Skip to main content

Advertisement

Log in

Anomalous heat flow belt along the continental margin of Brazil

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100–300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that “tectonic bonding” between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth’s internal heat at shallow depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida De FFM (1967) Origem e evolução da plataforma brasileira. Bull. Divisão de Geologia e Mineralogia, Departamento. Nac. Produção Mineral, Brasil 241, p 36

  • Almeida FFM De (1976) The system of continental rifts bordering the Santos Basin. Brazil. Anais Acad Bras Ciências 48(supplement):14–26

    Google Scholar 

  • American Association of Petroleum Geologists—AAPG, 1976. Basic data file from AAPG Geothermal Survey of North America: Univ. of Oklahoma, Norman

  • Asmus HE, Porto R (1972) Classificação das bacias sedimentares brasileiras segundo a tectônica de placas. In Proceedings of the 26th Brazilian Geological Congress, 2:67–90

  • Assumpção M (1998) Seismicity and stresses in the Brazilian passive margin. Bull Seismol Soc Am 88:160–169

    Google Scholar 

  • Birch F, Clark H (1940) The thermal conductivity of rocks and its dependence upon temperature and composition”. Am J Sci 238:529–558

    Article  Google Scholar 

  • Biwar W, Moura Neto JS (2011) Geographic Atlas of coastal and oceanic zones of Brazil (in Portuguese). Joint publication of IBGE and Brazilian Navy. ISBN 978-85-240-4219-5

  • Blackwell DD, Richards M (2004) Geothermal Map of North America, American Association of Petroleum Geologists, scale 1:6, 500, 000

  • Blackwell DD, Spafford RE (1987) Experimental methods in continental heat flow, pp 189–226, In: Sammis CG, Henyey TL (Eds.) Experimental methods in physics. Academic Press, Orlando, Florida, 24, Geophysics; Part B; Field Measurements, 624

  • Bullard EC (1939) Heat flow in South Africa. Proc R Soc A-Math Phys Eng Sci 173:474–502. doi:10.1098/rspa.1939.0159

    Article  Google Scholar 

  • Cainelli C, Mohriak WU (1999) Some remarks on the evolution of sedimentary basins along the eastern Brazilian continental margin. Episodes 22(3):206–216

    Google Scholar 

  • Campos CWM, Ponte FC, Miura K (1974) Geology of the Brazilian continental margin. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 447–461

    Chapter  Google Scholar 

  • Cardoso RA (2007) Evolução Termo Tectônica da Plataforma Continental do Estado do Rio de Janeiro. Unpublished M. Sc. Thesis, Observatorio Nacional, Rio de Janeiro, Brazil

  • Cardoso RA, Hamza VM (2003) Geothermal gradient and heat flow in the continental platform of Southeastern region of Brazil (in Portuguese). 8th International Congress of the Brazilian Geophysical Society, Rio de Janeiro

  • Cardoso RA, Hamza VM (2014) Heat flow in the campos sedimentary basin and thermal history of the continental margin of Southeast Brazil. ISRN Geophysics. doi:10.1155/2014/384752

    Google Scholar 

  • Carvalho HS (1981) Métodos para determinação de fluxo geotérmico com aplicação às bacias sedimentares petrolíferas do Recôncavo baiano (Brasil) e Sumatra (Indonésia). Unpublished Ph.D. Thesis, Federal University of Bahia—UFBA, Salvador, Brazil

  • Cavalcante AG, Argollo RM, Carvalho HS (2004) Corrections for well bottom temperatures –TFP (in Portuguese). Braz J Geophys 22:233–243

    Google Scholar 

  • Del Rey AC, Zembruscki SG (1991) Hydro-geothermal study of the basins of Espírito Santo and Mucuri (in Portuguese). Bol Geociências da Petrobrás, RJ, 5 (1/4):25–38

  • Delaney PT (1988) Programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization. Comput Geosci 14:181–212

    Article  Google Scholar 

  • Diretoria de Hidrografia e navegação—DHN (1998) Banco Nacional de Dados Oceanográficos—BNDO, Centro de Hidrografia da Marinha, Rio de Janeiro, Brazil

  • Estrela GO (1972) O estágio “rift” nas bacias marginais do leste brasileiro. Proceedings of the 26th Brazilian Geol. Cong. 3:29–34

  • Fontes LCAA (1980) Determinação do fluxo geotérmico na bacia sedimentar Sergipe-Alagoas. Unpublished M.Sc. Thesis, Federal University of Bahia—UFBA (Salvador, Brazil), p 83

  • Gasperi A, Stumpf VJ (1992) Static formation temperature: critical analysis (in Portuguese). Bol. Geociências da PETROBRÁS, Rio de Janeiro, 6(3/4):223–236

  • Gomes AJL, Hamza VM (2008) Geothermal gradient and heat flow in the state of Rio de Janeiro. Braz J Geophys 23:325–347

    Google Scholar 

  • Goutorbe B (2007) Le régime thermique des marges continentales passives: méthodologie, observations e modélisation. Thèse de doctorat, Institute de l’Institut de Physique du Globe de Paris, France, p 157

  • Hamza VM (1967) A preliminary evaluation of the relationship of heat flow with the age of basement rocks. Internal report, National Geophysical Research Institute, Hyderabad, India

  • Hamza VM (1976) Possible extension of oceanic heat flow age relation to continental regions and the thermal structure of continental margins. An Acad Bras Ciênc 48:121–129

    Google Scholar 

  • Hamza VM (1983) Geothermal research for oil exploration in the Paraná basin (in Portuguese), Report No. 18271, Institute for Technology Research of the state government of São Paulo—IPT, Sao Paulo, Brazil

  • Hamza VM (1984) A half-space line source device for thermal conductivity measurements. (in Portuguese), Report No. 19375, Institute for Technology Research of the state government of São Paulo—IPT, Sao Paulo, Brazil

  • Hamza VM (1987) Geothermics in prospection and exploration of hydrocarbons (in Portuguese). Internal Report, Geothermal Laboratory, IPT, São Paulo (Brazil), p 161

  • Hamza VM, Munoz M (1996) Heat flow map of South America. Geothermics 25:599–646

    Article  Google Scholar 

  • Hamza VM, Verma RK (1969) Relationship of heat flow with the age of basement rocks. Bull Volcan 33:123–152

    Article  Google Scholar 

  • Hamza VM, Silva Dias FJS, Gomes AJL, Terceros ZD (2005) Numerical and functional representations of regional heat flow in South America. Phys Earth Planet Inter 152:223–256

    Article  Google Scholar 

  • Hamza VM, Cardoso RR, Ponte Neto CF (2008) Spherical harmonic analysis of earth’s conductive heat flow. Int J Earth Sci 97:205–226

    Article  Google Scholar 

  • Hill AD (1990) Temperature logging, chapter 4. In: Production logging–theoretical and interpretative elements: Society of Petroleum Engineers Memoir, 14:19–36

  • Horai K (1974) Heat flow anomaly associated with dike intrusion, 1. J Geophys Res 79:1640–1646

    Article  Google Scholar 

  • Houbolt JJHC, Wells PRA (1980) Estimation of heat flow in oil wells based on a relation between heat conductivity and sound velocity. Geol Mijnbouw 59:215–224

    Google Scholar 

  • Jaeger JC (1964) Thermal effects of intrusions. Rev Geophys 2:433–466

    Article  Google Scholar 

  • Jahnert RJ (1987) Gradiente geotérmico da Bacia de Campos. Boletim de Geociências da Petrobras 1:183–189

    Google Scholar 

  • Jorden JR, Campbell FL (1984) Temperature logging, chapter 5, In: Well logging I-Rock properties, borehole environment, mud and temperature logging: Society of Petroleum Engineers, Monograph Series, 9, 127–146

  • Kutasov IM (1999) Applied geothermics for petroleum engineers. Elsevier, New York

    Google Scholar 

  • Le Pichon X, Sibuet J-C (1981) Passive margins: a model of formation. J Geophys Res 86:3708–3720

    Article  Google Scholar 

  • Lucazeau F, Brigaud F, Bouroullec J (2004) High-resolution heat flow density in lower Congo basin. Geochim. Geophys. Geosyst. 5: Q03001. doi:10.1029/2003GC000644

  • Marangoni YR, Hamza VM (1983) Condutividade térmica de sedimentos da plataforma continental sudeste do Brasil. Braz J Geophys 2:11–18

    Google Scholar 

  • Meister EM (1973) Gradientes geotérmicos nas bacias sedimentares brasileiras. Boletim Técnico da PETROBRAS 16(4):221–232

    Google Scholar 

  • Mizusaki AMP, Mohriak WU (1992) Sequencias Vulcano sedimentares na Região da Plataforma Continental de Cabo Frio, RJ. In: Proceedings of the 37th Brazilian Geological Congress 2:468–469

  • Mohriak WU, Mello MR, Karner GD, Dewey JF, Maxwell JR (1989) Structural and stratigraphic evolution of the Campos Basin, offshore Brazil. In Extension Tectonics and Stratigraphy of the North Atlantic Margins, AAPG Special Volume, 38 Analogs: 577–598, American Association of Petroleum Geologists Memoir

  • Mohriak WU, Mello MR, Karner GD, Dewey JF, Maxwell JR (1990) Petroleum geology of the Campos Basin, offshore Brazil. Geol Soc Lond, Spec Publ 50:119–141

    Article  Google Scholar 

  • Moreira JLP, Esteves CA, Rodrigues JJG, Vasconcelos CS (2006) Magmatismo, sedimentação e estratigrafia da porção norte da Bacia de Santos. Boletim de Geociências da Petrobras 14:161–170

    Google Scholar 

  • Nabelek PI, Hofmeister AM, Whittington AG (2012) The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth Planet Sci Lett 317–318(2012):157–164

    Article  Google Scholar 

  • Ojeda HAO (1982) Structural framework, stratigraphy, and evolution of Brazilian Marginal Basins. AAPG Bull 66:732–749

    Google Scholar 

  • Oreiro SG (2002) Magmatismo e sedimentação em uma área na plataforma continental de Cabo Frio, Rio de Janeiro, Brasil, no intervalo Cretáceo Superior—Terciário. Unpublished M.Sc. Thesis, State University of Rio de Janeiro, Brazil, p 94

  • Plisga GJ (1987) Temperature in wells, chapter 31. In: Bradley HB (Ed.), Petroleum engineering handbook: Society of Petroleum Engineers, 31-1–31-7

  • Polyak BG, Smirnov YAB (1968) Relationship between terrestrial heat flow and tectonics of continents. Geotectonics (Eng. Transl.) 4:205–213

    Google Scholar 

  • Asmus HE, Ponte, FC (1973) The Brazilian marginal basins. In: The Ocean Basins and Margins. Alan E, Nairn M, Francis G, Stehli (Eds) 1 The South Atlantic, pp 87–133, Springer, New York

  • Ponte FC, Asmus HE (1976) The Brazilian marginal basins—current state of knowledge. Braz Acad Sci 48(supplement):215–240

    Google Scholar 

  • Ribeiro FB, Hamza VM (1986) Modelling thermal disturbances induced by drilling activity: advances in theory and practice. Braz J Geophys 4:91–106

    Google Scholar 

  • Ribeiro FB, Hamza VM (1987) Modelling of thermal disturbances induced by drilling activity: advances in theory and practice. Proc. Int. Meeting on Geothermics and Geothermal Energy, Guarujá, São Paulo (Edited by Hamza, VM. et al.). Braz J Geophys 5:91–106

    Google Scholar 

  • Rikitake T (1995) Intrusion and cooling of magma comparison between 2D and 3D. annals. J Phys Earth 43:715–728

    Article  Google Scholar 

  • Ross S, Pantoja JL (1978) Geothermal study of the Campos Basin (in Portuguese), Internal Report, PETROBRÁS, DEPEX, DISUD, Vitória (ES)

  • Rossi Filho J (1981) Geothermal gradients in the Brazilian continental platform (in Portuguese), Internal Report, CENPES/SUPEP/DIVEX/SEGEL, p 24

  • Royden L, Keen CE (1980) Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth and Plan Sci Lett 51:343–361

    Article  Google Scholar 

  • Silva GD (2006) The Curie Surface in the South Bahia region—Spectral analysis of high-resolution aeromagnetic data. Unpublished M.Sc. Thesis, Observatorio Nacional, RJ (Brazil)

  • Silva RT, Vieira FP, Hamza VM (2017) Geothermal fields associated with tectonic domains in Campos and Santos basins: Implications for hydrocarbon generation in the central rift system. Fifteenth International Congress of the Brazilian Geophysical Society—SBGF, Rio de Janeiro

  • Viana SM (1999) Fluxo Térmico em uma Bacia Sedimentar da Margem Continental Brasileira. Monografia de Graduação—FGEL/UERJ

  • Vieira FP (2011) Global representation of mantle heat flow (in Portuguese). M.Sc. Thesis, Observatorio Nacional, Rio de Janeiro, Brazil

  • Vieira FP, Hamza VM (2011) Global heat flow: comparative analysis based on experimental data and theoretical values. Proceedings of the 12th International Congress of the Brazilian Geophysical Society, Rio de Janeiro

  • Vieira FP, Hamza VM (2014a) Anomalous geothermal belt arising from “weak tectonic coupling” in the continental margin of Brazil (in Portuguese). VI Brazilian Geophysics Symposium, 14th to 16th of October, Porto Alegre, Brazil

  • Vieira FP, Hamza VM (2014b) Advances in assessment of geothermal resources of South America. Nat Res 5:897–913

    Google Scholar 

  • Vieira FP, Silva RT, Hamza VM (2017) Models of thermal perturbations associated with deep crustal magma emplacements: Application to anomalous heat flow belt along continental margin of Brazil. Fifteenth International Congress of the Brazilian Geophysical Society—SBGF, Rio de Janeiro

  • White N, Thompson M, Barwise T (2003) Understanding the thermal evolution of deep-water continental margins. Nature 426:334–343

    Article  Google Scholar 

  • Woodside W, Messmer JH (1961) Thermal conductivity of porous media, I. Unconsolidated sands, II. Consolidated rocks. J Appl Phys 32:1688–1706

    Article  Google Scholar 

  • Zembruscki SG (1982) Geothermal gradients in Brazilian continental basins (in Portuguese). Publ. Petróleo Brasileiro SA, p 57

Download references

Acknowledgements

The third author of this paper has been a recipient of a postgraduate scholarship granted by Coordination for Higher Education (CAPES), during the period March 2016 to March 2017. We thank Dr. Joao dos Anjos, Director of National Observatory-ON/MCTI (Rio de Janeiro) for institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valiya M. Hamza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, V.M., Vieira, F.P. & Silva, R.T.A. Anomalous heat flow belt along the continental margin of Brazil. Int J Earth Sci (Geol Rundsch) 107, 19–33 (2018). https://doi.org/10.1007/s00531-017-1503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1503-8

Keywords

Navigation