Skip to main content
Log in

Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: evidence for the geometry of a thick-skinned thrust

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Reverse movement on the Harz Northern Boundary Fault was responsible for the Late Cretaceous uplift of the Harz Mountains in northern Germany. Using the known geometry of the surface position and dip of the fault, and a published cross section of the Base Permian horizon, we show that it is possible to predict the probable shape of the fault at depth, down to a detachment level. We use the ‘inclined-shear’ method with constant heave and argue that a shear angle of 30° was most likely. In this case, the detachment level is at a depth of ca. 25 km. Kinematic restoration of the Harz Mountains using this fault geometry does not produce a flat horizon, rather it results in a ca. 4 km depression. Airy–Heiskanen isostatic equilibrium adjustment of the Harz Mountains restores the Base Permian horizon to the horizontal, as well as raising the Moho to a depth of 32 km, a typical value for northern Germany. Restoration also causes a rotation of tectonic fabrics within the Harz Mountains of about 11° clockwise. We show that this model geometry is very good fit to the interpreted DEKORP BASIN 9601 deep seismic profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Airy GB (1855) On the computation of the effect of the attraction of mountain masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philos Trans R Soc 145:101–104. doi:10.1098/rstl.1855.0003

    Article  Google Scholar 

  • Anderson EM (1951) The dynamics of faulting and Dyke formation with applications to britain. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Bayerlee J (1977) Friction in rocks. In: Evernden JF (ed) Experimental studies of rock friction with application to earthquake prediction. U.S Geological Survey, Menlo Park, pp 55–77

    Google Scholar 

  • Best G, Zirngast M (1998) Die strukturelle Entwicklung der exhumierten Salzstruktur ‘Oberes Allertal’ Internal report of the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), ISBN 978-3-9813373-0-3

  • Best G, Zirngast M (1999) Reconstruction of the exhumed upper Allertal salt structure. EGU Straßbourg 1999, J Conf Abstr 4:518

  • Brandes C, Winsemann J, Meinsen J, Roskosch J, Tsukamoto S, Frechen M, Tanner DC, Steffen H, Wu P (2012) Activity along the Osning Thrust in Central Europe during the Lateglacial: ice-sheet and lithosphere interactions. Quat Sci Rev 38:49–62. doi:10.1016/j.quascirev.2012.01.021

    Article  Google Scholar 

  • Brandes C, Schmidt C, Tanner DC, Winsemann J (2013) Paleostress pattern and salt tectonics within a developing foreland basin (north-western Subhercynian Basin, Northern Germany). Int J Earth Sci 102(8):2239–2254. doi:10.1007/s00531-013-0911-7

    Article  Google Scholar 

  • Brandes C, Tanner DC (2014) Fault-related folding: a review of kinematic models and their application. Earth Sci Rev 138:352–370. doi:10.1016/j.earscirev.2014.06.008

    Article  Google Scholar 

  • Braxmeir H (2011) SRTM-mission relief map. http://www.maps-for-free.com. Accessed 26 June 2016

  • Brink H-J (2011) The crustal structure around the Harz Mountains (Germany): review and analysis. Z Dt Ges Geowiss 162(3):235–250. doi:10.1127/1860-1804/2011/0162-0235

    Google Scholar 

  • Capote R, Muñoz JA, Simón JL, Liesa C-L, Arlegui LE (2002) Alpine tectonics, I: the Alpine system north of the Betic Cordillera. In: Gibbons W, Moreno T (eds) The geology of Spain: London, The Geological Society of London, p 367–400

  • DePaola N, Mirabella F, Barchi MR, Burchielli F (2006) Early orogenic normal faults and their reactivation during thrust belt evolution: the Gubbio Fault case study, Umbria-Marche Apennines (Italy). J Struct Geol 28:1948–1957. doi:10.1016/j.jsg.2006.06.002

    Article  Google Scholar 

  • DEKORP-Basin Research Group (1999) Deep crustal structure of the northeast German Basin: new DEKORP BASIN 96 deep-profiling results. Geology 27:55–58. doi:10.1130/0091-7613(1999)027<0055:DCSOTN>2.3.CO;2

  • Deutsche Stratigraphische Kommission, Menning M, Hendrich A (eds) (2012) Stratigraphische Tabelle von Deutschland. Deutsche Stratigraphische Kommission, Deutsches GeoForschungsZentrum, Potsdam

  • Engel W, Franke W, Grote C, Weber K, Ahrendt H, Eder FW (1983) Nappe tectonics in the southeastern part of the Rheinisches Schiefergebirge. In: Martin H, Eder FW (eds) lntracontinental fold belts. Springer, Berlin, pp 267–288

    Chapter  Google Scholar 

  • Ersch JS, Gruber JG (eds) (1826) Allgemeine Encyclopädie der Wissenschaften und Künste. FA Brockhaus, Leipzig

    Google Scholar 

  • Flick H (1986) The Hercynian mountains—a postorogenic overthrusted massif? Naturwissenschaften 73(11):670–671. doi:10.1007/BF00366689

    Article  Google Scholar 

  • Franzke H-J, Voigt T, von Eynatten H, Brix MR, Burmester G (2004) Geometrie und Kinematik der Harznordrandstörung, erläutert an Profilen aus dem Gebiet von Blankenburg. Geowiss Mitt Thüringen 11:39–62

    Google Scholar 

  • Franzke H-J, Müller R, Voigt T, von Eynatten H (2007) Paleo-stress paths in the Harz Mountains and surrounding areas (Germany) between the Triassic and the Upper Cretaceous. Z geol Wissenschaft 35(3):141–156

    Google Scholar 

  • Gabriel G, Jahr T, Jentzsch G, Melzer J (1996) The Harz Mountains, Germany: finite-element modeling of the evolution based on the interpretation of the gravity field. Phys Chem Earth 21(4):305–311. doi:10.1016/S0079-1946(97)00053-0

    Article  Google Scholar 

  • Gabriel G, Jahr T, Jentzsch G, Melzer J (1997) Deep structure and evolution of the Harz Mountains: results of three-dimensional gravity and finite-element modeling. Tectonophysics 270:279–299. doi:10.1016/S0040-1951(96)00176-X

    Article  Google Scholar 

  • Gabriel G, Jahr T, Weber U (2001) The gravity field south of the Harz Mountains: predominated by granitic material? Z Geol Wiss 29(3):249–266

    Google Scholar 

  • Groshong RH Jr (1989) Half graben structures: balanced models of extensional fault-bend folds. Geol Soc Am Bull 101(1):1329–1360. doi:10.1130/0016-7606(1989)101<0096:HGSBMO>2.3.CO;2

    Article  Google Scholar 

  • Groshong RH Jr (1990) Unique determination of normal fault shape from hanging-wall bed geometry in detached half grabens. Eclogae Geol Helv 83:455–471. doi:10.5169/seals-166596

    Google Scholar 

  • Groshong RH Jr (2006) 3-D structural geology. A practical guide to quantitative surface and subsurface map interpretation, 2nd edn. Springer, Berlin. doi:10.1007/978-3-540-31055-6

  • Groshong RH Jr, Withjack MO, Schlische RW, Hidayah TN (2012) Bed length does not remain constant during deformation: recognition and why it matters. J Struct Geol 41:86–97. doi:10.1016/j.jsg.2012.02.009

    Article  Google Scholar 

  • Hague TA, Gray GG (1996) A critique of techniques for modelling normal-fault and rollover geometries. In: Buchanan PG, Niewland DA (eds) Modern developments in structural interpretation, validation and modelling. Geol Soc Lond Spec Pub 99:8997. doi:10.1144/GSL.SP.1996.099.01.08

  • Heiskanen WA, Vening Meinesz FA (1958) The earth and its gravity field. McGraw-Hill, New York. doi:10.1017/S001675680006115X

  • Kley J, Franzke H-J, Jähne F, Krawczyk C, Lohr T, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H, the SPP structural geology group (2008) Chapter 3.3—Strain and Stress. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins—the Central European Basin System, Springer, Berlin, pp 97–124. doi:10.1007/978-3-540-85085-4

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36(11):839–842. doi:10.1130/G24930A.1

    Article  Google Scholar 

  • Kockel F (2003) Inversion structures in central Europe–expressions and reasons, an open discussion. Geol Mijnb 82:367–382. doi:10.1017/S0016774600020187

    Article  Google Scholar 

  • Kossow D (2002) Die kinematische Entwicklung des invertierten, intrakontinentalen Nordostdeutschen Beckens: Ergebnisse seismisch-stratigraphischer Untersuchungen und einer Profilbilanzierung. Dissertation, Deutsches GeoForschungsZentrum GFZ

  • Kossow D, Krawczyk CM (2002) Structure and quantification of processes controlling the evolution of the inverted NE-German Basin. Mar Pet Geol 19:601–618

    Article  Google Scholar 

  • Krawczyk CM, Stiller M, DEKORP-Basin Research Group (1999) Reflection seismic constraints on Paleozoic crustal structure and Moho beneath the NE German Basin. Tectonophysics 314:241–253. doi:10.1016/S0040-1951(99)00246-2

  • Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental basins: the central European basin system. Springer, Berlin, p 519. doi:10.1007/978-3-540-85085-4

  • Mazur S, Scheck-Wenderoth M, Krzywiec P (2005) Different modes of Late Cretaceous-Early Tertiary inversion in the North German and Polish basins. Int J Earth Sci 94:782–798. doi:10.1007/s00531-005-0016-z

    Article  Google Scholar 

  • McClay KR (1989) Analogue models of inversion tectonics. In: Cooper MA, Williams GD (eds) Inversion tectonics. Geol Soc Lond, Spec Pub 44, pp 41–59. doi:10.1144/GSL.SP.1989.044.01.04

  • McClay KR (1995) The geometries and kinematics of inverted fault systems: a review of analogue model studies. In: Buchanan JG, Buchanan PG (eds) Basin inversion. Geol Soc Lond Spec Pub 88, pp 97–118. doi:10.1144/GSL.SP.1995.088.01.07

  • McKenzie DP (1969) The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull Seismol Soc Am 59:591–601

    Google Scholar 

  • Medwedeff DA, Suppe J (1997) Multibend fault-bend folding. J Struct Geol 19:279–292. doi:10.1016/S0191-8141(97)83026-X

    Article  Google Scholar 

  • Ménard G, Molnar P, Platt JP (1991) Budget of crustal shortening and subduction of continental crust in the Alps. Tectonics 10:231–244. doi:10.1029/90TC02552

    Article  Google Scholar 

  • Reicherter KR, Pletsch TK (2000) Evidence for a synchronous circum-Iberian subsidence event and its relation to the African-Iberian plate convergence in the Late Cretaceous. Terra Nova 12:141–147. doi:10.1046/j.1365-3121.2000.00276.x

    Article  Google Scholar 

  • Römer FA (1866) Beiträge zur geologischen Kenntniss des norddeutschen Harzgebirges. 5. Abtheilung Palaeontogr 13(5):201–236

  • Römer FA (1900) Beiträge zur geologischen Kenntniss des nordwestlichen Harzgebirges. Palaeontogr 1(9):1–46

    Google Scholar 

  • Ruchholz K (1983) Bretonischer Blattverschiebungsmechanismus im Harz und seine Bedeutung im Bereich des Rhenischen Troges. Thesen Koll, Zentralinst Physik der Erde: 1–8

  • Scheck M, Barrio-Alvers L, Bayer U, Götze H-J (1999) Density structure of the Northeast German basin: 3D modelling along the DEKORP line BASIN 96. Phys Chem Earth Part A Solid Earth Geod 24(3):221–230. doi:10.1016/S1464-1895(99)00022-8

    Article  Google Scholar 

  • Sibson RH (1985) A note on fault reactivation. J Struct Geol 7:751–754. doi:10.1016/0191-8141(85)90150-6

    Article  Google Scholar 

  • Suppe J (1983) Geometry and kinematics of fault-bend folding. Am J Sci 283:684–721. doi:10.2475/ajs.283.7.684

    Article  Google Scholar 

  • Sykes LR (1978) Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism post-dating continental fragmentation. Rev Geophys 16(4):621–687. doi:10.1029/RG016i004p00621

    Article  Google Scholar 

  • Tanner DC, Behrmann JH, Oncken O, Weber K (1998) Three-dimensional retro-modelling of transpression on a linked fault system: the Upper Cretaceous deformation on the western border of the Bohemian Massif, Germany. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics. Geol Soc Lond Spec Publ 135, pp 275–287. doi:10.1144/GSL.SP.1998.135.01.18

  • Tanner DC, Brandes C, Leiss B (2010) Structure and kinematics of an outcrop-scale, fold-cored triangle zone. Bull Am Assoc Pet Geol 94(12):1799–1809. doi:10.1306/06301009188

    Google Scholar 

  • Tsuboi C (1983) Gravity. George Allen and Unwin, London 254 pp

    Google Scholar 

  • Voigt T, von Eynatten H, Franzke H-J (2004) Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geol Pol 54:673–694

    Google Scholar 

  • Voigt T, Wiese F, von Eynatten H, Franzke H-J, Gaupp R (2006) Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous basin and adjoining areas (Germany). Z Dt Ges Geowiss 157:203–244. doi:10.1127/1860-1804/2006/0157-0203

    Google Scholar 

  • Voigt T, von Eynatten H, Kley J (2009) Kommentar zu “Nördliche Harzrandstörung: Diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit und Kinematik” von V Wrede (Z Dt Ges Geowiss 159(2):293–316). [Comment on ’The northern border fault of the Harz Mountains—contributions to the discussion on deep structure, timing and kinematics by V Wrede (Z Dt Ges Geowiss 159(2):293–316).] Z Dt Ges Geowiss 160:93–99. doi:10.1127/1860-1804/2009/0160-0093

  • von Eynatten H, Voigt T, Meier A, Franzke H-J, Gaupp R (2008) Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to exhumation of the Harz Mountains and the timing of inversion tectonics in the Central European Basin. Int J Earth Sci 97:1315–1330. doi:10.1007/s00531-007-0212-0

    Article  Google Scholar 

  • von Eynatten H, Dunkl I, Brix M, Hoffmann V-E, Raab M, Thomson SN, Voigt T (2016) Die oberkretazische Heraushebung des Harzes: thermochronologische und sedimentgeologische Daten. Göttingen Contrib Geosci 78:38–39

    Google Scholar 

  • White NJ, Jackson JA, McKenzie DP (1986) The relationship between the geometry of normal faults and that of the sedimentary layers in their hangingwalls. J Struct Geol 8:897–909. doi:10.1016/0191-8141(86)90035-0

    Article  Google Scholar 

  • Withjack MO, Peterson ET (1993) Prediction of normal-fault geometries; a sensitivity analysis. Am Assoc Pet Geol B 77:18601873

    Google Scholar 

  • Wrede V (1988) Der nördliche Harzrand—flache Abscherbahn oder wrench-fault-system? Geol Rundsch 77(1):101–114. doi:10.1007/BF01848678

    Article  Google Scholar 

  • Wrede V (2008) Nördliche Harzrandstörung: Diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit und Kinematik. Z Dt Ges Geowiss 159(2):293–316. doi:10.1127/1860-1804/2008/0159-0293

    Google Scholar 

  • Xiao H, Suppe J (1992) Origin of rollover. Am Assoc Pet Geol B 76:509–529

    Google Scholar 

  • Yamada Y, McClay K (2003a) Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 1: 2D hanging wall deformation and section restoration. J Struct Geol 25(9):1551–1560. doi:10.1016/S0191-8141(02)00181-5

    Article  Google Scholar 

  • Yamada Y, McClay K (2003b) Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 2: insights for possible along strike migration of material during 3D hanging wall deformation. J Struct Geol 25(9):1331–1336. doi:10.1016/S0191-8141(02)00160-8

    Article  Google Scholar 

  • Yegorova TP, Kozlenko VG, Pavlenkova NI, Starostenko VI (1995) 3-D density model for the lithosphere of Europe: construction method and preliminary results. Geophys J Int 121:873–892. doi:10.1111/j.1365-246X.1995.tb06445.x

    Article  Google Scholar 

  • Ziesch J, Tanner DC, Krawczyk CM (2014) Strain associated with the fault-parallel flow algorithm during kinematic fault displacement. Math Geosci 46(1):59–73. doi:10.1007/s11004-013-9464-3

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge various discussions with colleagues about the Harz Mountains, especially Christian Brandes, Carl-Heinz Friedel, Bernd Leiss, and Axel Vollbrecht. Jonas Kley and Klaus Reicherter provided positive and comprehensive reviews. We thank Midland Valley Exploration for use of their Move software, which was used to carry out the restoration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Tanner.

Appendix: The ‘inclined-shear’ method

Appendix: The ‘inclined-shear’ method

Fig. 10
figure 10

Inclined-shear method to predict the shape of the fault using the hanging-wall geometry, the footwall/hanging-wall cutoffs, and a specific shear angle, here 30°. Solid lines represent trace of Base Permian horizon, fine dashed thick line—known trace of the fault. Finely-dashed lines represent material vectors within the hanging wall. The angle of the material vector from the horizontal is given

‘Inclined-shear’ fault prediction relies on knowledge of the initial fault dip and position, as well as the cutoffs of a certain horizon (Fig. 10). The method assumes constant heave on the fault over the whole fault length. The angle at which the hanging wall underwent shear during fault movement (known as the shear angle) must be estimated; in Fig. 10, the shear angle is 30° from the vertical, i.e., it dips at 60° towards the fault. The hanging-wall cutoff (A \(^\prime \)) is projected at the shear angle to the regional, i.e., the level of the footwall (point P). The horizontal length from P to A is \(\epsilon \). At regular intervals of \(\epsilon \) from A, the points B, C, etc are marked (Fig. 10). At each of the points, a shear construction line is projected to the hanging wall at the shear angle (points B \(^\prime \)G \(^\prime \)). The lengths t\(_1\) to t\(_n\) are measured. The depth to the fault is calculated by projecting the shear construction lines downwards from the regional, using vectors t\(_1\) from A, t\(_1 +\) t\(_2\) from B, t\(_1 +\) t\(_2 +\) t\(_3\) from C, etc. After Groshong (2006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanner, D.C., Krawczyk, C.M. Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: evidence for the geometry of a thick-skinned thrust. Int J Earth Sci (Geol Rundsch) 106, 2963–2972 (2017). https://doi.org/10.1007/s00531-017-1475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1475-8

Keywords

Navigation