International Journal of Earth Sciences

, Volume 106, Issue 8, pp 2973–2990 | Cite as

Orogen-parallel brittle extension as a major tectonic imprint in the Neogene evolution of the south-western Alpine arc

Original Paper


We present a new analysis of the late Alpine brittle deformation in the southern branch of the western Alpine arc, focusing on the stack of internal metamorphic nappes east of the Argentera external crystalline massif. The regional-scale fault network is dominated by a NW–SE-striking right-lateral fault system that follows the general curvature of the arc and controls the overall morphology of the area. A second fault set strikes N–S and is mainly represented by normal faults which accommodate orogen-parallel extension. Structural analysis and paleostress tensors derived from inversion of fault-slip data reveal a complex pattern of deformation involving extensional and strike-slip deformation events. The orogen-parallel extension previously described in the internal zones at the east of the Pelvoux massif is confirmed further south, and we show that it is combined with right-lateral strike-slip deformation that increases in intensity towards the south-west. The stability of the minimum stress axis (σ3) direction suggests that extensional and transcurrent regimes are contemporaneous and highlights regional interferences between inner brittle extension, parallel to the strike of the belt, and the strike-slip strain field driven by the counterclockwise rotation of the Apulia–Adria plate. The curved geometry of the belt constrains the direction of extension and the coupling relationship between the internal and external Alpine zones. We propose that the Neogene tectonic history is a result of the unique curved tectonic architecture of the south-western Alps with respect to the rotation of the Apulia–Adria indenting plate. The southern tip of the western Alpine arc represents a transitional zone between extension in the inner chain and strike-slip/compression in the outer parts.


Alpine tectonics Paleostress inversion Western Alps 



This work was supported by The ISTerre laboratory (Grenoble Alpes University and CNRS) in Grenoble. We thank Jean Huet for his remarkable aerial photographs from his website and book ‘A tire d’ailes’ (Huet 2009). We wish to thank Marjorie Dennequin for her helpful assistance during fieldwork. The authors also gratefully acknowledge the reviews of G. Molli and M. Vrabec.

Supplementary material

531_2017_1476_MOESM1_ESM.xls (32 kb)
Supplementary material 1 (XLS 32 kb)
531_2017_1476_MOESM2_ESM.xls (394 kb)
Supplementary material 2 (XLS 393 kb)
531_2017_1476_MOESM3_ESM.txt (0 kb)
Supplementary material 3 (TXT 0 kb)
531_2017_1476_MOESM4_ESM.png (2.2 mb)
Supplementary material 4 (PNG 2237 kb)
531_2017_1476_MOESM5_ESM.png (1.9 mb)
Supplementary material 5 (PNG 1935 kb)
531_2017_1476_MOESM6_ESM.png (539 kb)
Supplementary material 6 (PNG 539 kb)


  1. Agard P (2001) Tectonometamorphic evolution of the Schistes Lustres Complex; implications for the exhumation of HP and UHP rocks in the Western Alps. Bull Soc Géol France 172:617–636. doi: 10.2113/172.5.617 CrossRefGoogle Scholar
  2. Agard P, Monie P, Jolivet L, Goffe B (2002) Exhumation of the Schistes Lustres complex: in situ laser probe Ar-40/Ar-39 constraints and implications for the Western Alps. J Metamorph Geol 20:599–618CrossRefGoogle Scholar
  3. Allanic C (2012) Kinematics, age and dynamic of the brittle deformation within the Lepontine Dome (Central Alps). Ph.D. Dissertation, University of OrléansGoogle Scholar
  4. Anderson EM (1951) The dynamic of faulting and dyke formation with applications to Britain, 2nd edn. Oliver & Boyd, EdinburghGoogle Scholar
  5. Angelier J (1984) Tectonic analysis of fault slip data sets. J Geophys Res 89:5835–5848CrossRefGoogle Scholar
  6. Angelier J (1990) Inversion of field data in fault tectonics to obtain the regional stress—a new rapid direct inversion method by analytical means. Geophys J Int 103:363–376CrossRefGoogle Scholar
  7. Angelier J, Mechler P (1977) Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en sismologie: la méthode des dihèdres droits. Bull Soc Geol Fr 7:1309–1318CrossRefGoogle Scholar
  8. Baietto A, Perello P, Cadoppi P, Martinotti G (2009) Alpine tectonic evolution and thermal water circulations of the Argentera Massif (South-Western Alps). Swiss J Geosci 102:223–245. doi: 10.1007/s00015-009-1313-5 CrossRefGoogle Scholar
  9. Baran R, Friedrich AM, Schlunegger F (2014) The late Miocene to Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere 6:124–131. doi: 10.1130/L307.1 CrossRefGoogle Scholar
  10. Barbieri C, Carrapa B, Di Giulio A, Wijbrans J, Murrell GR (2003) Provenance of Oligocene synorogenic sediments of the Ligurian Alps (NW Italy): inferences on belt age and cooling history. Int J Earth Sci 92:758–778CrossRefGoogle Scholar
  11. Baroux E, Béthoux N, Bellier O (2001) Analyses of the stress field in southeastern France from earthquake focal mechanisms. Geophys J Int 145:336–348. doi: 10.1046/j.1365-246X.2001.01362.x CrossRefGoogle Scholar
  12. Barruol G, Deschamps A, Coutant O (2004) Mapping upper mantle anisotropy beneath SE France by SKS splitting indicates Neogene asthenospheric flow induced by Apenninic slab roll-back and deflected by the deep Alpine roots. Tectonophysics (Elsevier) 394(1–2):125–138. doi: 10.1016/j.tecto.2004.08.002 CrossRefGoogle Scholar
  13. Bauve V, Rolland Y, Sanchez G, Giannerini G, Schreiber D, Corsini M, Perez JL, Romagny A (2012) Pliocene to Quaternary deformation in the Var Basin (Nice, SE France) and its interpretation in terms of ‘slow-active’ faulting. Swiss J Geosci 105:361–376. doi: 10.1007/s00015-012-0106-4 CrossRefGoogle Scholar
  14. Bauve V, Plateaux R, Rolland Y, Sanchez G, Bethoux N, Delouis B, Darnault R (2014) Long-lasting transcurrent tectonics in SW Alps evidenced by Neogene to present-day stress fields. Tectonophysics 621:85–100. doi: 10.1016/j.tecto.2014.02.006 CrossRefGoogle Scholar
  15. Bellahsen N, Jolivet L, Lacombe O, Bellanger M, Boutoux A, Garcia S, Mouthereau F, Le Pourhiet L, Gumiaux C (2012) Mechanisms of margin inversion in the external Western Alps: implications for crustal rheology. Tectonophysics 560–561:62–83. doi: 10.1016/j.tecto.2012.06.022 CrossRefGoogle Scholar
  16. Bertrand A, Sue C (2017) Reconciling late faulting over the whole Alpine belt: from structural analysis to geochronological constrains. Swiss J Geosci. doi: 10.1007/s00015-017-0265-4 Google Scholar
  17. Bertrand A, Rosenberg C, Garcia S (2015) Fault slip analysis and late exhumation of the Tauern Window, Eastern Alps. Tectonophysics 649:1–17. doi: 10.1016/j.tecto.2015.01.002 CrossRefGoogle Scholar
  18. Beucher R. (2009) Evolution Néogène de l’arc alpin sud-occidental: Approches sismotectonique et thermochronologique. Géologie appliquée. Ph. D thesis, Université Joseph-Fourier,  Grenoble IGoogle Scholar
  19. Bigot-Cormier F, Sosson M, Poupeau G, Stéphan JF, Labrin E (2006) The denudation history of the Argentera Alpine External Crystalline Massif (Western Alps, France-Italy): an overview from the analysis of fission tracks in apatites and zircons. Geodin Acta 19:455–473. doi: 10.3166/ga.19.455-473 CrossRefGoogle Scholar
  20. Bistacchi A, Massironi M (2000) Post-nappe brittle tectonics and kinematic evolution of the north-western Alps: an integrated approach. Tectonophysics 327:267–292. doi: 10.1016/S0040-1951(00)00206-7 CrossRefGoogle Scholar
  21. Bogdanoff S, Michard A, Mansour M, Poupeau G (2000) Apatite fission track analysis in the Argentera massif: evidence of contrasting denudation rates in the external crystalline massifs of the Western Alps. Terra Nova 12:117–125. doi: 10.1111/j.1365-3121.2000.00281.x CrossRefGoogle Scholar
  22. Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117. doi: 10.1017/S0016756800059987 CrossRefGoogle Scholar
  23. Bousquet R, Oberhansli R, Goffe B, Wiederkehr M, Koller F, Schmid SM, Schuster R, Engi M, Berger A, Martinotti G (2008) Metamorphism of metasediments at the scale of an orogen: a key to the tertiary geodynamic evolution of the Alps. In: Fügenschuh S, Siegesmund B, Froitzheim N (eds) Geological Society of London special publications, vol 298, pp 393–411. doi: 10.1144/SP298.18
  24. Bucher S, (2003) The Briançonnais units along the ECORS-CROP transect (Italian-French Alps): structures, metamorphism and geochronology. Ph. D thesis, Universität BaselGoogle Scholar
  25. Calais E, Nocquet JMM, Jouanne F, Tardy M (2002) Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996–2001. Geology 30:651–654. doi: 10.1130/0091-7613030<0651:CSRITW>2.0.CO;2 CrossRefGoogle Scholar
  26. Carrapa B, Wijbrans J, Bertotti G (2003) Episodic exhumation in the Western Alps. Geology 31:601–604CrossRefGoogle Scholar
  27. Champagnac JD, Sue C, Delacou B, Burkhard M (2003) Brittle orogen-parallel extension in the internal zones of the Swiss Alps (South Valais). Eclogae Geol Helv 96:325–326Google Scholar
  28. Champagnac JD, Sue C, Delacou B, Burkhard M (2004) Brittle deformation in the inner NW Alps: from early orogen-parallel extrusion to late orogen-perpendicular collapse. Terra Nova 16:232–242. doi: 10.1111/j.1365-3121.2004.00555.x CrossRefGoogle Scholar
  29. Champagnac JD, Sue C, Delacou B, Tricart P, Allanic C, Burkhard M (2006) Miocene lateral extrusion in the inner western Alps revealed by dynamic fault analysis. Tectonics. doi: 10.1029/2004TC001779 Google Scholar
  30. Champagnac JD, Molnar P, Anderson RS, Sue C, Delacou B (2007) Quaternary erosion-induced isostatic rebound in the western Alps. Geology 35:195. doi: 10.1130/G23053A.1 CrossRefGoogle Scholar
  31. Chéry J, Genti M, Vernant P (2016) Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps. Geophys Res Lett 43:3193–3200. doi: 10.1002/2016GL067821 CrossRefGoogle Scholar
  32. Ciancaleoni L, Marquer D (2008) Late Oligocene to early Miocene lateral extrusion at the eastern border of the Lepontine dome of the central Alps (Bergell and Insubric areas, eastern central Alps). Tectonics. doi: 10.1029/2007TC002196 Google Scholar
  33. Collombet M, Thomas JC, Chauvin A, Tricart P, Bouillin JP, and Gratier JP (2002) Counterclockwise rotation of the western Alps since the Oligocene: new insights from paleomagnetic data. Tectonics 21:14-11–14-15. doi: 10.1029/2001TC901016
  34. Corsini M, Ruffet G, Caby R (2004) Alpine and late-hercynian geochronological constraints in the Argentera Massif (Western Alps). Eclogae Geol Helv 97:3–15. doi: 10.1007/s00015-004-1107-8 CrossRefGoogle Scholar
  35. Courboulex F, Larroque C, Deschamps A, Gélis C, Charreau J, Stéphan JF (2003) An unknown active fault revealed by microseismicity in the south-east of France. Geophys Res Lett 30:1782CrossRefGoogle Scholar
  36. D’Atri A, Piana F, Barale L, Bertok C, Martire L (2016) Geological setting of the southern termination of Western Alps. Int J Earth Sci (Geol Rundsch) 105:1831. doi: 10.1007/s00531-015-1277-9 CrossRefGoogle Scholar
  37. Debelmas J (1986) The Western Alpine arc: new data and hypothesis. In: Wezel FC (ed) The origins of arcs. Elsevier, New York, pp 233–251Google Scholar
  38. Delacou B, Sue C, Champagnac JD, Burkhard M (2004) Present-day geodynamics in the bend of the western and central Alps as constrained by earthquake analysis. Geophys J Int 158:753–774CrossRefGoogle Scholar
  39. Duchêne S, Blichert-Toft J, Luais B, Télouk P, Lardeaux JM, Albarède F (1997) The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387:586–589CrossRefGoogle Scholar
  40. Dumont T, Schwartz S, Guillot S, Simon-Labric T, Tricart P, Jourdan S (2012) Structural and sedimentary records of the Oligocene revolution in the Western Alpine arc. J Geodyn 56–57:18–38. doi: 10.1016/j.jog.2011.11.006 CrossRefGoogle Scholar
  41. Etchecopar A, Vasseur G, Daignieres M (1981) An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. J Struct Geol 3:51–65. doi: 10.1016/0191-8141(81)90056-0 CrossRefGoogle Scholar
  42. Eva E, Pastore S, Deichmann N (1998) Evidence for ongoing extensional deformation in the western Swiss Alps and thrust-faulting in the southwestern Alpine foreland. J Geodyn 26:27–43CrossRefGoogle Scholar
  43. Ford M, Duchene S, Gasquet D, Vanderhaeghe O (2006) Two-phase orogenic convergence in the external and internal SW Alps. J Geol Soc 163:815–826. doi: 10.1144/0016-76492005-034 CrossRefGoogle Scholar
  44. Fox M, Herman F, Kissling E, Willett SD (2015) Rapid exhumation in the Western Alps driven by slab detachment and glacial erosion. Geology 43:379–382. doi: 10.1130/G36411.1 CrossRefGoogle Scholar
  45. Frey M, Desmon J, Neubauer F (1999) Metamorphic maps of the Alps: Schweiz. Miner Petrogr Mitt 79:1–4Google Scholar
  46. Frohlich C (1992) Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys Earth Planet Int 75:193–198. doi: 10.1016/0031-9201(92)90130-N CrossRefGoogle Scholar
  47. Giannerini G, Sanchez G, Schreiber D, Lardeaux JM, Rolland Y, de Castro AB, Bauve V (2011) Geometry and sedimentary evolution of the transpresssive Roquebrune-Cap Martin basin: implications on the kinematics and timing of the Nice arc deformation during Miocene times, SW Alps. Bull Soc Geol Fr 182:493–506. doi: 10.2113/gssgfbull.182.6.493 CrossRefGoogle Scholar
  48. Gidon M (2000) Les chaînons subalpins au nord-est de Sisteron et l’histoire tectonique de la nappe de Digne, the subalpine ranges at the NE of Sisteron and the tectonic history of the Digne thrust. Geol Alpine 73:23–57Google Scholar
  49. Gidon M (1974) Alpine arc with vortical origin. In: Comptes Rendus Hebdomadaires Des Séances de L’académie Des Sciences, ser. D, vol 27, p 21Google Scholar
  50. Gigot P, Grandjacquet C, Haccard D (1974) Evolution tectono-sedimentaire de la bordure septentrionale du bassin tertiaire de Digne depuis l’Eocene. Bull Soc Géol Fr Ser 7 16:128–139. doi: 10.2113/gssgfbull.S7-XVI.2.128 CrossRefGoogle Scholar
  51. Gnaccolini M, Gelati R, Falletti P, Catrullo D (1998) Sequence stratigraphy of the “Langhe” Oligo-Miocene succession, Tertiary Piedmont Basin, northern Italy. In: Graciansky PC et al (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins, pp 234–244. SEPM (Society for Sedimentary Geology) special publicationGoogle Scholar
  52. Goguel J (1963) L’interprétation de l’arc des Alpes occidentals. Bull Soc Géol Fr 7(5):20–33Google Scholar
  53. Graciansky PC, Roberts D, Tricart P (2010) The Western Alps, from rift to passive margin to orogenic belt: an integrated geoscience overview. In Shroder JF (ed) Elsevier, New YorkGoogle Scholar
  54. Grosjean G, Sue C, Burkhard M (2004) Late Neogene extension in the vicinity of the Simplon fault zone (central Alps, Switzerland). Eclogae Geol Helv 97:33–46. doi: 10.1007/s00015-004-1114-9 CrossRefGoogle Scholar
  55. Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158. doi: 10.1016/j.earscirev.2010.06.002 CrossRefGoogle Scholar
  56. Hippolyte JC, Dumont T (2000) Identification of Quaternary thrusts, folds and faults in a low seismicity area: examples in the Southern Alps (France). Terra Nova 12:156–162. doi: 10.1046/j.1365-3121.2000.00287.x CrossRefGoogle Scholar
  57. Huet J (2009) Alpes de Haute-Provence, à tire d’ailes. Jean Huet.
  58. Jenatton L, Guiguet R, Thouvenot F, Daix N (2007) The 16,000-event 2003–2004 earthquake swarm in Ubaye (French Alps). J Geophys Res 112:B11304. doi: 10.1029/2006JB004878 CrossRefGoogle Scholar
  59. Kurz W, Neubauer F, Genser J, Horner H (1993) Sequence of tertiary brittle deformations in the Eastern Tauern Window (Eastern Alps). Mitt Österr Geol 86:153–164Google Scholar
  60. Labaume P, Ritz JF, Philip H (1989) Recent normal faults in the southwestern Alps: their relationships with the compression tectonics. C R L’Acad Sci (Paris) Ser 2 308:1553–1560Google Scholar
  61. Lacombe O (2012) Do fault slip data inversions actually yield ‘paleostresses’ that can be compared with contemporary stresses? A critical discussion. C R Geosci 344:159–173. doi: 10.1016/j.crte.2012.01.006
  62. Lambert J, Levret-Albaret A (1996) Mille ans de Séismes en France, Catalogue D’épicentres. Paramètres et Références (Ouest Éditions), NantesGoogle Scholar
  63. Lanari P, Guillot S, Schwartz S, Vidal O, Tricart P, Riel N, Beyssac O (2012) Diachronous evolution of the alpine continental subduction wedge: evidence from PT estimates in the Briançonnais Zone houillère (France—Western Alps). J Geodyn 56–57:39–54. doi: 10.1016/j.jog.2011.09.006 CrossRefGoogle Scholar
  64. Lanari P, Rolland Y, Schwartz S, Vidal O, Guillot S, Tricart P, Dumont T (2014) P–T–t estimation of deformation in low-grade quartz-feldspar-bearing rocks using thermodynamic modelling and 40Ar/39Ar dating techniques: example of the Plan-de-Phasy shear zone unit (Briançonnais Zone, Western Alps). Terra Nova 26:130–138. doi: 10.1111/ter.12079 CrossRefGoogle Scholar
  65. Lardeaux JM, Schwartz S, Tricart P, Paul A, Guillot S, Béthoux N, Masson F (2006) A crustal-scale cross-section of the south-western Alps combining geophysical and geological and geological imagery. Terra Nova 18:412–422CrossRefGoogle Scholar
  66. Larroque C, Delouis B, Godel B, Nocquet JM (2009) Active deformation at the southwestern Alps-Ligurian basin junction (France–Italy boundary): evidence for recent change from compression to extension in the Argentera massif. Tectonophysics 467:22–34CrossRefGoogle Scholar
  67. Laubscher H (1996) Shallow and deep rotations in the Miocene Alps. Tectonics 15:1022–1035. doi: 10.1029/96TC00432 CrossRefGoogle Scholar
  68. Laurent O, Stephan JF, Popoff M (2000) Modalités de la structuration miocène de la branche sud de l’arc de Castellane (chaîne subalpines méridionales). Géol Fr 3:33–65Google Scholar
  69. Maffione M, Speranza F, Faccenna C, Cascella A, Vignaroli G, Sagnotti L (2008) A synchronous Alpine and Corsica–Sardinia rotation. J Geophys Res 113:B03104. doi: 10.1029/2007JB005214 CrossRefGoogle Scholar
  70. Malusà MG, Polino R, Zattin M (2009) Strain partitioning in the axial NW Alps since the Oligocene. Tectonics 28:3CrossRefGoogle Scholar
  71. Ménard G (1979) Relations entre structures profondes et structures superficielles dans le sud-est de la France. Essai d’utilisation de données géophysiques, Thesis, Universite Scientifique et Medicale de GrenobleGoogle Scholar
  72. Ménard G (1988) Structure et cinématique d’une chaîne de collision: les Alpes ocidentales et centrales. Ph.D. thesis, Université Joseph-Fourier, GrenobleGoogle Scholar
  73. Mohn G, Manatschal G, Muntener O, Beltrando M, Masini E (2010) Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. Int J Earth Sci 99:75–101. doi: 10.1007/s00531-010-0566-6 CrossRefGoogle Scholar
  74. Molli G, Crispini L, Malusa M, Mosca P, Piana P, Federico L (2010) Geology of the Western Alps–Northern Apennine junction area: a regional review. J Virtual Explor 36 (paper 10 of the electronic edition ISSN 1441–8142) Google Scholar
  75. Nocquet JM, Sue C, Walpersdorf A, Tran T, Lenôtre N, Vernant P, Cushing M et al (2016) Present-day uplift of the western Alps. Nat Sci Rep (in press) Google Scholar
  76. Ortner H, Reitera F, Acs P (2002) Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for Windows™. Comput Geosci 28:1193–1200. doi: 10.1016/S0098-3004(02)00038-9 CrossRefGoogle Scholar
  77. Perrone G, Cadoppi P, Tallone S, Balestro G (2011) Post-collisional tectonics in the Northern Cottian Alps (Italian Western Alps). Int J Earth Sci 100:1349–1373. doi: 10.1007/s00531-010-0534-1 CrossRefGoogle Scholar
  78. Qorbani E, Bianchi I, Bokelmann G (2015) Slab detachment under the Eastern Alps seen by seismic anisotropy. Earth Planet Sci Lett 409:96–108. doi: 10.1016/j.epsl.2014.10.049 CrossRefGoogle Scholar
  79. Ritz JF (1992) Tectonique récente et sismotectonique des Alpes du sud: analyse en termes de contraintes. Quaternaire 3:111–124CrossRefGoogle Scholar
  80. Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67:2173–2187CrossRefGoogle Scholar
  81. Sanchez G, Rolland Y, Schreiber D, Giannerini G, Corsini M, Lardeaux JM (2010) The active fault system of SW Alps. J Geodyn 49:296–302. doi: 10.1016/j.jog.2009.11.009 CrossRefGoogle Scholar
  82. Sanchez G, Rolland Y, Jolivet M, Brichau S, Corsini M, Carter A (2011a) Exhumation controlled by transcurrent tectonics: the Argentera-Mercantour massif (SW Alps). Terra Nova 23:116–126. doi: 10.1111/j.1365-3121.2011.00991.x Google Scholar
  83. Sanchez G, Rolland Y, Schneider J, Corsini M, Oliot E, Goncalves P, Verati C, Lardeaux JM, Marquer D (2011b) Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour massif (SW Alps). Lithos 125:521–536. doi: 10.1016/j.lithos.2011.03.009 CrossRefGoogle Scholar
  84. Schlunegger F, Kissling E (2015) Slab rollback orogeny in the Alps and evolution of the Swiss Molasse basin. Nat Commun 6:8605. doi: 10.1038/ncomms9605 CrossRefGoogle Scholar
  85. Schmid SM, Kissling E (2000) The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 19:62–85. doi: 10.1029/1999TC900057 CrossRefGoogle Scholar
  86. Schmid S, Kissling E, Diehl T, vanHinsbergen DJJ, Molli G (2016) Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines orogenic system. Swiss J Earth Sci (in press) Google Scholar
  87. Schreiber D, Lardeaux JM, Martelet G, Courrioux G, Guillen A (2010) 3D modelling of Alpine Mohos in South-western Alps. Geophys J Int 180:961–975CrossRefGoogle Scholar
  88. Schreiber D, Giannerini D, Lardeaux JM (2011) The Southeast France basin during Late Cretaceous times: the spatiotemporal link between Pyrenean collision and Alpine subduction. Geodin Acta 24:21–35. doi: 10.3166/ga.24.21-35 CrossRefGoogle Scholar
  89. Schwartz S, Lardeaux JM, Guillot S, Tricart P (2000) The diversity of eclogitic metamorphism in the Monviso ophiolitic complex, western Alps, Italy. Geodin Acta 13:169–188Google Scholar
  90. Schwartz S, Lardeaux JM, Tricart P, Guillot S, Labrin E (2007) Diachronous exhumation of HP-LT metamorphic rocks from south-western Alps: evidence from fission-track analysis. Terra Nova 19:133–140CrossRefGoogle Scholar
  91. Sébrier M, Ghafiri A, Bles JL (1997) Paleoseismicity in France: fault trench studies in a region of moderate seismicity. J Geodyn 24:207–217CrossRefGoogle Scholar
  92. Seeber L, Pêcher A (1998) Strain partitioning along the Himalayan arc and the Nanga Parbat antiform. Geology 26:791. doi: 10.1130/0091-7613026<0791:SPATHA>2.3.CO;2 CrossRefGoogle Scholar
  93. Selverstone J (2005) Are the Alps collapsing? Annu Rev Earth Planet Sci 33:113–132. doi: 10.1146/ CrossRefGoogle Scholar
  94. Serpelloni E, Faccenna C, Giorgio S, Dong D, Williams SDP (2013) Vertical GPS ground motion rates in the Euro-Mediterranean region: new evidence of velocity gradients at different spatial scales along the Nubia–Eurasia plate boundary. J Geophys Res Solid Earth 118:6003–6024. doi: 10.1002/2013JB010102 CrossRefGoogle Scholar
  95. Seward D, Mancktelow NS (1994) Neogene kinematics of the central and western Alps—evidence from fission-track dating. Geology 22:803–806CrossRefGoogle Scholar
  96. Simon-labric T, Rolland Y, Dumont T, Heymes T, Authemayou C, Corsini M, Fornari M (2009) 40Ar/39Ar dating of Penninic Front tectonic displacement (W Alps) during the Lower Oligocene (31–34 Ma). Terra Nova 21:127–136. doi: 10.1111/j.1365-3121.2009.00865.x CrossRefGoogle Scholar
  97. Spang JH (1972) Numerical method for dynamic analysis of calcite twin lamellae. Geol Soc Am Bull 83:467–472CrossRefGoogle Scholar
  98. Sturani C (1962) Il complesso sedimentario autoctono all’ estremo nord-occidentale del Massicio dell’ Argentera (Alpi Marittime). Ph.D. thesis, University of Padova, TorinoGoogle Scholar
  99. Sue C (1998) Dynamique actuelle et récente des Alpes occidentales internes: approches structurale et sismologique. Ph.D. thesis, Université Joseph Fourier, GrenobleGoogle Scholar
  100. Sue C, Tricart P (1999) Late Alpine brittle extension above the Frontal Pennine thrust near Briancon, Western Alps. Eclogae Geol Helv 92:171–181Google Scholar
  101. Sue C, Tricart P (2002) Widespread post-nappe normal faulting in the Internal Western Alps: a new constraint on arc dynamics. J Geol Soc 159:61–70. doi: 10.1144/0016-764901-026 CrossRefGoogle Scholar
  102. Sue C, Tricart P (2003a) Late Alpine brittle extension above the Frontal Pennine thrust near Briançon, Western Alps. Eclogae Geol Helv 96:325–338Google Scholar
  103. Sue C, Tricart P (2003b) Neogene to ongoing normal faulting in the inner western Alps: a major evolution of the alpine tectonics. Tectonics 22:1–25CrossRefGoogle Scholar
  104. Sue C, Thouvenot F, Fréchet J, Tricart P (1999) Widespread extension in the core of the western Alps revealed by earthquake analysis. J Geophys Res 104:25611–25622. doi: 10.1029/1999JB900249 CrossRefGoogle Scholar
  105. Sue C, Delacou B, Champagnac JD, Allanic C, Tricart P, Burkhard M (2007) Extensional neotectonics around the bend of the Western/Central Alps: an overview. Int J Earth Sci 96:1101–1129. doi: 10.1007/s00531-007-0181-3 CrossRefGoogle Scholar
  106. Sue C, Calcagno P, Courrioux G, Tricart P, Fréchet J, Thouvenot F (2010) Relationships between inherited crustal structures and seismicity in the western Alps inferred from 3D structural modeling. Bull Soc Geol Fr 181:583–590CrossRefGoogle Scholar
  107. Tapponnier P (1977) Evolution tectonique du systeme alpin en Mediterranee; poinconnement et ecrasement rigide-plastique. Bull Soc Géol Fr 19:437–460. doi: 10.2113/gssgfbull.S7-XIX.3.437 CrossRefGoogle Scholar
  108. Tricart P (1984) From passive margin to continental collision: a tectonic scenario for the western Alps. Am J Sci 284:97–120CrossRefGoogle Scholar
  109. Tricart P (2004) From extension to transpression during the final exhumation of the Pelvoux and Argentera massifs, Western Alps. Eclogae Geol Helv 97:429–439. doi: 10.1007/s00015-004-1138-1 CrossRefGoogle Scholar
  110. Tricart P, Lardeaux JM, Schwartz S, Sue C (2006) The late extension in the inner western Alps: a synthesis along the south-Pelvoux transect. Bull Soc Geol Fr 177:299–310CrossRefGoogle Scholar
  111. Tricart P, van der Beek PV, Schwartz S, Labrin E (2007) Diachronous late-stage exhumation across the western Alpine arc: constraints from apatite fission-track thermochronology between the Pelvoux and Dora–Maira massifs. J Geol Soc Lond 164:163–174CrossRefGoogle Scholar
  112. Turner FJ (1953) Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. Am J Sci 251:276–298CrossRefGoogle Scholar
  113. Vance JA (1999) Zircon fission track evidence for a Jurassic (Tethyan) thermal event in the Western Alps. Mem Sci Geol Padova 51:473–476Google Scholar
  114. Vernant P, Hivert F, Chéry J, Steer P, Cattin R, Rigo A (2013) Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges. Geology 41:467–470. doi: 10.1130/G33942.1 CrossRefGoogle Scholar
  115. Vialon P, Rochette P, Menard G (1989) Indentation and rotation in the western Alpine arc. In. Dietrich D, Coward MP, Park RG (eds) Geological Society of London special publications, vol 45, pp 329–338. doi: 10.1144/GSL.SP.1989.045.01.18
  116. Wallace RE (1951) Geometry of shearing stress and relation to faulting. J Geol 59:118–130CrossRefGoogle Scholar
  117. Wang X, Neubauer F (1998) Orogen-parallel strike-slip faults bordering metamorphic core complexes: the Salzach–Enns fault zone in the eastern Alps, Austria. J Struct Geol 20:799–818. doi: 10.1016/S0191-8141(98)00013-3 CrossRefGoogle Scholar
  118. Yamaji A (2000) The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. J Struct Geol 22:441–452. doi: 10.1016/S0191-8141(99)00163-7 CrossRefGoogle Scholar
  119. Yamaji A (2002) Are the solutions of stress inversion correct? Visualization of their reliability and the separation of stresses from heterogeneous fault-slip data. J Struct Geol 25:241–252. doi: 10.1016/S0191-8141(02)00021-4 CrossRefGoogle Scholar
  120. Zhao L, Paul A, Guillot S, Solarino S, Malusa MG, Zheng T, Aubert C, Salimbeni S, Dumont T, Shwartz S, Zhu R, Wang Q (2015) First seismic evidence for continental subduction beneath the Western Alps. Geology 43:815–819. doi: 10.1130/G36833.1 CrossRefGoogle Scholar
  121. Zwingmann H, Mancktelow N (2004) Timing of Alpine fault gouges. Earth Planet Sci Lett 223:415–425. doi: 10.1016/j.epsl.2004.04.041 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Earth ScienceUniversity of MelbourneMelbourneAustralia
  2. 2.CNRS-UMR6249Bourgogne Franche-Comté UniversityBesançonFrance
  3. 3.ISTerreUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations