from thermal spring systems. Sedimentology 61:264–290

    Google Scholar 

  • Gibert RO, Taberner C, Sáez A, Giralt S, Alonso RN, Edwards RL, Pueyo JJ (2009) Igneous origin of CO2 in ancient and recent hot spring waters and travertines from the northern Argentinean Andes. J Sediment Res 79:554–567

    Google Scholar 

  • Giustini F, Brilli M, Patera A (2016) Mapping oxygen stable isotopes of precipitation in Italy. J Hydrol Reg Stud 8:162–181

    Google Scholar 

  • Goldscheider N, Mádl-Szonyi J, Eross A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18:1303–1318

    Google Scholar 

  • Gonfiantini R, Panichi C, Tongiorgi E (1968) Isotopic disequilibrium in travertine deposition. Earth Planet Sci Lett 5:55–58

    Google Scholar 

  • Guo L, Andrews J, Riding R, Dennis P, Dresser Q (1996) Possible microbial effects on stable carbon isotopes in hot-spring travertines. J Sediment Res 66:468–473

    Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Google Scholar 

  • Jones B, Renaut RW, Rosen MR (1996) High-temperature (>90 °C) calcite precipitation at Waikite Hot Springs, North Island, New Zealand. J Geol Soc Lond 153:481–496

    Google Scholar 

  • Karner DB, Marra F, Renne PR (2001) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcani-tecnonic hazards for Rome. J Volcanol Geotherm Res 107:185–219

    Google Scholar 

  • Kele S, Demény A, Siklósy Z, Németh T, Tóth M, Kovács MB (2008) Chemical and stable isotope composition of recent hot–water travertines and associated thermal waters, from Egerszalók, Hungary: Depositional facies and non-equilibrium fractionation. Sediment Geol 211:53–72

    Google Scholar 

  • Kele S, Özkul M, Fórizs I, Gökgöz A, Baykara MO, Alçiçek MC, Németh T (2011) Stable isotope geochemical study of Pamukkale travertines: new evidences of low-temperature non-equilibrium calcite–water fractionation. Sediment Geol 238:191–212

    Google Scholar 

  • Kele S, Breitenbach SFM, Capezzuoli E, Meckler AN, Ziegler M, Millan IM, Kluge T, Deák J, Hanselmann K, John CM, Yan H, Liu Z, Bernasconi SM (2015) Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 °C temperature range. Geochim Cosmochim Acta 168:172–192

    Google Scholar 

  • Kim S-T, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    Google Scholar 

  • Laurenzi M, Stoppa F, Villa IM (1994) Eventi ignei monogenici e depositi piroclastici nel distretto ultra-alcalino Umbro-Laziale: revisione, aggiornamento e comparazione dei dati cronologici. Plinius 12:61–65

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071

    Google Scholar 

  • Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382. ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/epica_domec/edc-co2-2008.txt

  • Mancini M, Cavinato GP (2005) The Middle Valley of the Tiber River, central Italy: Plio-Pleistocene fluvial and coastal sedimentation, extensional tectonics and volcanism. In: Blum MD, Marriott SB, Leclair SF (eds) Fluvial sedimentology VII, vol 35. IAS Special Publication, Blackwell, Oxford, pp 373–396

    Google Scholar 

  • Mancini M, Girotti O, Cavinato GP (2004) Il Pliocene e il Quaternario della Media Valle del Tevere (Appennino Centrale). Geol Rom 37:175–236

    Google Scholar 

  • Mancini M, D’Anastasio E, Barbieri M, De Martini PM (2007) Geomorphological, paleontological and 87Sr/86Sr isotope analyses of Early Pleistocene paleoshorelines to define the uplift of Central Apennines (Italy). Quat Res 67:487–501

    Google Scholar 

  • Manfra L, Masi U, Turi B (1976) La composizione isotopica dei travertini del Lazio. Geol Rom 15:127–174

    Google Scholar 

  • Marra F, Florindo F (2014) The subsurface geology of Rome: sedimentary processes, sea-level changes and astronomical forcing. Earth Sci Rev 136:1–20

    Google Scholar 

  • Marra F, Karner DB, Freda C, Gaeta M, Renne P (2009) Large mafic eruptions at Alban Hills Volcanic District (Central Italy): chronostratigraphy, petrography, and eruptive behaviour. J Volcanol Geotherm Res 179:217–232

    Google Scholar 

  • Mattei M, Conticelli S, Giordano G (2010) The Tyrrhenian margin geological setting: from the Apennine orogeny to the K-rich volcanism. In: Funiciello R, Giordano G (eds) The Colli Albani volcano. IAVCEI Spec. Publ. 3, Geological Society, London, pp 7–27

    Google Scholar 

  • Mazza R, La Vigna F (2011) Hydrogeology of the southern Middle Tiber Valley (Central Italy). AQUA Mundi 2:93–102

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Google Scholar 

  • Meents WF (1960) Glacial drift gas in Illinois. Ill State Geol Surv Circ 292:1–58

    Google Scholar 

  • Mesci BL, Gürsoy H, Tatar O (2008) The evolution of travertine masses in the Sivas area (central Turkey) and their relationships to active tectonics. Turk J Earth Sci 17:219–240

    Google Scholar 

  • Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth Sci Rev 66:89–141

    Google Scholar 

  • Minissale A, Kerrick DM, Magro G, Murrell MT, Paladini M, Rihs S, Sturchio NC, Tassi F, Vaselli O (2002) Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth Planet Sci Lett 203:709–728

    Google Scholar 

  • Özkul M, Kele S, Gökgöz A, Shen CC, Jones B, Baykara MO, Fόrizs I, Nemeth T, Chang YW, Alçiçek MC (2013) Comparison of the Quaternary travertine sites in the Denizli Extensional Basin based on their depositional and geochemical data. Sediment Geol 294:179–204

    Google Scholar 

  • Özkul M, Gökgöz A, Kele S, Baykara MO, Shen CC, Chang YW, Kaya A, Hançer M, Aratman C, Akın T, Örü Z (2014) Sedimentological and geochemical characteristics of a fluvial travertine: a case from the eastern Mediterranean region. Sedimentology 61:291–318

    Google Scholar 

  • Palladino DM, Simei S, Sottili G, Trigila R (2010) Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: an application to the Vulsini Volcanoes (central Italy). In: Groppelli G, Viereck L (eds) Stratigraphy and geology in volcanic areas, vol 464. GSA Special Papers, pp 66–84

  • Panichi C, Tongiorgi E (1976) Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: a preliminary prospection method of geothermal area. In: Proceedings. 2nd UN symposium on the develop and use of geothermal energy, 20–29 May 1975, San Francisco. pp 815–825

  • Patacca E, Sartori R, Scandone P (1990) Tyrrhenian basin and Apenninic arcs: kinematics relations since Late Tortonian times. Mem Soc Geol It 45:425–451

    Google Scholar 

  • Pazdur A, Dobrowolski R, Durakiewicz T, Piotrowska N, Mohanti M, Das S (2002) δ13C and δ18O time record and palaeoclimatic implications of the Holocene calcareous tufa from south-eastern Poland and eastern India (Orissa). Geochronometria 21:97–108

    Google Scholar 

  • Peccerillo A (2003) Plio-Quaternary magmatism in Italy. Episodes 26:222–226

    Google Scholar 

  • Pedley HM (1990) Classification and environmental models of cool freshwater tufas. Sediment Geol 68:143–154

    Google Scholar 

  • Pedley HM (2009) Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology 56:221–246

    Google Scholar 

  • Pentecost A (1995) The Quaternary travertine deposits of Europe and Asia minor. Quat Sci Rev 14:1005–1028

    Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Berlin, p. 446

    Google Scholar 

  • Perini G, Francalanci L, Davidson JP, Conticelli S (2004) Evolution and genesis of magmas from Vico Volcano, Central Italy: multiple differentiation pathways and variable parental magmas. J Petrol 45:139–182

    Google Scholar 

  • Petitta M, Primavera P, Tuccimei P, Aravena R (2011) Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): a geochemical and isotope approach. Environ Earth Sci 63:11–30

    Google Scholar 

  • Piccardi L, Monti C, Vaselli O, Tassi F, Gaki-Papanastassiou K, Papanastassiou D (2008) Scent of a myth: tectonics, geochemistry and geomythology at Delphi (Greece). J Geol Soc Lond 165:5–18

    Google Scholar 

  • Raimondi V, Costagliola P, Ruggieri G, Benvenuti M, Boschi C, Brogi A, Capezzuoli E, Morelli G, Gasparon M, Liotta D (2015) Investigating fossil hydrothermal systems by means of fluid inclusions and stable isotopes in banded travertine: an example from Castelnuovo dell’Abate (southern Tuscany, Italy). Int J Earth Sci 105:659–679

    Google Scholar 

  • Rodríguez-Berriguete A, Alonso-Zarza AM, Cabrera MC, Rodriguez-Gonzalez A (2012) The Azuaje travertine: an example of aragonite deposition in a recent volcanic setting, N Gran Canaria Island, Spain. Sediment Geol 277–278:61–71

    Google Scholar 

  • Selim HH, Yanik G (2009) Development of the Cambazlı (Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics, Gediz Graben, Turkey. Quat Int 199:157–163

    Google Scholar 

  • Sibson RH (1987) Earthquake rupturing as a mineralising agent in hydrothermal systems. Geology 15:704–710

    Google Scholar 

  • Sierralta M, Kele S, Melcher F, Hambach U, Reinders J, van Geldern R, Frechen M (2010) Uranium-series dating of travertine from Süttő: implications for reconstruction of environmental change in Hungary. Quat Int 222:178–193

    Google Scholar 

  • Sottili G, Palladino DM, Zanon V (2004) Plinian activity during the early eruptive history of the Sabatini Volcani District, Central Italy. J Volcanol Geotherm Res 135:361–379

    Google Scholar 

  • Sottili G, Palladino DM, Marra F, Jicha B, Karner DB, Renne P (2010) Geochronology of the most recent activity in the Sabatini Volcanic District, Roman Province, central Italy. J Volcanol Geotherm Res 196:20–30

    Google Scholar 

  • Sturchio NC (1990) Radium isotopes, alkaline earth diagenesis, and age determination of travertine of Mammoth Hot Springs, Wyoming, USA. Appl Geochem 5:631–640

    Google Scholar 

  • Temiz U, Gökten E, Eikenberg J (2013) Strike-slip deformation and U/Th dating of travertine deposition: Examples from North Anatolian Fault Zone, Bolu and Yeniçağ Basins, Turkey. Quat Int 312:132–140

    Google Scholar 

  • Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim Cosmochim Acta 75:4929–4950

    Google Scholar 

  • Tuccimei P, Conforti M, Funiciello R, Soligo M (2001) Datazioni U/Th delle placche travertinose di Fiano Romano e Pian Paradiso (Lazio, Italia), FIST GeoItalia 2001 Symposium Abstract, pp 124–125

  • Turi B (1986) Stable isotopes geochemistry of travertines. In: Fritz P, Fontes JC (eds) The terrestrial environment. Handbook of environmental isotope geochemistry, vol 2B. Elsevier, Amsterdam, pp 207–238

  • Uysal T, Feng Y, Zhao J, Altunel E, Weatherley D, Karabacak V, Cengiz O, Golding SD, Lawrence MG, Collerson KD (2007) U-series dating and geochemical tracing of late Quaternary travertines in co-seismic fissures. Earth Planet Sci Lett 257:450–462

    Google Scholar 

  • Van Noten K, Claes H, Soete J, Foubert A, Özkul M, Swennen R (2013) Fracture networks and strike-slip deformation along reactivated normal faults in Quaternary travertine deposits, Denizli Basin, western Turkey. Tectonophysics 588:154–170

    Google Scholar 

  • Vaselli O, Tassi F, Minissale A, Capaccioni B, Magro G, Evans WC (1997) Geochemistry of natural gas manifestations from the Upper Tiber Valley (Central Italy). Mineral Petrogr Acta 40:201–212

    Google Scholar 

  • Ventriglia U (2002) Geologia del territorio del Comune di Roma. Provincia di Roma, Rome, p 810

    Google Scholar 

  • Vignaroli G, Berardi G, Billi A, Kele S, Rossetti F, Soligo M, Bernasconi SM (2016) Tectonics, hydrothermalism, and paleoclimate recorded by Quaternary travertines and their spatio-temporal distribution in the Albegna basin, central Italy: insights on Tyrrhenian margin neotectonics. Lithosphere 8:335–358

    Google Scholar 

Download references

Acknowledgements

We thank S. Stellino (DST-Sapienza) for assistance with XRD analysis and G. Capelli for providing travertine samples from “Prima Porta” site. We are grateful to M. Özkul and an anonymous reviewer, for their suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Giustini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giustini, F., Brilli, M. & Mancini, M. Geochemical study of travertines along middle-lower Tiber valley (central Italy): genesis, palaeo-environmental and tectonic implications. Int J Earth Sci (Geol Rundsch) 107, 1321–1342 (2018). https://doi.org/10.1007/s00531-017-1535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1535-0

Keywords

Navigation