Skip to main content
Log in

Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study

International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Many studies have linked mass extinction events with the catastrophic effects of large-body impacts and flood-basalt eruptions, sometimes as competing explanations. We find that the ages of at least 10 out of a total of 11 documented extinction events over the last 260 Myr (12 out of 13 if we include two lesser extinction events) coincide, within errors, with the best-known ages of either a large impact crater (≥70 km diameter) or a continental flood-basalt eruption. The null hypothesis that this could occur by chance can be rejected with very high confidence (>99.999%). The ages of large impact craters correlate with recognized extinction events at ~36 (two impacts), 66, 145 and 215 Myr ago (and possibly an event at ~168 Myr ago), and the ages of continental flood basalts correlate with extinctions at 66, ~94, ~116, 183, 201, 252 and 259 Myr ago (and possibly at ~133 Myr ago). Furthermore, at least 7 periods of widespread anoxia in the oceans of the last 260 Myr coincide with the ages of flood-basalt eruptions (with 99.999% confidence), and are coeval with extinctions, suggesting causal connections. These statistical relationships argue that most mass extinction events are related to climatic catastrophes produced by the largest impacts and large-volume continental flood-basalt eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Alvarez W (2003) Comparing the evidence relevant to impact and flood basalts at times of major mass extinctions. Astrobiology 3:153–161

    Article  Google Scholar 

  • Archibald JD et al (2010) Cretaceous extinctions: multiple causes. Science 358:973

    Article  Google Scholar 

  • Arens NC, West ID (2008) Press-pulse: a general theory of mass extinction? Paleobiology 34:456–471

    Article  Google Scholar 

  • Black BA, Lamarque J-F, Shields CA, Elkins-Tanton LT, Kiehl JT (2014) Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42:67–70

    Article  Google Scholar 

  • Bond DPG, Grasby SE (2017) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 478:3–29

    Article  Google Scholar 

  • Bond DPG, Wignall PB (2014) Large igneous provinces and mass extinctions: an update. Geol Soc Am Spec Pap. doi:10.1130/2014.2505(02)

    Google Scholar 

  • Bond DPG, Wignall PB, Joachimski MM, Sun Y, Savov I, Grasby SE, Beauchamp B, Blomeier DPG (2015) An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. Geol Soc Am Bull 27:1411–1421

    Article  Google Scholar 

  • Bonis NR, Ruhl M, Kurschner WM (2010) Climate change driven black shale deposition during the end-Triassic in the western Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 290:151–159

    Article  Google Scholar 

  • Burgess SD, Bowring SA (2015) High-precision geochronology confirms voluminous magmatism before, during and after Earth’s most severe extinction. Sci Adv 1:e1500470

    Article  Google Scholar 

  • Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A et al (2015) Ocean acidification and the Permo-Triassic mass extinction. Science 348:229–332

    Article  Google Scholar 

  • Coccioni R, Sideri M, Frontalini F, Montanari A (2016) The Rotalipora cushmani extinction at Gubbio (Italy): planktonic foraminiferal testimonial of the onset of the Caribbean large igneous province emplacement. Geol Soc Am Spec Pap 524:79–96

    Google Scholar 

  • Collins GS, Wünnemann K (2005) How big was the Chesapeake Bay impact? Insight from numerical modeling. Geology 33:925–928

    Article  Google Scholar 

  • Courtillot V, Renne PR (2003) On the ages of flood basalt events. C R Acad Sci Geosci 335:113–140

    Article  Google Scholar 

  • Courtillot V, Jaeger JJ, Yang Z, Feraud G, Hoffman C (1996) The influence of continental flood basalts on extinctions. Where do we stand? Geol Soc Am Spec Pap 307:513–525

    Google Scholar 

  • Cucciniello C, Melluso L, Jourdan F, Mahoney JJ, Meisel T, Morra V (2013) 40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province. Geol Mag 150:1–17

    Article  Google Scholar 

  • Dickson AJ, Rees-Owen RL, Marz C, Coe A, Cohen AS, Pancost RD, Taylor K, Shcherbinina E (2014) The spread of marine anoxia on the northern Tethys margin during the Paleocene–Eocene Thermal Maximum. Paleoceanography 29:471–488

    Article  Google Scholar 

  • Du Vivier ADC, Selby D, Sageman BB, Jarvis I, Grocke DR, Voight S (2014) Marine187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth Planet Sci Lett 389:23–33

    Article  Google Scholar 

  • Earth Impact Database (2017) Planetary and Space Science Center, University of New Brunswick, Canada. www.passc.net

  • Eldrett JS et al (2015) An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: implications for global chronostratigraphy. Cretac Res 56:316–344

    Article  Google Scholar 

  • Erba E (2004) Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar Micropaleontol 52:85–106

    Article  Google Scholar 

  • Erba E, Bartolini A, Larson RL (2004) Valanginian Weissert oceanic anoxic event. Geology 32:149–152

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geologic time scale. Wiley, New York

    Google Scholar 

  • Grice K, Cao C, Love GL, Jin Y (2005) Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706–709

    Article  Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250

    Article  Google Scholar 

  • Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology 30:251–254

    Article  Google Scholar 

  • Holm-Alwmark S et al (2016) An early Jurassic 40Ar/39Ar age for the Puchezh-Katunki impact structure (Russia)—no causal link to an extinction event (abstract). In: 79th annual meeting of the meteoritical society, Abstract number 6171

  • Honisch B et al (2012) The geological record of ocean acidification. Science 335:1058–1063

    Article  Google Scholar 

  • Jenkyns H (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst 11:1–30

    Article  Google Scholar 

  • Jerram DA, Widdowson M (2005) The anatomy of Continental Flood Basalt Provinces: geological constraints on the processes and products of flood volcanism. Lithos 79:385–405

    Article  Google Scholar 

  • Jourdan F, Hodges K et al (2014) High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology 42:543–546

    Article  Google Scholar 

  • Kajiwara Y, Kaiho K (1992) Oceanic anoxia at the Cretaceous/Tertiary boundary supported by the sulfur isotopic record. Palaeogeogr Palaeoclimatol Palaeoecol 99:151–162

    Article  Google Scholar 

  • Kelley SDJP (2007) The chronology of large igneous provinces, terrestrial impact craters and their relationships to mass extinctions. J Geol Soc Lond 164:923–936

    Article  Google Scholar 

  • Kravchinsky VA (2012) Paleozoic large igneous provinces of Northern Eurasia: correlation with mass extinction events. Glob Planet Chang 86–87:31–36

    Article  Google Scholar 

  • Kring DA (2002) Reevaluating the impact kill curve. Meteorit Planet Sci 37:1648–1649

    Article  Google Scholar 

  • Loewen MW, Duncan RA, Kent AJR, Krawl K (2013) Prolonged plume volcanism in the Caribbean Large Igneous Province: new insights from Curaçao and Haiti. Geochem Geophys Geosyst 14:4241–4259

    Article  Google Scholar 

  • McLaren DJ, Goodfellow WD (1990) Geological and biological consequences of giant impacts. Annu Rev Earth Planet Sci 18:123–171

    Article  Google Scholar 

  • Onoue T, Sato H et al (2012) Deep-sea record of impact apparently unrelated to mass extinction in the Late Triassic. Proc Natl Acad Sci USA 109:19134–19139

    Article  Google Scholar 

  • Onoue T, Sato H et al (2016) Bolide impact triggered the Late Triassic event in equatorial Panthalassa. Nature Scientific Reports 6, Article number: 29609. doi:10.1038/srep29609

  • Palfy J, Smith PL (2000) Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28:747–750

    Article  Google Scholar 

  • Palfy J, Demeny A, Haas J, Hetenyi M, Orchard MJ, Veto I et al (2001) Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29:1047–1050

    Article  Google Scholar 

  • Papoulis A (1984) Probability, random variables, and stochastic processes, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Parker WG, Martz JW (2011) The Late Triassic (Norian) Adamanian-Revueltian tetrapod faunal transition in the Chinle Formation of Petrified Forest National Park, Arizona. Earth Environ Sci Trans R Soc Edinb 101:231–260

    Google Scholar 

  • Pierazzo E, Hahmann AN, Sloan LC (2003) Chicxulub and climate: radiative perturbations of impact-produced S-bearing gases. Astrobiology 1:99–118

    Article  Google Scholar 

  • Pierazzo E, Garcia RR, Kinnison DE, Marsh DR, Lee-Taylor J, Crutzen PJ (2010) Ozone perturbation from medium-size asteroid impacts in the ocean. Earth Planet Sci Lett 299:263–272

    Article  Google Scholar 

  • Poag CW (1997) Roadblocks on the kill curve: testing the Raup hypothesis. Palaios 12:582–590

    Article  Google Scholar 

  • Poag CW, Koeberl C, Reimold WU (2004) Chesapeake Bay crater: geology and geophysics of a late Eocene submarine impact structure. Springer, Heidelberg

    Book  Google Scholar 

  • Rampino MR, Caldeira K (2015) Periodic impact cratering and extinction events over the last 260 million years. Mon Not R Astron Soc 454:3480–3484

    Article  Google Scholar 

  • Rampino MR, Caldeira K (2017) Correlation of the largest craters, stratigraphic impact signatures, and extinction events over the past 250 Myr. Geosci Front 8

  • Rampino MR, Self S (2015) Large igneous provinces and biotic extinctions. In: Sigurdsson H et al (eds) The encyclopedia of volcanoes, 2nd edn. Academic Press, London, pp 1049–1058

    Chapter  Google Scholar 

  • Rampino MR, Stothers RB (1988) Flood basalt volcanism during the past 250 million years. Science 241:663–668

    Article  Google Scholar 

  • Rampino MR, Haggerty BM, Pagano TC (1997) A unified theory of impact crises and mass extinctions: quantitative tests. Ann N Y Acad Sci 822:403–431

    Article  Google Scholar 

  • Raup DM (1991) Extinction, bad genes or bad luck?. Norton, New York

    Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci USA 81:801–805

    Article  Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1986) Periodic extinctions of families and genera. Science 231:833–836

    Article  Google Scholar 

  • Robinson N, Ravizza Coccioni R, Peucker-Ehrenbrink B, Norris R (2008) A high resolution marine osmium isotope record for the late Maastrichtian: distinguishing the chemical fingerprints of the Deccan and KT impactor. Earth Planet Sci Lett 28:159–168

    Google Scholar 

  • Ruhl M, Bonis NR, Reichart G-J, Sinninghe Damste JS, Kurschner WM (2011) Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333:430–434

    Article  Google Scholar 

  • Schoene B et al (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347:182–184

    Article  Google Scholar 

  • Schulte P, Alegret L, Arenillas I et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218

    Article  Google Scholar 

  • Sell B et al (2014) Evaluating the temporal link between the Karoo LIP and climatic-biologic events of the Toarcian Stage with high- precision U-Pb geochronology. Earth Planet Sci Lett 408:48–56

    Article  Google Scholar 

  • Speijer RP, Wagner T (2002) Sea-level changes and black shales associated with the late Paleocene thermal maximum: organic-geochemical and micropaleontologic evidence for the southern Tethyan margin (Egypt-Israel). Geol Soc Am Spec Pap 356:533–549

    Google Scholar 

  • Stothers RB (1993) Flood basalts and extinction events. Geophys Res Lett 20:1399–1402

    Article  Google Scholar 

  • Toon OB, Zahnle K, Morrison D, Turco RP, Covey C (1997) Environmental perturbations caused by impacts of asteroids and comets. Rev Geophys 35:41–78

    Article  Google Scholar 

  • Turgeon SC, Creaser RA (2008) Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454:323–326

    Article  Google Scholar 

  • Van de Schootbrugge B et al (2007) End-Triassic calcification crisis and blooms of organic-walled ‘disaster’ species. Palaeogeogr Palaeoclimatol Palaeoecol 244:126–141

    Article  Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  Google Scholar 

  • Zhu D-C, Chung S-L, Mo X-X, Zha Z-D, Niu Y, Song B, Yang Y-H (2009) The 132 Ma Comei-Bunbury large igneous province: remnants identified in present-day southeastern Tibet and southwestern Australia. Geology 37:581–586

    Article  Google Scholar 

Download references

Acknowledgements

Support was provided by an NYU Research Challenge Fund Grant to M.R.R. Conversations with V. Courtillot, H. Jenkyns, C. Koeberl, L. Melluso, S. Self, T. Volk, and P. Wignall were helpful. We thank John Wolff and two anonymous reviewers for extensive and detailed reviews, which greatly improved the manuscript. Jenn Deutscher drafted the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Rampino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rampino, M.R., Caldeira, K. Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study. Int J Earth Sci (Geol Rundsch) 107, 601–606 (2018). https://doi.org/10.1007/s00531-017-1513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1513-6

Keywords

Navigation