Skip to main content
Log in

Failed Silurian continental rifting at the NW margin of Gondwana: evidence from basaltic volcanism of the Prague Basin (Teplá–Barrandian Unit, Bohemian Massif)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Silurian volcanic rocks of the Prague Basin represent within-plate, transitional alkali to tholeiitic basalts, which erupted in a continental rift setting through the thick Cadomian crust of the Teplá–Barrandian Unit (Bohemian Massif). Despite the variable, often intense alteration resulting in post-magmatic replacement of the basalt mass due to carbonatization, the geochemical signatures of Silurian basalts are still sufficiently preserved to constrain primary magmatic processes and geotectonic setting. The studied interval of Silurian volcanic activity ranges from Wenlock (Homerian, ~431 Ma) to late Ludlow (Gorstian, ~425 Ma) with a distinct peak at the Wenlock/Ludlow boundary (~428 Ma). Trace-element characteristics unambiguously indicate partial melting of a garnet peridotite mantle source. Wenlock basalts are similar to alkaline OIB with depleted radiogenic Nd signature compared to Ludlow basalts, which are rather tholeiitic, EMORB-like with enriched radiogenic Nd signature. The correlation of petrogenetically significant trace-element ratios with Nd isotopic compositions points to a mixing of partial melts of an isotopically heterogeneous, possibly two-component mantle source during the Wenlock–Ludlow melting. Lava eruptions were accompanied by intrusions of doleritic basalt and meimechite sills. The latter represent olivine-rich cumulates of basaltic magmas of probably predominantly Ludlow age. Meimechites with dolerites and, to a lesser extent, some lavas were subject to alteration due to wall-rock–fluid interaction. The trigger for the Wenlock-to-Ludlow (431–425 Ma) extension and related volcanism in the Prague Basin is related to far-field forces, namely slab-pull regime due to progressive closure of the Iapetus Ocean. The main stage of the Baltica–Laurentia collision then caused the Prague Basin rift failure at ca. 425 Ma that has never reached an oceanic stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aïfa T, Pruner P, Chadima M, Štorch P (2007) Structural evolution of the Prague Synform (Czech Republic) during Silurian times: an AMS, rock magnetism, and palaeomagnetic study of the Svatý Jan pod Skalou dikes. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan Collision. Geol Soc Amer Spec Pap, vol 423, pp 249–265

  • Anderson DL (1995) Lithosphere, asthenosphere, and perisphere. Rev Geophys 33:125–149

    Google Scholar 

  • Babuška V, Plomerová J (2013) Boundaries of mantle-lithosphere domains in the Bohemian Massif as extinct exhumation channels for high-pressure rocks. Gondwana Res 23:973–987

    Google Scholar 

  • Bendl J, Vokurka K, Sundvoll B (1993) Strontium and neodymium isotope study of Bohemian basalts. Miner Petrol 48:35–45

    Google Scholar 

  • Berkyová S (2009) Lower-Middle Devonian (upper Emsian-Eifelian, serotinus–kockelianus zones) conodont faunas from the Prague Basin, the Czech Republic. Bull Geosci 84:667–686

    Google Scholar 

  • Boynton WV (1984) Geochemistry of the rare elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Brueckner HK, van Roermund HL (2004) Dunk tectonics: a multiple subduction/eduction model for the evolution of the Scandinavian Caledonides. Tectonics. doi:10.1029/2003TC001502

    Google Scholar 

  • Chaloupský J (1978) The Precambrian tectogenesis in the Bohemian Massif. Geol Rundsch 67:72–90

    Google Scholar 

  • Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague

    Google Scholar 

  • Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and paleomagnetic review. J Geol Soc Lond 159:631–644

    Google Scholar 

  • Cocks LRM, Torsvik TH (2006) European geography in a global context from the Vendian to the end of Palaeozoic. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Lond Mem, vol 32, pp 83–95

  • Cocks LRM, Torsvik TH (2013) New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. In: Harper DAT, Servais T (eds) Early Palaeozoic biogeography and palaeogeography. Geol Soc Lond Mem, vol 38, pp 5–24

  • Comin-Chiaramonti P, Cundari A, Ruberti E, De Min A, Gittins J, Gomes CB, Gwalani L (2009) Genesis of analcime and nepheline–potassium–feldspar–kalsilite intergrowths: a review. Acta Vulcanol 21:81–90

    Google Scholar 

  • Cramer BD, Condon DJ, Söderlund U, Marshall C, Worton GJ, Thomas AT, Calner M, Ray DC, Perrier V, Boomer I, Patchett PJ, Jeppsson L (2012) U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the “Big Crisis”. Geol Soc Am Bull 124:1841–1857

    Google Scholar 

  • Cramer BD, Schmitz MD, Huff WD, Bergström SM (2015a) High-precision U-Pb zircon age constraints on the duration of rapid biogeochemical events during the Ludlow Epoch (Silurian Period). J Geol Soc Lond 172:157–160

    Google Scholar 

  • Cramer BD, Vandenbroucke TRA, Ludvigson GA (2015b) High-resolution event stratigraphy (HiRES) and the quantification of stratigraphic uncertainty: silurian examples of the quest for precision in stratigraphy. Earth-Sci Rev 141:136–153

    Google Scholar 

  • Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180

    Google Scholar 

  • Dempírová L, Šikl J, Kašičková R, Zoulková V, Kříbek B (2010) The evaluation of precision and relative error of the main components of silicate analyses in Central Laboratory of the Czech Geological Survey. Geosci Res Rep 2009:326–330 (in Czech)

    Google Scholar 

  • DePaolo DJ (1988) Neodymium isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Dewey JF, Strachan RA (2003) Changing Silurian–Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. J Geol Soc Lond 160:219–229

    Google Scholar 

  • Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Geol Rundsch 99:299–325

    Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian Unit—a correlation of U-Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Google Scholar 

  • Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic-Early Paleozoic volcano-sedimentary successions of the Teplá–Barrandian Unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geol Saxon 54:1–165

    Google Scholar 

  • Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic–Cambrian geotectonic setting of the Teplá–Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci 93:742–757

    Google Scholar 

  • Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian Unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res 19:213–231

    Google Scholar 

  • Ebbestad J, Ove R, Frýda J, Wagner PJ, Horný RJ, Isakar M, Stewart S, Percival IG, Bertero V, Rohr DM, Peel JS, Blodgett RB, Högström AES (2013) Biogeography of Ordovician and Silurian gastropods, monoplacophorans and mimospirids. Geol Soc Lond Mem 38:199–220

    Google Scholar 

  • Edel JB, Schulmann K, Holub FV (2003) Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidence. J Geol Soc Lond 170:785–804

    Google Scholar 

  • Elbra T, Schnabl P, Tasáryová Z, Čížková K, Pruner P (2015) New results for Palaeozoic volcanic phases in the Prague Basin—magnetic and geochemical studies of Lištice, Czech Republic. Est J Earth Sci 64:31–35

    Google Scholar 

  • Eriksson ME, Hints O, Paxton H, Tonarová P (2013) Ordovician and Silurian polychaete diversity and biogeography. Geol Soc Lond Mem 38:265–272

    Google Scholar 

  • Fatka O, Mergl M (2009) The ̒microcontinentʼ Perunica: status and story 15 years after conception. In: Basset MG (ed) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography. Geol Soc Lond Spec Publ, vol 325, pp 65–101

  • Faure G, Mensing TM (2004) Isotopes: principles and applications. Wiley, New York

    Google Scholar 

  • Fiala F (1947) Diabasové pikrity v Barrandienu (Mořinka, Rovina, Sedlec). Věst Král Čes Společ nauk 19:1–55 (in Czech)

    Google Scholar 

  • Fiala F (1966) Silurské diabasové vulkanity úseku Loděnice-Bubovice. Geosci Res Reports 1964:94–96 (in Czech)

    Google Scholar 

  • Fiala F (1970) Silurian and Devonian diabases of the Barrandian Basin. J Geol Sci Geol 17:7–71 (in Czech)

    Google Scholar 

  • Fiala F (1971) Ordovician diabase volcanism and biotite lamprophyres of the Barrandian. J Geol Sci Geol 19:7–97 (in Czech)

    Google Scholar 

  • Fiala F (1976) The Silurian doleritic diabases and ultrabasic rocks of the Barrandian area. Krystalinikum 12:47–77 (in Czech)

    Google Scholar 

  • Filip J, Suchý V (2004) Thermal and tectonic history of the Barrandian Lower Palaeozoic, Czech Republic: is there a fission-track evidence for Carboniferous–Permian overburden and pre-Westphalian Alpinotype thrusting? B Geosci 79:107–112

    Google Scholar 

  • Floyd PA, Winchester JA, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume-ridge interaction. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ, vol 179, pp 155–174

  • Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453

    Google Scholar 

  • Franke W (1989) Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics 169:221–228

    Google Scholar 

  • Franke W (2006) The Variscan orogeny in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Lond Mem, vol 32, pp 333–343

  • Gill R (2010) Igneous rocks and processes: a practical guide. Wiley, Chichester

    Google Scholar 

  • Goldman D, Maletz J, Melchin MJ, Fan JX (2013) Graptolite palaeobiogeography. Geol Soc Lond Mem 38:415–428

    Google Scholar 

  • Hajná J, Žák J, Kachlík V (2011) Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic, Bohemian Massif: a new plate-tectonic reinterpretation. Gondwana Res 19:495–508

    Google Scholar 

  • Hajná J, Žák J, Kachlík V, Chadima M (2012) Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian Unit, Bohemian Massif. Int J Earth Sci 101:1855–1873

    Google Scholar 

  • Hajná J, Žák J, Kachlík V, Dörr W, Gerdes A (2013) Neoproterozoic to early Cambrian Franciscan-type mélanges in the Teplá–Barrandian Unit, Bohemian Massif: evidence of modern-style accretionary processes along the Cadomian active margin of Gondwana? Precambrian Res 224:653–670

    Google Scholar 

  • Hajná J, Žák J, Kachlík V (2014) Growth of accretionary wedges and pulsed ophiolitic mélange formation by successive subduction of trench-parallel volcanic elevations. Terra Nova 26:322–329

    Google Scholar 

  • Halavínová M, Melichar R, Slobodník M (2008) Hydrothermal veins linked with the Variscan structure of the Prague Basin (Barrandien, Czech Republic): resolving fluid–wall rock interaction. Geol Q 52:309–320

    Google Scholar 

  • Halliday AN, Lee DC, Tomasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395

    Google Scholar 

  • Havlíček V (1981) Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician–Middle Devonian; Barrandian area—central Bohemia). J Geol Sci Geol 35:7–48

    Google Scholar 

  • Havlíček V, Kříž J (1973) Upper Llandovery and Lower Devonian near Hýskov (Barrandian). J Geol Sci Geol 48:103–107

    Google Scholar 

  • Havlíček V, Vaněk J, Fatka O (1994) Perunica microcontinent in the Ordovician (its position within the Mediterranean Province, series division, benthic and pelagic associations). J Geol Sci Geol 46:25–56

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Google Scholar 

  • Hutchison CS (1975) The norm, its variations, their calculation and relationships. Schweiz Mineral Petrogr Mitt 55:243–256

    Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–1556

    Google Scholar 

  • Janoušek V, Farrow MC, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259

    Google Scholar 

  • Johnson MRW, Harley SL (2012) Orogenesis: the making of mountains. Cambridge University Press, Cambridge

    Google Scholar 

  • Kachlík V, Patočka F (1998) Cambrian/Ordovician intracontinental rifting and Devonian closure of the rifting generated basins in the Bohemian Massif realms. Acta Univ Carol Geol 42:433–441

    Google Scholar 

  • Kamber BS, Collerson KD (2000) Zr/Nb systematics of Ocean Island Basalts reassessed—the cse for binary mixing. J Petrol 41:1007–1021

    Google Scholar 

  • Kletetschka G, Schnabl P, Šifnerová K, Tasáryová Z, Manda Š, Pruner P (2013) Magnetic scanning and interpretation of paleomagnetic data from Prague Synformʼs volcanics. Stud Geophys Geod 57:103–117

    Google Scholar 

  • Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc London 171:83–951

    Google Scholar 

  • Kotková J, O´Brien PJ, Ziemann MA (2011) Diamond and coesite discovered in Saxony-type granulite: solution to the Variscan garnet peridotite enigma. Geology 39:667–670

    Google Scholar 

  • Kozłowska-Dawidziuk A, Lenz A, Štorch P (2001) Upper Wenlock and Lower Ludlow (Silurian), post-extinction graptolites, Všeradice section, Barrandian area, Czech Republic. J Paleontol 75:147–164

    Google Scholar 

  • Kříbek B, Pouba Z, Skoček V, Waldhausrová J (2000) Neoproterozoic of the Teplá–Barrandian Unit as a part of the Cadomian orogenic belt: a review and correlation aspects. Bull Geosci 75:175–196

    Google Scholar 

  • Kříž J (1991) The Silurian of the Prague Basin (Bohemia)—tectonic, eustatic and volcanic controls on facies and faunal development. In: Basset MGJ, Lane PD, Edwards D (eds) The Murchison Symposium Proceedings of International Conference on the Silurian System. Spec Pap Palaeontol, vol 44, pp 179–203

  • Kříž J (1992) Silurian Field Excursions. Prague Basin (Barrandian). Bohemia Geol Ser Nation Mus Wales 13:1–111

    Google Scholar 

  • Kříž J (1998) Silurian. In: Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (eds) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, pp 79–101

    Google Scholar 

  • Kříž J, Degardin JM, Ferretti A, Hansch W, Gutiérrez Marco JC, Paris F, Piçarra D-Almeida JM, Robardet M, Schönlaub HP, Serpagli E (2003) Silurian stratigraphy and paleogeography of Gondwanan and Perunican Europe. In: Landing E, Johnson ME (eds) Silurian lands and seas: paleogeography outside the Laurentia. NY St Mus Bull, vol 493, pp 105–178

  • Kröger B (2013) Cambrian-Ordovician cephalopod palaeogeography and diversity. Geol Soc Lond Mem 38:429–448

    Google Scholar 

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329

    Google Scholar 

  • Kroner U, Mansy JL, Mazur S, Aleksandrowski P, Hann HP, Huckriede H, Lacquement F, Lamarche J, Ledru P, Pharao TC, Zedler H, Zeh A, Zulauf G (2008) Variscan Tectonics. In: McCann T (ed) Geology of Central Europe. Geological Society, London, pp 599–664

    Google Scholar 

  • Krs M, Pruner P (1995) Palaeomagnetism and palaeogeography of the Variscan formations of the Bohemian Massif, comparison with other European regions. J Czech Geol Soc 40:3–46

    Google Scholar 

  • Krs M, Pruner P (1999) To the paleomagnetic investigations of paleogeography of the Barrandian Terrane, Bohemian Massif. Acta Univ Carol Geol 43:519–522

    Google Scholar 

  • Krs M, Pruner P, Man O (2001) Tectonic and palaeogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian Terrane. Tectonophysics 332:93–114

    Google Scholar 

  • Kryza R, Pin C (2010) The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Res 17:292–305

    Google Scholar 

  • Le Bas MJ (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Le Maitre RW (2005) Igneous rocks—a classification and glossary of terms. Recommendations of the IUGS subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge

    Google Scholar 

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    Google Scholar 

  • Linnemann U, Romer RL, Gehmlich M, Drost K (2004) Paläogeographic und Provenance des Saxothuringikums unter besonderer Beachtung der Geochronologie von prävariszischen Zirkonen und der Nd-Isotopie von Sedimenten. In: Linnemann U (ed) Das Saxothuringikum: Abriss der präkambrischen und paläozoischen Geologie von Sachsen and Thüringen. Geol Saxon, vol 48/49, pp 121–132

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The Evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geol Soc Amer Spec Pap, vol 423, pp 61–97

  • Linnemann U, DʼLemos RS, Drost K, Jeffries T, Gerdes A, Romer RL, Samson SD, Strachan RA (2008) Cadomian tectonics. In: McCann T (ed) The geology of Central Europe. Geol Soc Lond, pp 345–383

  • Linnemann U, Hofmann M, Romer RL, Gerdes A (2010) Transitional stages between the Cadomian and Variscan orogenies: basin development and tectono-magmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 59–98

    Google Scholar 

  • Loeschke J (1989) Lower Palaeozoic volcanism of the Eastern Alps and its geodynamic implications. Geol Rundsch 78:599–616

    Google Scholar 

  • Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Google Scholar 

  • Manda Š, Štorch P, Slavík L, Frýda J, Kříž J, Tasáryová Z (2012) The graptolite, conodont and sedimentary record through the late Ludlow Kozlowskii Event (Silurian) in the shale-dominated succession of Bohemia. Geol Mag 149:507–534

    Google Scholar 

  • Matte P (1986) Tectonics and plate-tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374

    Google Scholar 

  • Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128

    Google Scholar 

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170

    Google Scholar 

  • McKenzie D, O’Nions RK (1998) Melt production beneath oceanic islands. Phys Earth Planet In 107:143–182

    Google Scholar 

  • Meidla T, Tinn O, Salas MJ, Williams M, Siveter D, Vandenbroucke TRA, Sabbe K (2013) Biogeographical patterns of Ordovician ostracods Geol Soc Lond Mem 38:337–354

    Google Scholar 

  • Melchin MJ, Sadler PM, Cramer BD (2012) The Silurian period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, New York, pp 525–558

    Google Scholar 

  • Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56:207–218

    Google Scholar 

  • Míková J, Denková P (2007) Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci 52:221–226

    Google Scholar 

  • Molyneux SG, Delabroye A, Wicander R, Servais T (2013) Biogeography of early to mid Palaeozoic (Cambrian–Devonian) marine phytoplankton. Geol Soc Lond Mem 38:365–397

    Google Scholar 

  • Murphy JB, Gutiérrez-Alonso G, Nance RD, Fernandez-Suarez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328

    Google Scholar 

  • Nance RD, Murphy JB (1994) Constraining basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neoproterozoic Avalonian–Cadomian belt. Geology 22:617–620

    Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, DʼLemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78

    Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222

    Google Scholar 

  • O’Hara MJ (1977) Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature 266:503–507

    Google Scholar 

  • Patočka F, Vlašímský P, Blechová K (1993) Geochemistry of Early Paleozoic volcanics of the Barrandian Basin (Bohemian Massif, Czech Republic): implications for paleotectonic reconstructions. Jb Geol B-A 136:873–896

    Google Scholar 

  • Patočka F, Pruner P, Štorch P (2003) Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplá–Barrandian Unit, Bohemian Massif): palaeotectonic implications. Phys Chem Earth 28:735–749

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites, orogenic andesites and related rocks. Wiley, Chichester, pp 525–548

    Google Scholar 

  • Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman D (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geol Assoc Canada Short Course Notes, vol 12, pp 79–113

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with application to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Miner Petr 69:33–47

    Google Scholar 

  • Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41

    Google Scholar 

  • Pin C, Majerowicz Wojciechowska I (1988) Upper Paleozoic oceanic-crust in the Polish Sudetes—Nd–Sr isotope and trace-element evidence. Lithos 21:195–209

    Google Scholar 

  • Pin C, Waldhausrová J (2007) Sm–Nd isotope and trace element study of Late Proterozoic metabasalts (“spilites”) from the Central Barrandian Domain (Bohemian Massif, Czech Republic). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geol Soc Amer Spec Pap, vol 423, pp 231–247

  • Pin C, Zalduegui JFS (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89

    Google Scholar 

  • Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217

    Google Scholar 

  • Pin V, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geol Soc Amer Spec Pap, vol 423, pp 209–229

  • Prytulak J, Elliott T (2007) TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett 263:388–403

    Google Scholar 

  • Robardet M (2003) The Armorica ̒microplateʼ: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeogr Palaeocl 195:25–148

    Google Scholar 

  • Rozkošný I, Machovič V, Pavlíková H, Hemelíková B (1994) Chemical structure of megabitumens from Silurian Crinoidea, Prague Basin, Barrandian (Bohemia). Org Geochem 21:1131–1140

    Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Compt Rendus Geosci 341:266–286

    Google Scholar 

  • Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JN (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278

    Google Scholar 

  • Shervais JW (1982) Ti–V plots and the petrogenesis of modern ophiolitic lavas. Earth Planet Sc Lett 59:101–118

    Google Scholar 

  • Sitenský I (1975) A contribution to geology of volcanites in the area between Jinonice and Řeporyje. Master thesis, Charles University in Prague (in Czech)

  • Skácelová Z, Mlčoch B, Tasáryová Z (2009) Digital elevation model of the crystalline basement and Permo-Carboniferous surface (Bohemian Massif, NE part of the Czech Republic). Acta Geodyn Geomater 6:265–272

    Google Scholar 

  • Skácelová Z, Mlčoch B, Tasáryová Z (2011) Digital model of the crystalline basement and Permo-Carboniferous volcano-sedimentary strata in the Mnichovo Hradiště Basin and correlation with the geophysical fields (Czech Republic, northern Bohemia). Acta Geodyn Geomater 8:225–235

    Google Scholar 

  • Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008) Transition from island-arc to passive setting on the continental margin of Gondwana: U-Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461:44–59

    Google Scholar 

  • Stampfli GM, Raumer J von, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Martínez Catalán JR, Hatcher RD Jr., Arenas R, Díaz García F (eds) Variscan–Appalachian dynamics: the building of the Late Paleozoic basement. Geol Soc Am Spec Pap, vol 364, pp 263–280

  • Stampfli GM, Raumer J von, Wilhem C (2011) The Distribution of Gondwana-derived terranes in the Early Paleozoic. In: Gutiérrez-Marco C, Rábano I, García-Bellido D (eds) Ordovician of the World. Cuadernos del Museo Geominero, vol 14, pp 567–574

  • Štorch P (1994) Graptolite biostratigraphy of the Lower Silurian (Llandovery and Wenlock) of Bohemia. Geol J 29:137–165

    Google Scholar 

  • Štorch P (1998) Volcanism. In: Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (eds) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, pp 149–168

    Google Scholar 

  • Štorch P (2000) Graptolites, stratigraphy and depositional setting of the middle Llandovery (Silurian) volcanic-carbonate facies at Hýskov (Barrandian area, Czech Republic). Bull Geosci 76:55–76

    Google Scholar 

  • Štorch P, Manda Š, Loydell DK (2014) The early Ludfordian leintwardinensis graptolite event and the Gorstian–Ludfordian boundary in Bohemia (Silurian, Czech Republic). Palaeontology 57:1003–1043

    Google Scholar 

  • Strnad L, Mihaljevič M (2005) Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá–Barrandian Unit (Bohemian Massif): U-Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MS. Miner Petrol 84:47–68

    Google Scholar 

  • Suchý V, Dobeš P, Filip J, Stejskal M, Zeman A (2002) Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348:25–50

    Google Scholar 

  • Suchý V, Sýkorová I, Melka K, Filip J, Machovič V (2007) Illite ̒crystallinityʼ, maturation of organic matter and microstructural development associated with lowest-grade metamorphism of Neoproterozoic sediments in the Teplá–Barrandian Unit, Czech Republic. Clay Miner 42:503–526

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in the Ocean Basins. Geol Soc Lond Spec Publ, vol 42, pp 313–345

  • Svoboda J, Prantl F (1948) O stratigrafii a tektonice staršího paleozoika v okolí Chýnice. Sbor Stát Geol Úst 15:1–40 (in Czech)

    Google Scholar 

  • Tait J, Bachtadse V, Soffel HC (1994) Silurian palaeogeography of Armorica—new palaeomagnetic data from Central Bohemia. J Geophys Res B 99:2897–2907

    Google Scholar 

  • Tait J, Bachtadse V, Soffel HC (1995) Upper Ordovician palaeogeography of the Bohemian Massif—implications for Armorica. Geophys J Int 122:211–218

    Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281

    Google Scholar 

  • Tasáryová Z, Janoušek V, Frýda J (2010) Whole-rock geochemistry of the Sv. Jan diabase sills and dykes in the Loděnice–Bubovice area. Geosci Res Reports 2009:256–258 (in Czech)

    Google Scholar 

  • Tasáryová Z, Hroch T, Manda Š (2012) Spodnoordovický vulkanismus strašického/komárovského komplexu a vulkanismus svatojánského vulkanického centra. Sbor Západočes Muz (Plzeň). Přír 116:41–52 (in Czech)

    Google Scholar 

  • Tasáryová Z, Schnabl P, Čížková K, Pruner P, Janoušek V, Rapprich V, Štorch P, Manda Š, Frýda J, Trubač J (2014a) Gorstian palaeoposition and geotectonic setting of Suchomasty Volcanic Centre (Silurian, Prague Basin, Teplá–Barrandian Unit, Bohemian Massif). GFF 136:262–265

    Google Scholar 

  • Tasáryová Z, Frýda J, Janoušek V, Racek M (2014b) Slawsonite–celsian–hyalophane assemblage from a picrite sill (Prague Basin, Czech Republic). Am Miner 99:2272–2279

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Google Scholar 

  • Timmermann H (2008) Paleozoic magmatism. In: McCann T (ed) Geology of Central Europe. Geological Society, London, pp 665–748

    Google Scholar 

  • Tomek F, Žák J, Chadima M (2015) Granitic magma emplacement and deformation during early-orogenic synconvergent transtension: the Staré Sedlo Complex, Bohemian Massif. J Geodyn 87:50–66

    Google Scholar 

  • Torsvik TH, Rehnström EF (2003) The Tornquist Sea and Baltica-Avalonia docking. Tectonophysics 362:67–82

    Google Scholar 

  • Torsvik TH, Smethurst MA, Meert JG, Van der Voo R, McKerrow WS, Brasier MD, Sturt BA, Walderhaug HJ (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci Rev 40:229–258

    Google Scholar 

  • Vallance TG (1974) Spilitic degradation of a tholeiitic basalt. J Petrol 15:79–96

    Google Scholar 

  • Vokurka K, Frýda J (1997) The neodymium isotopes in Lower Paleozoic basalts from the Barrandian (Teplá–Barrandian Unit, Bohemian Massif). Geosci Res Rep 1996:87 (in Czech)

    Google Scholar 

  • von Raumer J, Stampfli GM (2008) The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20

    Google Scholar 

  • von Raumer J, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52

    Google Scholar 

  • von Raumer J, Finger F, Veselá P, Stampfli GM (2013) Durbachites-Vaugnerites—a geodynamic marker in the central European Variscan orogen. Terra Nova 26:85–95

    Google Scholar 

  • Waldhausrová J (1971) The chemistry of the Cambrian volcanics in the Barrandian area. Krystalinikum 8:45–75

    Google Scholar 

  • Wasserburg GJ, Jacobsen SB, DePaolo DJ, McCulloch MT, Wen T (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45:2311–2324

    Google Scholar 

  • Wilkinson JFG, Le Maitre RW (1987) Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100 Mg(Mg + Fe2+) ratios for common basalts and andesites: implications for modal mantle metasomatism and undepleted mantle compositions. J Petrol 28:37–73

    Google Scholar 

  • Wilson MB (2007) Igneous petrogenesis: a global tectonic approach. Springer, Dordrecht

    Google Scholar 

  • Winchester JA (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360:5–21

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Google Scholar 

  • Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30

    Google Scholar 

  • Žák J, Kraft P, Hajná J (2013) Timing, styles, and kinematics of Cambro-Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. Int J Earth Sci 102:415–433

    Google Scholar 

  • Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geol Soc Lond Spec Publ, vol 405, pp 169–196

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Google Scholar 

  • Zulauf G (1997) Von der Anchizone bis zur Eklogitfazies Angekippte Krustenprofile als Folge der cadomischen und variscischen Orogenese im Teplá–Barrandium (Böhmische Masse). Geotekt Forsch 89:1–302

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian Unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584

    Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá–Barrandian Unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Zeitschr deutsch geol Gesellsch 150:627–639

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Petr Štorch and Štěpán Manda for showing us some of the outcrops and providing biostratigraphic control on underlying and overlying strata. We also thank Milan Fišera for petrographic consultations on thin sections, Jitka Míková and Lenka Vondrovicová for Nd isotope sample decompositions, Vojtěch Erban and Jakub Trubač for Nd isotope analyses and help in field, Jana Danišová for sample pulverization in agate mill, and Věra Zoulková and Rosina Kašičková for whole-rock analyses. The senior author thanks Marek Awdankiewicz and Axel Renno for helpful reviews of her dissertation thesis (Silurian and Devonian volcanism in the Prague Basin). Listed analytical works were financed by the Grant Agency of the Czech Republic (GACR) through Grant no. P210/10/2351 (to Petr Pruner). Time capacity for manuscript completion was enabled by the Czech Geological Survey through Project no. 339900 and the Czech Ministry of Education, Youth and Sports project LK 11202 (ROPAKO to K. Schulmann). Finally, we gratefully acknowledge anonymous reviewers for their very constructive reviews, which helped to improve the original manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Tasáryová.

Appendix

Appendix

See Tables 3, 4, 5, 6, and Figs. 7, 8.

Table 3 List of samples with coordinates and graptolite biostratigraphic zones of sedimentary strata underlying lavas
Table 4 Omitted 24 whole-rock major- and trace-element analyses (wt% and ppm, respectively) for basalt samples with CO2 > 6 wt%
Table 5 Results of non-parametric rank-order Spearman’s and Kendall’s tests (correlation coefficients and p values of their significance) applied to 54 samples (non-altered as well as altered basalts)
Table 6 Results of the CIPW norm calculations (Hutchison 1975)
Fig. 8
figure 8

Whole data set. a Geotectonic triangular plot Th–Hf/3–Ta (ppm), proposed by Wood (1980). b Zr/4 − 2 × Nb–Y (ppm) diagram of Meschede (1986). c Discrimination diagram for basalts, as proposed by Shervais (1982), based on variability of the Ti/V ratio under different oxygen fugacity. ARC Arc Tholeiites, OFB Ocean Floor Basalts. d Binary plot Zr vs. Ti (ppm) after Pearce (1982). e Geotectonic diagram Nb/Yb vs. Th/Yb (Pearce 2008). The ‘MORB-OIB array’ is formed by average NMORB, EMORB, and OIB compositions from Sun and McDonough (1989). Plotted for reference are average compositions of Upper Continental Crust (UCC) and Lower Continental Crust (LCC) taken from Taylor and McLennan (1995). f Binary plot Nb/Yb vs. TiO2/Yb indicating mantle temperature and thickness of the conductive lithosphere (Pearce 2008). Plotted for reference are average compositions of NMORB, EMORB, and OIB taken from Sun and McDonough (1989)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasáryová, Z., Janoušek, V. & Frýda, J. Failed Silurian continental rifting at the NW margin of Gondwana: evidence from basaltic volcanism of the Prague Basin (Teplá–Barrandian Unit, Bohemian Massif). Int J Earth Sci (Geol Rundsch) 107, 1231–1266 (2018). https://doi.org/10.1007/s00531-017-1530-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1530-5

Keywords

Navigation