Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany

  • Simon Kübler
  • Anke M. Friedrich
  • Ryan D. Gold
  • Manfred R. Strecker
Original Paper

Abstract

Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake (ML 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault as potentially active. Such information would result in an increase of the number of potentially active faults that contribute to seismic hazards of intracontinental regions.

Keywords

Paleoseismology Intraplate earthquakes Earthquake hazards Coseismic rupture Central Europe 

Supplementary material

531_2017_1510_MOESM1_ESM.pdf (500 kb)
Supplementary material 1 (PDF 499 kb)

References

  1. Ahorner L (1962) Untersuchungen zur Quartären Bruchtektonik der Niederrheinischen Bucht, Eiszeitalter und Gegenwart. Quat Sci J 13:24–105Google Scholar
  2. Ahorner L (1975) Present-day stress field and seismotectonic block movements along major fault zones in central Europe. Tectonophysics 29:233–249CrossRefGoogle Scholar
  3. Ahorner L (2001) Abschätzung der statistischen Wiederkehrperiode von starken Erdbeben im Gebiet von Köln auf Grund von geologisch-tektonischen Beobachtungen an aktiven Störungen. DGG Mitteilungen 2:2–9Google Scholar
  4. Azanón JM, Azor A, Booth-Rea G, Torcal F (2004) Small-scale faulting, topographic steps and seismic ruptures in the Alhambra (Granada, southeast Spain). J Quat Sci 19(3):219–227CrossRefGoogle Scholar
  5. Baran R, Guest B, Friedrich AM (2010) High-resolution spatial rupture pattern of a multiphase flower structure, Rex Hills, Nevada: new insights on scarp evolution in complex topography based on 3-D laser scanning. Geol Soc Am Bull 122:897–914CrossRefGoogle Scholar
  6. Blume HP, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke BM (2016) Soil development and soil classification. In: Scheffer/Schachtschabel soil science. Springer, Berlin, Germany, pp 285–389CrossRefGoogle Scholar
  7. Bonilla MG (1988) Minimum earthquake magnitude associated with coseismic surface faulting. Bull Assoc Eng Geol 25:17–29Google Scholar
  8. Bork HR, Lang A (2003) Quantification of past soil erosion and land use/land cover changes in Germany. Lect Notes Earth Sci 101:231–239CrossRefGoogle Scholar
  9. Bronk Ramsey C (2013) OxCal 4.2, Manual. https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html. Accessed 27 Mar 2013
  10. Camelbeeck T, Meghraoui M (1996) Large earthquakes in Northern Europe more likely than once thought. EOS 77:405–409CrossRefGoogle Scholar
  11. Camelbeeck T, Meghraoui M (1998) Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophys J Int 132:347–362CrossRefGoogle Scholar
  12. Camelbeeck T, Vanneste K, Alexandre P, Verbeeck K, Petermans T, Rosset P, Everaerts M, Warnant R, Van Camp M (2007) Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea. In: Stein S, Mazotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. The Geological Society of America Special Paper, 425, 193–224Google Scholar
  13. Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerswald K (2010) Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122:167–177CrossRefGoogle Scholar
  14. Cheng AHD (1986) Effect of sediment on earthquake-induced reservoir hydrodynamic response. J Eng Mech 112:654–665CrossRefGoogle Scholar
  15. Crone AJ, Machette MN, Bonilla MG, Lienkaemper JJ (1987) Surface faulting accompanying the Borah Peak earthquake and segmentation of the Lost River fault, central Idaho. Bull Seismol Soc Am 77:739–770Google Scholar
  16. Davis BAS, Brewer S, Stevenson AC, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quatern Sci Rev 22:1701–1716CrossRefGoogle Scholar
  17. Demoulin A (1996) Clastic dykes in east Belgium: evidence for upper Pleistocene strong earthquakes west of the Lower Rhine Rift segment. J Geol Soc London 153:803–810CrossRefGoogle Scholar
  18. Dirkzwager JB, Van Wees JD, Cloething AAPL, Geluk MC, Dost B, Beekman F (2000) Geo-mechanical and rheological modelling of upper crustal faults and their near-surface expression in the Netherlands. Global Planet Change 27:67–88CrossRefGoogle Scholar
  19. Duin EJT, Doornebal JC, Rijkers RHB, Verbeek JW, Wong TE (2006) Subsurface structure of the Netherlands—results of recent onshore and offshore mapping. Geol Mijnbouw 85:245–276CrossRefGoogle Scholar
  20. Eidelmann A, Reches Z (1992) Fractured pebbles—a new stress indicator. Geology 20:307–310CrossRefGoogle Scholar
  21. Fliegel G (1922) Der Untergrund der Niederrheinischen Bucht. Abh preuß Geol L-A 92:1–155Google Scholar
  22. Friedrich AM, Lee J, Wernicke BP, Sieh K (2004) Geologic context of geodetic data across a Basin and Range normal fault, Crescent Valley, Nevada. Tectonics 23(2): TC2015Google Scholar
  23. Geluk MC, Duin EJ, Dusar M, Rijkers R, van den Berg MW, van Rooijen P (1994) Stratigraphy and tectonics of the Roer Valley Graben. Geologij en Mijnbouw 73:129–141Google Scholar
  24. Gold RD, Friedrich AM, Kübler S, Salamon M (2017) Apparent late Quaternary fault-slip rate increase in the southern Lower Rhine graben, central Europe. Bull Seismol Soc Am. doi:10.1785/0120160197
  25. Görres B (2008) Recent site motions in the lower rhine embayment and the eifel from 15 years of GPS data. Abstract Swiss Geoscience Meeting, Lugano, 1Google Scholar
  26. Görres B, Kuhlmann H (2008) How groundwater withdrawal and recent tectonics cause damages of the earth’s surface: Monitoring of 3D site motions by GPS and terrestrial measurements. J Appl Geod 1:223–232Google Scholar
  27. Grützner C, Fischer P, Reicherter K (2016) Holocene surface ruptures of the Rurrand Fault, Germany—insights from palaeoseismology, remote sensing and shallow geophysics. Geophys J Int 204:1662–1677CrossRefGoogle Scholar
  28. Haak HW, Meidow H, Ahorner L, Verbeiren R, Hoang-Trong P, Musson RMV, Henni P, Schenkova Z, Zimova R (1994) The macroseismic map of the Roermond earthquake of April 13, 1992. Geologij en Mijnbouw 73:265–270Google Scholar
  29. Hiemstra JF, van den Meer JJM (1997) Pore-water controlled grain fracturing as an indicator for sub glacial shearing in tills. J Glaciol 43:446–454CrossRefGoogle Scholar
  30. Hinzen KG, Fleischer C (2007) A strong-motion network in the lower rhine embayment (SeFoNiB), Germany. Seismol Res Lett 78:502–511CrossRefGoogle Scholar
  31. Hinzen KG, Reamer SK (2007) Seismicity, seismotectonics, and seismic hazard in the northern Rhine area. In: Stein S, Mazotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. Geological Society of America Special Paper, 425, 225–242Google Scholar
  32. Holzapfel E (1904) Beobachtungen im Diluvium der Gegend von Aachen. Jb preuß Geol L-A 24:483–502Google Scholar
  33. Hornblow S, Quigley M, Nicol A, Van Dissen R, Wang N (2014) Paleoseismology of the 2010 M w 7.1 Darfield (Canterbury) earthquake source, Greendale Fault, New Zealand. Tectonophysics 637:178–190CrossRefGoogle Scholar
  34. Houtgast RF, Van Balen RT, Kasse C, Vandenberghe J (2003) Late Quaternary tectonic evolution and postseismic near surface fault displacement along the Geleen Fault (Feldbiss Fault Zone—Roer Valley Rift System, the Netherlands), based on trenching. Geol Mijnbouw 82:177–196CrossRefGoogle Scholar
  35. Houtgast RF, Van Balen RT, Kasse C (2005) Late quaternary evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching, and its potential relation to glacial unloading. Quatern Sci Rev 24:491–510CrossRefGoogle Scholar
  36. Illies H (1975) Recent and paleo-intraplate tectonics in stable Europe and the Rhinegraben Rift System. Tectonophysics 29:251–264CrossRefGoogle Scholar
  37. Klostermann J (1992) Das Quartär der Niederrheinischen Bucht: Ablagerungen der letzten Eiszeit am Niederrhein. Geological Survey of Northrhine Westphalia, Krefeld, Germany, pp 1–200Google Scholar
  38. Knapp G, Hager H (1980) Geologische Karte der nördlichen Eifel: 1:100.000. Geological Survey of Northrhine-Westphalia, KrefeldGoogle Scholar
  39. Kübler S (2013) Active tectonics of the Lower Rhine Graben (NW Central Europe): based on new paleoseismological constraints and implications for coseismic rupture processes in unconsolidated sediments., Active tectonics of the Lower Rhine Graben (NW Central Europe): based on new paleoseismological constraints and implictions for coseismic rupture processes in unconsolidated sediments. Dissertation, LMU MünchenGoogle Scholar
  40. Kübler S, Streich R, Lück E, Hoffmann M, Friedrich A, Strecker M (2017) Active faulting in a populated low-strain setting (Lower Rhine Graben, Central Europe) identified by geomorphic, geophysical and geological analysis. Geological Society, London, Special Publications, 432, SP432. 411Google Scholar
  41. Lee JC, Lu CY, Chu HT, Delcaillau B, Angelier J, Deffontaines B (1996) Active deformation and paleostress analysis in the Pakua anticline area, western Taiwan. Terr Atmos Oceanic Sci 7(4):431–446CrossRefGoogle Scholar
  42. Lehmann K, Klostermann J, Pelzing R (2001) Paleoseismological Investigations at the Rurrand Fault, Lower Rhine Embayment, Netherlands. J Geosci 80:139–154Google Scholar
  43. Leydecker G (2011) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800–2008. Geologisches Jahrbuch, BGR Hannover, E 59Google Scholar
  44. Matsuoka N, Murton J (2008) Frost weathering: recent advances and future directions. Permafrost Periglac Process 19:195–210CrossRefGoogle Scholar
  45. McCalpin JP (2005) Neotectonics of the roubideau creek fault, uncompahgre plateau, Colorado; a preliminary Assessment. In: Geological Society of America Abstracts with Programs, pp. 13Google Scholar
  46. McCalpin JP (2009a) Paleoseismology. Int Geophys Ser 95:1–613Google Scholar
  47. McCalpin JP (2009b) Paleoseismology in Extensional Tectonic Environments. In: McCalpin J (ed) Paleoseismology. International Geophysics Series, 95, 171–269Google Scholar
  48. Meghraoui M, Camelbeeck T, Vanneste K, Brondeel M, Jongmans D (2000) Active faulting and paleoseismology along the Bree fault, Lower Rhine Graben, Belgium. J Geophys Res 105:13809–13841CrossRefGoogle Scholar
  49. Meghraoui M, Delouis B, Ferry M, Giardini D, Huggenberger P, Spottke I, Granet M (2001) Active normal faulting in the upper Rhine graben and paleoseismic identification of the 1356 Basel earthquake. Science 293:2070–2073CrossRefGoogle Scholar
  50. Meidow H (1994) Comparison of the macroseismic field of the 1992 Roermond earthquake, the Netherlands, with those of large historical earthquakes in the Lower Rhine Embayment and its vicinity. Neth J Geosci 73:282–289Google Scholar
  51. Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis—An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44(1–4):1–67CrossRefGoogle Scholar
  52. Peters G, Buchmann TJ, Connolly P, Van Balen R, Wenzel F, Cloething SAPL (2005) Interplay between tectonic, fluvial and erosional processes along the Western Border Fault of the northern Upper Rhine Graben Germany. Tectonophysics 406:39–66CrossRefGoogle Scholar
  53. Quitzow HW, Vahlensieck O (1955) Über pleistozäne Gebirgsbildung und rezente Krustenbewegungen in der Niederrheinischen Bucht. Int J Earth Sci 43(1):56–67Google Scholar
  54. Ramsey CB (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  55. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  56. Richter D (1962) Die Hochflächen-Treppe der Nordeifel und ihre Beziehungen zum Tertiär und Quartär der Niederrheinischen Bucht. Geol Rundsch 52:376–404CrossRefGoogle Scholar
  57. Schmedes J, Hainzel S, Reamer SK, Scherbaum F, Hinzen KG (2005) Moment release in the Lower Rhine Embayment, Germany: seismological perspective of the deformation process. Geophys J Int 160:901–909CrossRefGoogle Scholar
  58. Sessarego JP, Ivakin AN, Ferrand D (2008) Frequency dependence of phase speed, group speed, and attenuation in water-saturated Sand: laboratory experiments. J Ocean Eng 33:359–366CrossRefGoogle Scholar
  59. Stein S, Friedrich AM (2014) How much can we clear the crystal ball? Astron Geophys 55(2):2–11CrossRefGoogle Scholar
  60. Stoll RD (2002) Velocity dispersion in water-saturated granular sediment. J Acoust Soc Am 111:785–793CrossRefGoogle Scholar
  61. Streich R (2003) Geophysical prospecting of suspected Holocene fault activity in the Lower Rhine Embayment, Germany. unpublished Diploma Thesis, University of Potsdam, Germany, 1–125Google Scholar
  62. Taylor W, McCalpin J, Snelson C, dePolo C (2010) Quaternary faulting and seismic source characterization in the Las Vegas Metropolitan AreaFinal Technical Report to the US Geological Survey, AwardGoogle Scholar
  63. van den Berg MW, Vanneste K, Dost B, Lokhorst A, van Eijk M, Verbeeck K (2002) Paleoseismological investigations along the Peel Boundary Fault: geological setting, site selection and trenching results. Neth J Geosci 81:39–60Google Scholar
  64. van Vliet-Lanoë B, Magyari A, Meilliez F (2004) Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global Planet Change 43:103–127CrossRefGoogle Scholar
  65. Vanneste K, Verbeeck K (2001a) Detailed paleoseismic investigation of the Rurrand Fault in Hambach trench, Germany. Cahiers du Centre Européen de Géodynamique et de Séismologie 18:153–156Google Scholar
  66. Vanneste K, Verbeeck K (2001b) Paleoseismological analysis of the Rurrand fault near Jülich, Roer Valley graben, Germany: coseismic or aseismic faulting history? Geol Mijnbouw 80:155–169Google Scholar
  67. Vanneste K, Meghraoui M, Camelbeeck T (1999) Late Quaternary earth, quake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309:57–79CrossRefGoogle Scholar
  68. Vanneste K, Verbeeck K, Camelbeeck T, Paulissen E, Meghraoui M, Renardy F, Jongmans D, Frechen M (2001) Surface-rupturing history of the Bree fault scarp, Roer Valley graben: evidence for six events since the late Pleistocene. J Seismol 5:329–359CrossRefGoogle Scholar
  69. Vanneste K, Verbeeck K, Petermans T (2008) Pseudo-3D imaging of a low-slip-rate, active normal fault using shallow geophysical methods: the Geleen fault in the Belgian Maas River valley. Geophysics 73:B1–B9CrossRefGoogle Scholar
  70. Vanneste K, Verbeeck K, Moreno DG, Camelbeeck T (2010) A database of seismic sources for the Roer Valley Rift system. In: Proceedings of the European seismological commission 32nd general assembly, September 6–10, Montpellier, France 1Google Scholar
  71. Vanneste K, Camelbeeck T, Verbeeck K (2013) A model of composite seismic sources for the Lower Rhine Graben, Northwest Europe. Bull Seismol Soc Am 103:984–1007CrossRefGoogle Scholar
  72. Verbeeck K, Beatse H, Vanneste K, Renardy F, Van der Meer H, Roy-Chowdhury K, Camelbeeck T (2000) Geomorphic and geophysical reconnaissance of the Reppel and Bocholt faults, NE Belgium, 1–4Google Scholar
  73. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  74. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Geologic Hazards Science CenterU.S. Geological SurveyDenverUSA
  3. 3.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdam-GolmGermany

Personalised recommendations