The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

Abstract

The Agost Basin is characterized by a Miocene–Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E–W to N–S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results, the Agost Basin can be considered a key case of the interference between salt tectonics and the evolution of strike-slip fault zones. The reconstructed model has been compared with several scaled sandbox analogical models and with some natural pull-apart basins.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Plate 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alfaro P (1995) Neotectónica en la Cuenca del Bajo Segura. Tesis Doctoral Universidad de Alicante

  2. Allen PA, Allen JR (2005) Basin analysis: principles and applications. Blackwell, Boston, p 549

    Google Scholar 

  3. Arian M, Noroozpour H (2015) Tectonic geomorphology of Iran’s salt structures. Open J Geol 05(2):61–72

    Article  Google Scholar 

  4. Blow WH (1969) Late Middle Eocene to recent planktonic foraminiferal biostratigraphy. In: Proceedings of the first international conference on Planktonic Microfossils (Geneva 1967):199–422

  5. Bonardi G, Compagnoni R, Del Moro A, Macaione E, Messina A, Perrone V (2008) Rb-Sr age constraints on the Alpine metamorphic overprint in the Aspromonte Nappe (Calabria-Peloritani Composite Terrane, southern Italy). Boll Soc Geol Ital 127(2):173–190

    Google Scholar 

  6. Carminati E, Lustrino M, Doglioni C (2012) Geodynamic evolution of the central and western Mediterranean: tectonics vs. igneous petrology constraints. Tectonophysics 579:173–192

    Article  Google Scholar 

  7. De Ruig MJ(1992) Tectono-sedimentary evolution of the Prebetic Fold Belt of Alicante (SE Spain). Thesis Vrije University Amsterdam (Netherlands)

  8. De Ruig MJ (1995) Extensional diapirism in the eastern Prebetic foldbelt, south-eastern Spain. In: Jackson MPA, Roberts DG, Snelson S (eds) Salt tectonics a global perspective, vol 65. AAPG Memoirs, Tulsa, pp 353–367

    Google Scholar 

  9. Di Staso A, Perrotta S, Guerrera F, Perrone V, Tramontana M (2009) New biostratigraphic and petrographic data from the Poggio Carnaio Sandstone Fm (Val Marecchia Nappe): insights into the tectonic evolution of the Northern Apennines. Ital J Geosci 128(2):443–454

    Google Scholar 

  10. Dolan JF, Haravitch BD (2014) How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation. Earth Planet Sci Lett 388(15):38–47

    Article  Google Scholar 

  11. Dooley T, McClay K (1997) Analog modelling of pull-apart basins. AAPG Bull 11:1804–1826

    Google Scholar 

  12. Ergün M (2007) Structural relationship between the Sea of Marmara Basin and the North Anatolian Fault Zone. Terra Nova 7(2):278–288

    Article  Google Scholar 

  13. Gaullier V, Lofi J, Thinon I (2010) Salt tectonics and crustal tectonics along the Eastern Sardinian margin, Western Tyrrhenian: new insights from the “METYSS” cruise. Geophysical Research Abstracts—EGU General Assembly (Vienne: Autriche 2010). http://hal-brgm.archives-ouvertes.fr/hal-00537828/fr/

  14. Guerrera F, Martín-Martín M (2014) Paleogene-Aquitanian tectonic breakup in the eastern External Betic Zone (Alicante, SE Spain). Revista de la Sociedad Geológica de España 27(1):271–285

    Google Scholar 

  15. Guerrera F, Martin-Algarra A, Perrone V (1993) Late Oligocene-Miocene syn-/-late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines. Terra Nova 5:525–544

    Article  Google Scholar 

  16. Guerrera F, Martín-Martín M, Perrone V, Tramontana M (2005) Tectono-sedimentary evolution of the southern branch of the Western Tethys (Magrebian Flysch Basin and Lucanian Ocean). Terra Nova 17:358–367

    Article  Google Scholar 

  17. Guerrera F, Estevez A, López-Arcos M, Martín-Martín M, Martín Pérez JA, Serrano F (2006) Paleogene tectono-sedymentary evolution of the Alicante Trough (External Betic Zone, SE Spain) and its bearing on the timing of the deformation of the South-Iberian Margin. Geodin Acta 19(2):87–101

    Article  Google Scholar 

  18. Guerrera F, Mancheño MA, Martín-Martín M, Raffaelli G, Rodríguez-Estrella T, Serrano F (2014) Paleogene evolution of the External Betic Zone and geodynamic implications. Geol Acta 12(3):171–192

    Google Scholar 

  19. Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate tectonic reconstructions of Alpine Tethys with geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158

    Article  Google Scholar 

  20. Hearon TE, Rowan MG, Lawton TF, Hannah PT, Giles KA (2015) Geology and tectonics of Neoproterozoic salt diapirs and salt sheets in the eastern Willouran ranges, South Australia. Basin Res 27(2):183–207

    Article  Google Scholar 

  21. Hsiao LY, Graham SA, Tilander N (2010) Stratigraphy and sedimentation in a rift basin modified by synchronous strike-slip deformation: southern Xialiao basin, Bohai, offshore China. Basin Res 22(1):61–78

    Article  Google Scholar 

  22. Jackson MPA (1995) Retrospective salt tectonics. In: Jackson MPA, Roberts DG, Snelson S (eds) Salt tectonics: a global perspective, vol 65. AAPG Memoirs, Tulsa, pp 1–28

    Google Scholar 

  23. Jackson MPA, Vendeville BC (1994) Regional extension as a geological trigger for diapirism. Geol Soc Am Bull 106:57–73

    Article  Google Scholar 

  24. Karakhanian A, Djrbashian R, Trifonov V, Philip H, Arakelian S, Avagian A (2002) Holocene-historical volcanism and activa faults as natural risk factors for Armenia and adjacent countries. J Volcanol Geotherm Res 113:319–344

    Article  Google Scholar 

  25. Keydar S, Medvedev B, Al-Zoubi A, Ezersky M, Akkawi E (2013) 3D imaging of dead sea using weighted multipath summation: a case study. Intern J Geophys. doi:10.1155/2013/692452 (Article ID 692452)

    Google Scholar 

  26. Leever KA, Gabrielsen RH, Faleide JI (2011) A transpressional origin for the West Spitsbergen fold-and-thrust belt: insight from analog modelling. Tectonics 30:TC2014

    Google Scholar 

  27. Leret-Verdú G, Núñez-Galiano A, Colodrón-Gómez I, Martínez Del Olmo W (1976) Hoja de Elda (871) Plan MAGNA (IGME)

  28. Letouzey J, Colletta B, Vially R, Chermette JC (1995) Evolution of salt-related structures in compressional settings. In: Jackson MPA, Roberts DG, Snelson S (eds) Salt tectonics: a global perspective, vol 65. AAPG Memoirs, Tulsa, pp 41–60

  29. Matias H, Kress P, Terrinha P, Mohriak W, Tarso-Menezes P, Matias I, Santos F, Sandnes F (2010) Salt tectonics in the Western Gulf of Cadiz (SW Iberia). II Central and north Atlantic conjugate margins conference (Lisbon, 2010). http://metododirecto.pt/CM2010 ISBN: 978-989-96923-1-2 (III):176-180

  30. Maystrenko Y, Scheck-Wenderoth M, Bayer U (2010) Major phases of salt tectonics within the Central European Basin System. Geophysical Research Abstracts, 12, EGU2010-4180, EGU General Assembly 2010

  31. McDonnell A, Hudec MR, Jackson MPA (2009) Distinguishing salt welds from shale detachments on the inner Texas shelf, western Gulf of Mexico. Basin Res 21(1):47–59

    Article  Google Scholar 

  32. Michard A, Chalouan HA, Feinbergh H, Goffe B, Montigny R (2002) How does the Alpine belt end between Spain and Morocco? Bull Soc Géol Fr 173:3–15

    Article  Google Scholar 

  33. Perrone V, Perrotta S, Marsaglia K, Di Staso A, Tiberi V (2014) The Oligocene ophiolite-derived breccias and sandstones of the Val Marecchia nappe: insights for paleogeogrphy and evolution of northern Apennines (Italy). Palaeogeogr. Palaeoclimatol Palaeoecol 394:128–143

    Article  Google Scholar 

  34. Reijs J, McClay K (2003) The Salina del Fraile pull-apart basin, northwest Argentina. Geological Society, vol 210. Special Publications, London, pp 197–209

    Google Scholar 

  35. Rotstein Y, Schaming M (2011) The Upper Rhine Graben (URG) revisited: Miocene transtension and transpression account for the observed first-order structures. Tectonics 30(3):TC3007. doi:10.1029/2010TC002767

    Article  Google Scholar 

  36. Rowan MG (2014) Passive-margin salt basins: hyperextension, evaporite deposition, and salt tectonics. Basin Res 26(1):154–182

    Article  Google Scholar 

  37. Sanz de Galdeano C (1987) Strike-slip faults in the southern border of the Vera Basin (Almería, Betic Cordilleras). Estudios Geol 43:435–443

    Article  Google Scholar 

  38. Sanz de Galdeano C, Buforn E (2005) From strike-slip to reverse reactivation: the Crevillente Fault System and seismicity in the Bullas-Mula area (Betic Cordillera, SE Spain). Geol Acta 3:241–250

    Google Scholar 

  39. Strauss P, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol Carpath 57(3):185–197

    Google Scholar 

  40. Svendsen JB, Hansen HJ, Thomas S (2010) Sand remobilization and injection above an active salt diapir: the Tyr sand of the Nini Field, Eastern North Sea. Basin Res 22(4):548–561

    Article  Google Scholar 

  41. Trudgill BD (2011) Evolution of salt structures in the northern Paradox Basin: controls on evaporite deposition, salt wall growth and supra-salt stratigraphic architecture. Basin Res 23(2):208–238

    Article  Google Scholar 

  42. Twiss RJ, Moores EM (2007) Structural geology, 2nd edn. W. H. Freeman, New York, p 736

    Google Scholar 

  43. Van Noten K, Claes H, Soete J, Foubert A, Özkul M, Swennen R (2013) Fracture networks and strike–slip deformation along reactivated normal faults in Quaternary travertine deposits, Denizli Basin, western Turkey. Tectonophysics 588(11):154–170

    Article  Google Scholar 

  44. Vera JA (2004) Geología de España. IGME—Sociedad Geológica España

  45. Walker R, Jackson J (2002) Offset and evolution of the gowk fault, S.E. Iran: a major intra-continental strike-slip system. J Struct Geol 24:1677–1698

    Article  Google Scholar 

  46. Weijermars R, Jackson MPA, Vendeville BC (1993) Rheological and tectonic modeling of salt provinces. Tectonophisics 217:143–174

    Article  Google Scholar 

  47. Yin AS, Nió S, Craig P, Harrison TM (1998) Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 17(1):1–27

    Article  Google Scholar 

  48. Zheng W, Zhang P, He W, Yuan D, Shao Y, Zheng D, Ge W, Min W (2013) Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics 584(22):267–280

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by: Research Project CGL2016-75679-P, Spanish Ministry of Education and Science; Research Groups and Projects of the Generalitat Valenciana, Alicante University (CTMA-IGA); Research Group RNM 146, Junta de Andalucía; Grants from University of Urbino “Carlo Bo”, responsible M. Tramontana. The collaboration from Miguel Angel Mancheño and Pedro Alfaro, and the revision performed by Carlos Sanz de Galdeano and an anonymous reviewer are acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Martín-Martín.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martín-Martín, M., Estévez, A., Martín-Rojas, I. et al. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics. Int J Earth Sci (Geol Rundsch) 107, 655–671 (2018). https://doi.org/10.1007/s00531-017-1521-6

Download citation

Keywords

  • Strike-slip tectonics
  • Salt tectonics
  • Pull-apart basin evolution
  • Tectono-sedimentary model
  • Miocene
  • Betic Cordillera