International Journal of Earth Sciences

, Volume 107, Issue 2, pp 517–537 | Cite as

Do moderate magnitude earthquakes generate seismically induced ground effects? The case study of the M w = 5.16, 29th December 2013 Matese earthquake (southern Apennines, Italy)

  • Ettore Valente
  • A. Ascione
  • G. Ciotoli
  • M. Cozzolino
  • S. Porfido
  • A. Sciarra
Original Paper


Seismically induced ground effects characterize moderate to high magnitude seismic events, whereas they are not so common during seismic sequences of low to moderate magnitude. A low to moderate magnitude seismic sequence with a M w = 5.16 ± 0.07 main event occurred from December 2013 to February 2014 in the Matese ridge area, in the southern Apennines mountain chain. In the epicentral area of the M w = 5.16 main event, which happened on December 29th 2013 in the southeastern part of the Matese ridge, field surveys combined with information from local people and reports allowed the recognition of several earthquake-induced ground effects. Such ground effects include landslides, hydrological variations in local springs, gas flux, and a flame that was observed around the main shock epicentre. A coseismic rupture was identified in the SW fault scarp of a small-sized intermontane basin (Mt. Airola basin). To detect the nature of the coseismic rupture, detail scale geological and geomorphological investigations, combined with geoelectrical and soil gas prospections, were carried out. Such a multidisciplinary study, besides allowing reconstruction of the surface and subsurface architecture of the Mt. Airola basin, and suggesting the occurrence of an active fault at the SW boundary of such basin, points to the gravitational nature of the coseismic ground rupture. Based on typology and spatial distribution of the ground effects, an intensity I = VII−VIII is estimated for the M w = 5.16 earthquake according to the ESI-07 scale, which affected an area of at least 90 km2.


Moderate magnitude earthquakes ESI scale Coseismic rupture Southern Apennines 



This study has been funded by the Italian Civil Protection Department (DPC), through the INGV-DPC Seismological Project S1 2014–2015 (responsible of the S1_10 Research Unit: A. Ascione). Authors are grateful to Franck A. Audemard and an anonymous reviewer for the helpful suggestions that helped us to improve the manuscript.


  1. Adinolfi GM, De Matteis R, Zollo A, Ascione A, Mazzoli S (2016) The 2013, ML 4.9, Matese earthquake (southern Apennines, Italy): a “deep” normal faulting earthquake or an earthquake at frictional-to-viscous transition? In: 35th General ASSEMBLY of the European Seismological Commission: ESC2016-587-1Google Scholar
  2. Amato V, Aucelli PPC, Cesarano M et al (2014) Quaternary evolution of the largest intramontane basin of the Molise Apennine (southern Italy). Rend Fis Acc Lincei 25(2):197–216. doi: 10.1007/s12210-014-0324-y CrossRefGoogle Scholar
  3. Annunziatellis A, Beaubien SE, Bigi S, Ciotoli G, Coltella M, Lombardi S (2008) Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): implications for CO2 geological storage. Int J Greenh Gas Control 2:353–372. doi: 10.1016/j.ijggc.2008.02.003 CrossRefGoogle Scholar
  4. Ascione A, Mazzoli S, Petrosino P, Valente E (2013) A decoupled kinematic model for active normal faults: insights from the 1980, MS = 6.9 Irpinia earthquake, southern Italy. Geol Soc Am Bull 125(7/8):1239–1259CrossRefGoogle Scholar
  5. Ascione A, Bigi S, Buscher J, Ciotoli G, Corradetti A, Etiope G, Ruggiero L, Sacco P, Sciarra A, Tartarello C, Tavani S, Valente E (2015) Active faults and fluids circulation in the Matese area (South Italy). INGV Seism Progr S1 2014–2015, 280–306.
  6. Audemard F, De Sanctis F (1991) Survey of liquefaction structures induced by recent moderate earthquake. Bull Int Assoc Eng Geol 44:5–16CrossRefGoogle Scholar
  7. Audemard F, Azuma T, Baiocco F et al (2015) Earthquake environmental effect for seismic hazard assessment: the ESI intensity scale and the EEE catalogue. In: Guerrieri L (ed) Memorie Descrittive della Carta Geologica d’Italia, vol. XCVII. ISPRA, RomeGoogle Scholar
  8. Bahn M, Rodeghiero M, Anderson-Dunn M et al (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11(8):1352–1367CrossRefGoogle Scholar
  9. Beaubien SE, Ruggiero L, Annunziatellis A, Bigi S, Ciotoli G, Deiana P, Graziani S, Lombardi S, Tartarello C (2014) The importance of baseline surveys of near-surface gas geochemistry for CCS monitoring, as shown from onshore case studies in northern and southern Europe. Oil Gas Sci Technol. doi: 10.2516/ogst/2014009 Google Scholar
  10. Bekele A, Kellman L, Beltrami H (2007) Soil profile CO2 concentrations in forested and clear cut sites in Nova Scotia, Canada. For Ecol Manag 242:587–597CrossRefGoogle Scholar
  11. Berlusconi A, Ferrario MF, Livio F et al (2013) Quaternary faults and seismic hazard in the lake Garda area. Ing Sism 1–2:10–35Google Scholar
  12. Bonilla MG (1988) Minimum earthquake magnitude associated with coseismic surface faulting. Bull Assoc Eng Geol 25(1):17–29Google Scholar
  13. Bonilla MG, Buchanan JM (1970) Interim report on world-wide historic surface faulting. US Geological Survey, Open File ReportGoogle Scholar
  14. Calabrò RA, Corrado S, Di Bucci D, Robustini P, Tornaghi M (2003) Thin-skinned vs. thick-skinned tectonics in the Matese Massif, central-southern Apennines (Italy). Tectonophysics 377:269–297. doi: 10.1016/j.tecto.2003.09.010 CrossRefGoogle Scholar
  15. Capozzi G (1834) Memoria sul tremuoto avvenuto nel Contado di Molise nella sera dè 26 Luglio dell’ anno 1805. Stamperia del Sacro Seminario, BeneventoGoogle Scholar
  16. Cello G, Guerra I, Tortorici L, Turco E, Scarpa R (1982) Geometry of the neotectonic stress field in southern Italy: geological and seismological evidence. J Struct Geol 4:385–393CrossRefGoogle Scholar
  17. Chambers JE, Kuras O, Meldrum PI, Ogilvy RD, Hollands J (2006) Case history—electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71:B231–B239CrossRefGoogle Scholar
  18. Chiarabba C, De Gori P, Amato A (2011) Do earthquake storms repeat in the Apennines of Italy? Terra Nova 23(5):300–306CrossRefGoogle Scholar
  19. Cinque A, Patacca E, Scandone P, Tozzi M (1993) Quaternary kinematic evolution of the Southern Apennines. Relationships between surface geological features and deep lithospheric structures. Ann Geophys 36:249–260Google Scholar
  20. Cinque A, Ascione A, Caiazzo C (2000) Distribuzione spazio temporale e caratterizzazione della fagliazione quaternaria in Appennino Meridionale. In: Galadini F, Meletti C, Rebez A (eds) Le Ricerche del GNDT nel campo della pericolosità sismica, pp 203–218. Istituto Nazionale di Geofisica e Vulcanologia – SGA, BolognaGoogle Scholar
  21. Ciotoli G, Lombardi S, Annunziatellis A (2007) Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino plain, central Italy. J Geophys Res 112(B5):B05407CrossRefGoogle Scholar
  22. Ciotoli G, Bigi S, Tartarello C, Sacco P, Lombardi S, Ascione A, Mazzoli S (2014) Soil gas distribution in the main coseismic surface rupture zone of the 1980, Ms = 6.9, Irpinia earthquake (southern Italy). J Geophys Res 119(3):2440–2461CrossRefGoogle Scholar
  23. Ciotoli G, Sciarra A, Ruggiero L, Annunziatellis A, Bigi S (2016) Soil gas geochemical behaviour across buried and exposed faults during the 24 August 2016 central Italy earthquake. Ann Geophys 59: fast track 5. doi: 10.4401/ag-7242,2016
  24. Ciotoli G, Voltaggio M, Tuccimei P, Soligo M, Pasculli A, Beaubien SE, Bigi S (2017) Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: a methodological proposal for the European Atlas of Natural Radiation. J Environ Radioact 166(2):355–375CrossRefGoogle Scholar
  25. Comerci V, Vittori E, Blumetti AM, Brustia E, Di Manna P, Guerrieri L, Lucarini M, Serva L (2015) Environmental effects of the December 28, 1908, southern Calabria-Messina (southern Italy) earthquake. Nat Hazards 76(3):1849–1891. doi: 10.1007/s11069-014-1573-x CrossRefGoogle Scholar
  26. Convertito V, Cubellis E, Marturano A, Obrizzo F, Petrazzuoli SM (2014) Terremoto del 29 dicembre 2013 nel Matese (MW = 5.0). Indagine speditiva degli effetti nell’area epicentrale e analisi preliminare della sequenza sismica. Rapporti Tecnici INGV 290Google Scholar
  27. Corniello A, Russo D (1990) La piana del medio corso del F. Volturno (Campania) idrogeologia e vulnerabilità all’inquuinamento delle falde. Atti I Convegno Nazionale sulla Protezione e Gestione delle Acque Sotterranee, pp 131–148Google Scholar
  28. D’Amico S, Cammarata L, Cangemi M, Cavallaro D, Di Martino RM, Firetto Carlino M (2014) Seismic moment tensors and regional stress in the area of the December 2013–January 2014, Matese earthquake sequence (Italy). J Geodyn 82:118–124CrossRefGoogle Scholar
  29. Del Prete S, Di Crescenzo G, Santangelo N, Santo A (2010) Karst sinkholes in Campania (southern Italy): geostructural analysis, predisposing factors and genetic hypothesis. Zeit Geomorph N F 54(2):259–284CrossRefGoogle Scholar
  30. Di Manna P, Guerrieri L, Piccardi L et al (2013) Ground effects induced by the 2012 seismic sequence in Emilia: implications for seismic hazard assessment in the Po Plain. Ann Geophys Italy 55(4):697–703Google Scholar
  31. DISS Working Group (2015) Database of Individual Seismogenic Sources (DISS), version 3.2.0: a compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Accessed 19 Dec 2016
  32. Dogan T, Sumino H, Nagao K, Notsu K, Tuncer MK, Celik C (2009) Adjacent releases of mantle helium and soil CO2 from active faults: observations from the Marmara region of the North Anatolian Fault zone, Turkey. Geochem Geophys Geosyst 10(11):1–11. doi: 10.1029/2009GC002745 CrossRefGoogle Scholar
  33. EERI (2008) The Wenchuan, Sichuan Province, China, Earthquake of May 12, 2008. EERI, Special Earthquake Report, 12Google Scholar
  34. Emergeo Working Group (2016) Coseismic effects of the 2016 Amatrice seismic sequence: first geological results. Ann Geophys Italy. doi: 10.4401/ag-7195
  35. Espinosa AF (1976) The Guatemalan earthquake of February 4, 1976, A preliminary Report. Geological Survey Professional Paper, 1002Google Scholar
  36. Esposito E, Luongo G, Marturano A, Porfido S (1987) Il terremoto di S. Anna del 26 Luglio 1805. Mem Soc Geol Ital 37:171–191Google Scholar
  37. Esposito E, Pece R, Porfido S, Tranfaglia G (2001) Hydrological anomalies connected to earthquakes in Southern Apennines (Italy). Nat Hazard Earth Syst Sci 1:137–144CrossRefGoogle Scholar
  38. Esposito E, Pece R, Porfido S, Tranfaglia G (2009) Ground effects and hydrological changes in the Southern Apennines (Italy) in response to the 23 July 1930 earthquake (MS = 6.7). Nat Hazard Earth Syst Sci 9:539–550CrossRefGoogle Scholar
  39. Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575CrossRefGoogle Scholar
  40. Ferranti L, Milano G, Burrato P, Palano M, Cannavò F (2015) The seismogenic structure of the 2013–2014 Matese seismic sequence, Southern Italy: implication for the geometry of the Apennines active extensional belt. Geophys J Int 201:823–837CrossRefGoogle Scholar
  41. Fracassi U, Valensise G (2007) Unveiling the sources of the catastrophic 1456 multiple earthquake: hints to an unexplored tectonic mechanism in southern Italy. Bull Seismol Soc Am 97(3):725–748CrossRefGoogle Scholar
  42. Galadini F, Galli P (2004) The 346 earthquake (central-southern Italy): an archaeoseismological approach. Ann Geophys Italy 47(2–3):885–905Google Scholar
  43. Galli P, Galadini F (2003) Disruptive earthquakes revealed by faulted archaeological relics in Samniun (Molise, southern Italy). Geophys Res Lett 30(5):1266CrossRefGoogle Scholar
  44. Galli P, Naso GA (2009) Unmasking the 1349 earthquake source (southern Italy): paleoseismological andarchaeoseismological indications from the Aquae Iuliae fault. J Struct Geol 31:128–149CrossRefGoogle Scholar
  45. Gasperini P, Bernardini F, Valensise G, Boschi E (1999) Defining seismogenic sources from historical earthquake felt reports. Bull Seismol Soc Am 89:94–110Google Scholar
  46. Giammanco S, Sims KWW, Neri M (2007) Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): implications for gas transport and shallow ground fracture. Geochem Geophys Geosyst 8(1):1–14. doi: 10.1029/2007GC001644 Google Scholar
  47. Guerrieri L, Scarascia Mugnozza G, Vittori E (2000) Analisi stratigrafica e geomorfologica della conoide tardoquaternaria di Campochiaro ed implicazioni per la conca di Bojano in Molise. Il Quat 12(2): 119–129Google Scholar
  48. Guerrieri L, Blumetti AM, Esposito E, Michetti AM, Porfido S, Serva L, Tondi E, Vittori E (2009) Capable faulting, environmental effects and seismic landscape in the area affected by the 1997 Umbria-Marche (Central Italy) seismic sequence. Tectonophysics 476(1–2):269–281CrossRefGoogle Scholar
  49. Harp EL, Jibson RW, Kayen RE, Keefer DK, Sherrod BS, Carver GA, Collins BD, Moss RES, Sitar N (2003) Landslides and liquefaction triggered by the M 7.9 Denali Fault earthquake of 3 November 2002. GSA Today 13(8):4–10CrossRefGoogle Scholar
  50. Heddar A, Beldjoudi H, Authemayou C, SiBachir R, Yelles-Chaouche A, Boudiaf A (2016) Use of the ESI-2007 scale to evaluate the 2003 Boumerdès earthquake (North Algeria). Ann Geophys Italy 59(2):S0211. doi: 10.4401/ag-6926 Google Scholar
  51. Hinkle ME (1994) Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases. Appl Geochem 9:53–63CrossRefGoogle Scholar
  52. Hoose S (1987) The Morgan Hill, California, earthquake of April 24, 1984. U S Geol Surv Bull 1639:81–88Google Scholar
  53. Hyppolite JC, Angelier J, Roure F, Casero P (1994) A major geodynamic change revealed by quaternary stress patterns in the southern Apennines (Italy). Tectonophysics 230:199–210CrossRefGoogle Scholar
  54. Jassal RS, Black TA, Drewitt GB, Novak MD, GaumontGuay D, Nesic Z (2004) A model of the production and transport of CO2 in soil: predicting soil CO2 concentrations and CO2 efflux from a forest floor. Agric For Meteorol 124:219–236CrossRefGoogle Scholar
  55. Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421CrossRefGoogle Scholar
  56. King CY, King BS, Evans WC (1996) Spatial radon anomalies on active faults in California. Appl Geochem 11:497–510CrossRefGoogle Scholar
  57. Krinitsky EL (1974) State of the art for assessing earthquake hazards in the United States: fault assessment in earthquake engineering. U.S. Army Cops of Engineers, Waterways Experimental Station, Misc. Pap. S 73-1, Rep. 2, VicksburgGoogle Scholar
  58. Lienkaemper JJ, Pezzopane SK, Clark MM, Rymer MJ (1987) Fault fracture formed in association with the 1986 Chalfant valley, California, earthquake sequence: preliminary report. Bull Seismol Soc Am 77(1):297–305Google Scholar
  59. Maffei A, Martino S, Prestininzi A (2005) From the geological to the numerical model in the analysis of gravity-induced slope deformations: an example from the central Apennines (Italy). Eng Geol 78:215–236CrossRefGoogle Scholar
  60. Maramai A, Brizuela B, Graziani L (2014) The Euro-Mediterranean tsunami catalogue. Ann Geophys Italy 57(4):S0435. doi: 10.4401/ag-6437 Google Scholar
  61. Mauriello P, Patella D (1999) Resistivity anomaly imaging by probability tomography. Geophys Prospect 47(3):411–429CrossRefGoogle Scholar
  62. Mazzoli S, Corrado S, De Donatis M, Scrocca D, Butler RWH, Di Bucci D, Naso G, Nicolai C, Zucconi V (2000) Time and space variability of « thin-skinned » and « thick-skinned » thrust tectonics in the Apennines (Italy). Rend Fis Acc Lincei 11:5–39CrossRefGoogle Scholar
  63. Mazzoli S, D’Errico M, Aldega L, Corrado S, Invernizzi C, Shiner P, Zattin M (2008) Tectonic burial and “young” (<10 Ma) exhumation in the southern Apennines fold-and-thrust belt. Geology 36(3):243–246CrossRefGoogle Scholar
  64. Mazzoli S, Ascione A, Buscher JT, Pignalosa A, Valente E, Zattin M (2014) Low-angle normal faulting and focused exhumation associated with late Pliocene change in tectonic style in the southern Apennines. Tectonics 33:1802–1818CrossRefGoogle Scholar
  65. Meletti C, Patacca E, Scandone P, Figliuolo B (1988) Il terremoto del 1456 e la sua interpretazione nel quadro sismotettonico dell’Appennino meridionale. In: Figliuolo B (ed) Il terremoto del 1456. Napoli 1, pp 71–108Google Scholar
  66. Michetti AM, Ferreli L, Esposito E, Porfido S, Blumetti AM, Vittori E, Serva L, Roberts GP (2000) Ground effects during the 9 September 1998, Mw = 5.6 Lauria earthquake and the seismic potential of the “Aseismic” Pollino region in Southern Italy. Seismol Res Lett 71(1):31–46. doi: 10.1785/gssrl.71.1.31 CrossRefGoogle Scholar
  67. Michetti AM, Esposito E, Gurpinar A et al (2004) The INQUA scale: an innovative approach for assessing earthquake intensities based on seismically induced ground effects in natural environment. Memorie descrittive della Carta Geologica d’Italia, Special paper edited by Vittori E and Comerci V 67Google Scholar
  68. Michetti AM, Esposito E, Guerrieri L et al (2007) Intensity scale ESI 2007. Memorie Descrittive Carta Geologica d’Italia Roma 74Google Scholar
  69. Milano G, Di Giovambattista R, Alessio G (1999) Earthquake swarms in the Southern Apennines chain (Italy): the 1997 seismic sequence in the Sannio Matese mountains. Tectonophysics 306(1):57–78. doi: 10.1016/S0040-1951(99)00040-2 CrossRefGoogle Scholar
  70. Montone P, Amato A, Pondrelli S (1999) Active stress map of Italy. J Geophys Res 104(B11):25595–25610CrossRefGoogle Scholar
  71. Mosquera-Machado S, Laline-Pulido C, Salcedo-Hurtado E, Michetti AM (2009) Ground effects of the October 18 1992, Murindo Earthquake (NW Colombia), using the Environmental Seismic Intensity Scale (ESI 2007) for the assessment of the intensity. Geol Soc Lond Spec Publ 316:123–144. doi: 10.1144/SP316.7 CrossRefGoogle Scholar
  72. Nappi R, Alessio G, Bronzino G, Terranova C, Vilardo G (2007) Contribution of the SISCam Web-based GIS to the seismotectonic study of Campania (southern Apennines): an example of application to the Sannio area. Nat Hazards 45:73–85. doi: 10.1007/s11069-007-9170-x CrossRefGoogle Scholar
  73. Oddone E (1915) Gli elementi fisici de1 grande terremoto Marsicano-Fucense de1 13 gennaio de1 1915. Boll Soc Sism Ital 19:71–216Google Scholar
  74. Porfido S, Esposito E, Vittori E et al (2002) Areal distribution of ground effects induced by strong earthquakes in the southern Apennines (Italy). Surv Geophys 23(6):529–562CrossRefGoogle Scholar
  75. Porfido S, Esposito E, Vittori E, Tranfaglia G, Guerrieri L, Pece R (2007) Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the Southern Apennines (Italy). Ital J Geosci 126(2):333–346Google Scholar
  76. Porfido S, Alessio G, Avallone P, Gaudiosi G, Lombardi G, Nappi R, Salvemini R, Spiga E (2016) The 1980 Irpinia-Basilicata earthquake: the environmental phenomena and the choices of reconstruction. EGU General AssemblyGoogle Scholar
  77. Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. Accessed 19 Dec 2016)
  78. Sanchez JJ, Maldonado RF (2016) Application of the ESI 2007 Scale to Two Large Earthquakes: South Island, New Zealand (2010 Mw 7.1), and Tohoku, Japan (2011 Mw 9.0). Bull Seismol Soc Am 106(3):100–101. doi: 10.1785/0120150188 CrossRefGoogle Scholar
  79. Santo A, Ascione A, Del Prete S, Di Crescenzo G, Santangelo N (2011) Collapse sinkholes in the carbonate massifs of central and southern Apennines. Acta Carsol 40(1):95–112Google Scholar
  80. Seminsky KZh, Bobrov AA, Demberel S (2014) Variation in radon activity in the crustal fault zones: spatial characteristics. Izvest Phys Solid Earth 50(6):795–813CrossRefGoogle Scholar
  81. Serva L (1985) The earthquake of June 5, 1688. In: Postpischl D (ed) Campania, Atlas of isoseismal maps of Italian earthquakes, vol 114(2A). CNR-PFG, Rome, pp 44–45Google Scholar
  82. Serva L, Esposito E, Guerrieri L, Porfido S, Vittori E, Comerci V (2007) Environmental effects from five historical earthquakes in southern Apennines (Italy) and macroseismic intensity assessment: contribution to INQUA EEE Scale Project. Quatern Int 173–174:30–44. doi: 10.1016/j.quaint.2007.03.015 CrossRefGoogle Scholar
  83. Serva L, Vittori E, Comerci V et al (2016) Earthquake hazard and the Environmental Seismic Intensity (ESI) scale. Pure Appl Geophys 173(5):1479–1515CrossRefGoogle Scholar
  84. Sinclair AJ (1991) A fundamental approach to threshold estimation in the exploration geochemistry: probability plots revised. J Geochem Explor 41:1–22CrossRefGoogle Scholar
  85. Slemmons DB (1977) State-of-the-art for assessing earthquake hazards in the United States, Report 6, faults and earthquake magnitude: report prepared for the Office of the Chief of Engineers. Miscellaneous Paper S-73-1. U.S. Army, Washington, DCGoogle Scholar
  86. Smith A, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791CrossRefGoogle Scholar
  87. Tranfaglia G, Esposito E, Porfido S, Pece R (2011) The 23 July 1930 earthquake (Ms = 6.7) in the Southern Apennines (Italy): geological and hydrological effects. Boll Geofis 1–4:63–86Google Scholar
  88. Valente E, Ascione A, Ciotoli G, Porfido S, Tavani S (2015) New data on the late Quaternary tectonics in the epicentral area of the December 2013–January 2014 southern Matese seismic sequence (Southern Apennines). Rend Online Soc Geol Ital 36(1):79Google Scholar
  89. Valkaniotis S, Papathanassiou G, Pavlides SS (2016) Preliminary map of co-seismic landslides for the M 7.8 Kaikoura, New Zealand Earthquake. Accessed 19 Dec 2016
  90. Vitale S, Ciarcia S (2013) Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria-Peloritani Terrane system (Italy). Tectonophysics 583:164–182CrossRefGoogle Scholar
  91. Michetti AM, Blumetti AM, Esposito E, Ferreli L, Guerrieri L, Porfido S, Serva L, Vittori, E (2000b) Earthquake ground effects and seismic hazard assessment in Italy: examples from the Matese and Irpinia areas, Southern Apennines. In: Active fault research for the new millennium, proceedings of the Hokudan symposium and School on Active Faulting, Hokudan, Japan, pp 279–284Google Scholar
  92. Vittori E, Di Manna P, Blumetti AM et al (2011) Surface faulting of the 6 April 2009 Mw 6.3 L’Aquila Earthquake in Central Italy. Bull Seismol Soc Am 101(4):1507–1530. doi: 10.1785/0120100140
  93. Walia V, Yang TF, Hong WL, Lin SJ, Fu CC, Wen KL, Chen CH (2009) Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan. Appl Radiat Isot 67:1855–1863. doi: 10.1016/j.apradiso.2009.07.004 CrossRefGoogle Scholar
  94. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  95. Zhou X, Du J, Chen Z et al (2010) Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geochem Trans 11:5. doi: 10.1186/1467-4866-11-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Umanistiche, Sociali e della FormazioneUniversità del MoliseCampobassoItaly
  2. 2.Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, DiSTARUniversità degli Studi di Napoli Federico IINaplesItaly
  3. 3.Istituto di Geologia Ambientale e GeoingegneriaCNR-IGAGMonterotondoItaly
  4. 4.Istituto per l’Ambiente Marino e CostieroIAMC-CNRNaplesItaly
  5. 5.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly

Personalised recommendations